Abstract

A superconducting transition edge sensor (TES) bolometer operating in the spectral range from 0.1 THz to 3 THz was designed. It is especially intended for Fourier transform spectroscopy and features a higher dynamic range and a highly linear response at a similar response compared to commercially available silicon composite bolometers. The design is based on a thin film metal mesh absorber, a superconducting thermistor and Si3N4 membrane technology. A prototype was set up, characterized and successfully used in first applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK

Shih-Fu Lee, Jan M. Gildemeister, Warren Holmes, Adrian T. Lee, and Paul L. Richards
Appl. Opt. 37(16) 3391-3397 (1998)

Model for excess noise in voltage-biased superconducting bolometers

Jan M. Gildemeister, Adrian T. Lee, and Paul L. Richards
Appl. Opt. 40(34) 6229-6235 (2001)

Planar hyperblack absolute radiometer

John Lehman, Andreas Steiger, Nathan Tomlin, Malcolm White, Mathias Kehrt, Ivan Ryger, Michelle Stephens, Christian Monte, Ingmar Mueller, Joerg Hollandt, and Marla Dowell
Opt. Express 24(23) 25911-25921 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Chamberlain, Principles of Interferometric Spectroscopy (John Wiley & Sons Ltd, 1979).
  2. A. Kleinert, “Correction of detector nonlinearity for the balloonborne Michelson interferometer for passive atmospheric sounding,” Appl. Opt. 45, 425–431 (2006).
    [Crossref] [PubMed]
  3. K. Irwin and G. Hilton, “Transition-edge sensors,” in Cryogenic Particle Detection, vol. 99 of Top. Appl. Phys., C. Enss, ed. (Springer, 2005).
  4. J. M. Gildemeister, A. T. Lee, and P. L. Richards, “A fully lithographed voltage-biased superconducting spider-web bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
    [Crossref]
  5. W. Woltersdorff, “Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot,” Z. Phys. 91, 230–252 (1934).
    [Crossref]
  6. C. Hilsum, “Infrared absorption of thin metal films,” J. Opt. Soc. Am. 44, 188 (1954).
    [Crossref]
  7. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
    [Crossref]
  8. M. Kehrt, R. Müller, A. Steiger, and C. Monte, “Background corrected transmittance and reflectance measurements in the FIR,” in Proceedings of 38th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2013).
  9. A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
    [Crossref]
  10. M. Kehrt, J. Beyer, C. Monte, and J. Hollandt, “Design and characterization of a TES bolometer for Fourier transform spectroscopy in the THz range,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2014).
  11. J. Clarke and A. I. Braginski, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley-VCH, 2005).
  12. D. Drung, “High-Tc and low-Tc dc SQUID electronics,” Supercond. Sci. Technol. 16, 1320 (2003).
    [Crossref]
  13. D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use squid sensors,” IEEE Transactions on Applied Superconductivity 17, 699–704 (2007).
    [Crossref]
  14. Magnicon GmbH, “XXF-1 – ultra-high bandwidth dc SQUID electronics,” http://www.magnicon.com/fileadmin/download/datasheets/Magnicon_XXF-1.pdf .
  15. P. L. Richards, “Bolometers for infrared and millimeter waves,” Appl. Phys. 76, 1–24 (1994).
    [Crossref]
  16. R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
    [Crossref]
  17. J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
    [Crossref]
  18. R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
    [Crossref]
  19. A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
    [Crossref] [PubMed]
  20. A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21, 14466–14473 (2013).
    [Crossref] [PubMed]

2014 (1)

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]

2013 (1)

2011 (1)

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

2010 (1)

2008 (1)

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

2007 (1)

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use squid sensors,” IEEE Transactions on Applied Superconductivity 17, 699–704 (2007).
[Crossref]

2006 (1)

2003 (1)

D. Drung, “High-Tc and low-Tc dc SQUID electronics,” Supercond. Sci. Technol. 16, 1320 (2003).
[Crossref]

1999 (1)

J. M. Gildemeister, A. T. Lee, and P. L. Richards, “A fully lithographed voltage-biased superconducting spider-web bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
[Crossref]

1996 (1)

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[Crossref]

1994 (1)

P. L. Richards, “Bolometers for infrared and millimeter waves,” Appl. Phys. 76, 1–24 (1994).
[Crossref]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

1954 (1)

1934 (1)

W. Woltersdorff, “Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot,” Z. Phys. 91, 230–252 (1934).
[Crossref]

Abo-Bakr, M.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Assmann, C.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use squid sensors,” IEEE Transactions on Applied Superconductivity 17, 699–704 (2007).
[Crossref]

Beyer, J.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use squid sensors,” IEEE Transactions on Applied Superconductivity 17, 699–704 (2007).
[Crossref]

M. Kehrt, J. Beyer, C. Monte, and J. Hollandt, “Design and characterization of a TES bolometer for Fourier transform spectroscopy in the THz range,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2014).

Bohmeyer, W.

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]

Braginski, A. I.

J. Clarke and A. I. Braginski, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley-VCH, 2005).

Brandt, G.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Cabrera, B.

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[Crossref]

Chamberlain, J.

J. Chamberlain, Principles of Interferometric Spectroscopy (John Wiley & Sons Ltd, 1979).

Clarke, J.

J. Clarke and A. I. Braginski, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley-VCH, 2005).

Drung, D.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use squid sensors,” IEEE Transactions on Applied Superconductivity 17, 699–704 (2007).
[Crossref]

D. Drung, “High-Tc and low-Tc dc SQUID electronics,” Supercond. Sci. Technol. 16, 1320 (2003).
[Crossref]

Feikes, J.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Fliegauf, R.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Gildemeister, J. M.

J. M. Gildemeister, A. T. Lee, and P. L. Richards, “A fully lithographed voltage-biased superconducting spider-web bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
[Crossref]

Gutschwager, B.

Hartrott, M. v.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Hilsum, C.

Hilton, G.

K. Irwin and G. Hilton, “Transition-edge sensors,” in Cryogenic Particle Detection, vol. 99 of Top. Appl. Phys., C. Enss, ed. (Springer, 2005).

Hoehl, A.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Hollandt, J.

A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref] [PubMed]

M. Kehrt, J. Beyer, C. Monte, and J. Hollandt, “Design and characterization of a TES bolometer for Fourier transform spectroscopy in the THz range,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2014).

Holldack, K.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Irwin, K.

K. Irwin and G. Hilton, “Transition-edge sensors,” in Cryogenic Particle Detection, vol. 99 of Top. Appl. Phys., C. Enss, ed. (Springer, 2005).

Irwin, K. D.

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[Crossref]

Kehrt, M.

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]

A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21, 14466–14473 (2013).
[Crossref] [PubMed]

A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref] [PubMed]

M. Kehrt, J. Beyer, C. Monte, and J. Hollandt, “Design and characterization of a TES bolometer for Fourier transform spectroscopy in the THz range,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2014).

M. Kehrt, R. Müller, A. Steiger, and C. Monte, “Background corrected transmittance and reflectance measurements in the FIR,” in Proceedings of 38th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2013).

Kirste, A.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use squid sensors,” IEEE Transactions on Applied Superconductivity 17, 699–704 (2007).
[Crossref]

Klein, R.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Kleinert, A.

Lange, K.

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]

Lee, A. T.

J. M. Gildemeister, A. T. Lee, and P. L. Richards, “A fully lithographed voltage-biased superconducting spider-web bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
[Crossref]

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[Crossref]

Monte, C.

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]

A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21, 14466–14473 (2013).
[Crossref] [PubMed]

A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref] [PubMed]

M. Kehrt, R. Müller, A. Steiger, and C. Monte, “Background corrected transmittance and reflectance measurements in the FIR,” in Proceedings of 38th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2013).

M. Kehrt, J. Beyer, C. Monte, and J. Hollandt, “Design and characterization of a TES bolometer for Fourier transform spectroscopy in the THz range,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2014).

Müller, R.

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]

A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21, 14466–14473 (2013).
[Crossref] [PubMed]

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref] [PubMed]

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

M. Kehrt, R. Müller, A. Steiger, and C. Monte, “Background corrected transmittance and reflectance measurements in the FIR,” in Proceedings of 38th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2013).

Nam, S. W.

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[Crossref]

Peters, M.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use squid sensors,” IEEE Transactions on Applied Superconductivity 17, 699–704 (2007).
[Crossref]

Richards, P. L.

J. M. Gildemeister, A. T. Lee, and P. L. Richards, “A fully lithographed voltage-biased superconducting spider-web bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
[Crossref]

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[Crossref]

P. L. Richards, “Bolometers for infrared and millimeter waves,” Appl. Phys. 76, 1–24 (1994).
[Crossref]

Ries, M.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

Ruede, F.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use squid sensors,” IEEE Transactions on Applied Superconductivity 17, 699–704 (2007).
[Crossref]

Schmid, P.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

Schurig, T.

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use squid sensors,” IEEE Transactions on Applied Superconductivity 17, 699–704 (2007).
[Crossref]

Steiger, A.

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]

A. Steiger, M. Kehrt, C. Monte, and R. Müller, “Traceable terahertz power measurement from 1 THz to 5 THz,” Opt. Express 21, 14466–14473 (2013).
[Crossref] [PubMed]

A. Steiger, B. Gutschwager, M. Kehrt, C. Monte, R. Müller, and J. Hollandt, “Optical methods for power measurement of terahertz radiation,” Opt. Express 18, 21804–21814 (2010).
[Crossref] [PubMed]

M. Kehrt, R. Müller, A. Steiger, and C. Monte, “Background corrected transmittance and reflectance measurements in the FIR,” in Proceedings of 38th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2013).

Thornagel, R.

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Ulm, G.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

von Hartrott, M.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

Woltersdorff, W.

W. Woltersdorff, “Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot,” Z. Phys. 91, 230–252 (1934).
[Crossref]

Wüstefeld, G.

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (1)

P. L. Richards, “Bolometers for infrared and millimeter waves,” Appl. Phys. 76, 1–24 (1994).
[Crossref]

Appl. Phys. Lett. (2)

A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, “A superconducting bolometer with strong electrothermal feedback,” Appl. Phys. Lett. 69, 1801–1803 (1996).
[Crossref]

J. M. Gildemeister, A. T. Lee, and P. L. Richards, “A fully lithographed voltage-biased superconducting spider-web bolometer,” Appl. Phys. Lett. 74, 868–870 (1999).
[Crossref]

IEEE Transactions on Applied Superconductivity (1)

D. Drung, C. Assmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, and T. Schurig, “Highly sensitive and easy-to-use squid sensors,” IEEE Transactions on Applied Superconductivity 17, 699–704 (2007).
[Crossref]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, and A. Steiger, “Novel detectors for traceable THz power measurements,” J. Infrared Millim. Terahertz Waves 35, 659–670 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Phys. Rev. ST Accel. Beams (2)

R. Klein, G. Brandt, R. Fliegauf, A. Hoehl, R. Müller, R. Thornagel, G. Ulm, M. Abo-Bakr, J. Feikes, M. v. Hartrott, K. Holldack, and G. Wüstefeld, “Operation of the metrology light source as a primary radiation source standard,” Phys. Rev. ST Accel. Beams 11, 110701 (2008).
[Crossref]

J. Feikes, M. von Hartrott, M. Ries, P. Schmid, G. Wüstefeld, A. Hoehl, R. Klein, R. Müller, and G. Ulm, “Metrology Light Source: The first electron storage ring optimized for generating coherent THz radiation,” Phys. Rev. ST Accel. Beams 14, 030705 (2011).
[Crossref]

Supercond. Sci. Technol. (1)

D. Drung, “High-Tc and low-Tc dc SQUID electronics,” Supercond. Sci. Technol. 16, 1320 (2003).
[Crossref]

Z. Phys. (1)

W. Woltersdorff, “Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot,” Z. Phys. 91, 230–252 (1934).
[Crossref]

Other (6)

J. Chamberlain, Principles of Interferometric Spectroscopy (John Wiley & Sons Ltd, 1979).

K. Irwin and G. Hilton, “Transition-edge sensors,” in Cryogenic Particle Detection, vol. 99 of Top. Appl. Phys., C. Enss, ed. (Springer, 2005).

Magnicon GmbH, “XXF-1 – ultra-high bandwidth dc SQUID electronics,” http://www.magnicon.com/fileadmin/download/datasheets/Magnicon_XXF-1.pdf .

M. Kehrt, R. Müller, A. Steiger, and C. Monte, “Background corrected transmittance and reflectance measurements in the FIR,” in Proceedings of 38th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2013).

M. Kehrt, J. Beyer, C. Monte, and J. Hollandt, “Design and characterization of a TES bolometer for Fourier transform spectroscopy in the THz range,” in Proceedings of 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (IEEE, 2014).

J. Clarke and A. I. Braginski, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley-VCH, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Prototype of the bolometer. The thermistor is located in the center of the device with its leads going to the left. It is surrounded by a metal mesh absorber (gray area) which is contacted for electrical characterization. The absorber and thermistor are placed on a 1 μm thin Si3N4 membrane (light area) providing a weak thermal coupling to a heat sink (dark area).
Fig. 2
Fig. 2 Different absorber designs. (a) Metal mesh with linewidth w and pitch p; (b) metal mesh with additional loops inside the grid.
Fig. 3
Fig. 3 Absorptances of microstructured metal absorber design with loops inside and varied structural dimensions, calculated from reflectance and transmittance measurements. The sheet resistance of all variants was R = 20 Ω/□, the pitch width p ranged from 25 μm to 50 μm and strip widths w of 3 μm and 6 μm were used.
Fig. 4
Fig. 4 Absorptance of two microstructured metal absorbers calculated from reflectance and transmittance measurements. Absorptance for both structures is close to the theoretical maximum of 0.5.
Fig. 5
Fig. 5 Resistance vs. temperature. (a) Superconducting transitions of the transition edge sensor (TES) and its niobium leads at a higher temperature. (b) Change of resistance R with temperature T of the TES in the transition region from a superconducting to a normal conducting state.
Fig. 6
Fig. 6 Equivalent circuit diagram of the readout circuit operating at 4.2 K. The temperature dependent TES (RTES) operates at Tc and in parallel with a shunt resistor Rshunt. A SQUID current sensor is used to measure the change in current through the TES.
Fig. 7
Fig. 7 Setup of the optical components. Left: Filter wheel with filters, Winston cone (radiation concentrator) and bolometer mount are shown from left to right. The radiation shield which is blackened from the inside stands in the background. Right: Details on the bolometer mount with bolometer, SQUID array and wiring.
Fig. 8
Fig. 8 Spectral noise power density of the TES bolometer at a typical operating point at 0.7 Rn. The NEP of 3.8 × 10−13 W/Hz1/2 of a white noise plateau between 10 Hz and 100 Hz is denoted by the red line.
Fig. 9
Fig. 9 The NEP of the bolometer of 3.8 × 10−13 W/Hz1/2 (green line) compared with the calculated photon noise of the thermal background at 300 K (black line). Parameters for the calculation were optical throughput AΩ = 1.2 × 10−5 sr m2, bandwidth Δν = 1 cm−1, emissivity ε = 1 for the background, transmittance τ = 0.1 for the optical system and absorptance α = 0.5 of the bolometer.
Fig. 10
Fig. 10 Measurement setup to determine the linear response of the TES bolometer by irradiating it at various power levels of the Metrology Light Source (MLS) and additionally comparing it with a calibrated THz30 detector from SLT. The synchrotron radiation from the MLS at five power levels was further varied by two tunable wire grid polarizers P1 and P2. Visible and infrared radiation was spectrally blocked by a 100 μm (3 THz) long pass filter F. A moveable planar mirror (M3) switched between two branches of the beam path of equal length to irradiate either the THz30 detector or the bolometer. Off-axis parabolic mirrors (OAP) were used to image the radiation.
Fig. 11
Fig. 11 (a) The linear response of the TES bolometer according to an attenuation caused by wire grid polarizers was determined for four different ring currents at an electron storage ring (Metrology Light Source) operated in normal mode. (b) Linear response of the TES bolometer determined with coherent synchrotron THz radiation (THz CSR) by comparison with a calibrated reference detector.
Fig. 12
Fig. 12 The linear response range of the TES bolometer was determined to be four orders of magnitude by measurements at an electron storage ring (Metrology Light Source). Two modes of operation of the storage ring (normal mode and coherent synchrotron radiation THz CSR) with different ring currents were used.
Fig. 13
Fig. 13 Transmittances of two THz long pass filters were measured individually (gray lines) and in combination (red line). Multiplication of the results of the individual filters gives a calculated transmittance of the combination of the two (blue line). Measured and calculated transmittance of the combination agree very well. The standard deviation of three repeated transmittance measurements of filter 1 is shown as a green line.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( NEP ) 2 = α τ A Ω ε L ( ν , T ) h ν d ν ( in W 2 / Hz )

Metrics