Abstract

Metamaterials promise an exotic approach to artificially manipulate the polarization state of electromagnetic waves and boost the design of polarimetric devices for sensitive detection, imaging and wireless communication. Here, we present the design and experimental demonstration of an ultrathin (0.29λ) terahertz quarter-wave plate based on planar babinet-inverted metasurface. The quarter-wave plate consisting of arrays of asymmetric cross apertures reveals a high transmission of 0.545 with 90 degrees phase delay at 0.870 THz. The calculated ellipticity indicates a high degree of polarization conversion from linear to circular polarization. With respect to different incident polarization angles, left-handed circular polarized light, right-handed circular polarized light and elliptically polarized light can be created by this novel design. An analytical model is applied to describe transmitted amplitude, phase delay and ellipticitiy, which are in good agreement with the measured and simulated results. The planar babinet-inverted metasurface with the analytical model opens up avenues for new functional terahertz devices design.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrathin flexible terahertz polarization converter based on metasurfaces

Weicheng Mo, Xuli Wei, Kejia Wang, Yao Li, and Jinsong Liu
Opt. Express 24(12) 13621-13627 (2016)

Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation

Yin Zhang, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 23(21) 27230-27239 (2015)

Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition

Yoshiro Urade, Yosuke Nakata, Kunio Okimura, Toshihiro Nakanishi, Fumiaki Miyamaru, Mitsuo W. Takeda, and Masao Kitano
Opt. Express 24(5) 4405-4410 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  4. C. W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
    [Crossref] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  6. X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
    [Crossref]
  7. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
    [Crossref]
  8. C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
    [Crossref] [PubMed]
  9. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
    [Crossref] [PubMed]
  10. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref] [PubMed]
  11. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  12. D. C. Wang, Q. Huang, C. W. Qiu, and M. H. Hong, “Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation,” Sci. China: Phys., Mech. Astron. 58, 084201 (2015).
  13. L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [Crossref]
  14. W. M. Zhu, H. Cai, T. Mei, T. Bourouina, J. F. Tao, G. Q. Lo, D. L. Kwong, and A. Q. Liu, “A MEMS tunable metamaterial filter,” Proc. IEEE Micr. Elect. Jan 24–28, pp.196–199 (2010).
    [Crossref]
  15. X. P. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
    [Crossref]
  16. A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
    [Crossref] [PubMed]
  17. K. Wiesauer and C. Jordens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
    [Crossref]
  18. G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22(10), 12149–12159 (2014).
    [Crossref] [PubMed]
  19. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
    [Crossref] [PubMed]
  20. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
    [Crossref] [PubMed]
  21. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
    [Crossref]
  22. R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
    [Crossref] [PubMed]
  23. J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
    [Crossref]
  24. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  25. L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
    [Crossref]
  26. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  27. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  28. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
    [Crossref] [PubMed]
  29. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  30. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]
  31. C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Negative refractive index metamaterials aided by extraordinary optical transmission,” Opt. Express 17(8), 6026–6031 (2009).
    [Crossref] [PubMed]
  32. W. C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “A subwavelength extraordinary-optical-transmission channel in Babinet metamaterials,” Adv. Opt. Mater. 1(3), 221–226 (2013).
    [Crossref]
  33. M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
    [Crossref]
  34. T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
    [Crossref]
  35. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
    [Crossref] [PubMed]
  36. M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
    [Crossref]
  37. T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
    [Crossref]
  38. T. Xu, C. Wang, C. Du, and X. Luo, “Plasmonic beam deflector,” Opt. Express 16(7), 4753–4759 (2008).
    [Crossref] [PubMed]
  39. H. Dong, Y. D. Gong, V. Paulose, and M. H. Hong, “Polarization state and Mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
    [Crossref]
  40. Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: Design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
    [Crossref]
  41. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [Crossref] [PubMed]
  42. D. Goldstein, Polarized Light 2nd ed. (Marcel Dekker, 2003).
  43. J. H. Choe, J. H. Kang, D. S. Kim, and Q. H. Park, “Slot antenna as a bound charge oscillator,” Opt. Express 20(6), 6521–6526 (2012).
    [Crossref] [PubMed]

2015 (1)

D. C. Wang, Q. Huang, C. W. Qiu, and M. H. Hong, “Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation,” Sci. China: Phys., Mech. Astron. 58, 084201 (2015).

2014 (6)

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22(10), 12149–12159 (2014).
[Crossref] [PubMed]

2013 (6)

W. C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “A subwavelength extraordinary-optical-transmission channel in Babinet metamaterials,” Adv. Opt. Mater. 1(3), 221–226 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: Design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

K. Wiesauer and C. Jordens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

2012 (4)

X. P. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

J. H. Choe, J. H. Kang, D. S. Kim, and Q. H. Park, “Slot antenna as a bound charge oscillator,” Opt. Express 20(6), 6521–6526 (2012).
[Crossref] [PubMed]

2011 (4)

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref] [PubMed]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

2010 (2)

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
[Crossref] [PubMed]

2009 (6)

C. W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

H. Dong, Y. D. Gong, V. Paulose, and M. H. Hong, “Polarization state and Mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Negative refractive index metamaterials aided by extraordinary optical transmission,” Opt. Express 17(8), 6026–6031 (2009).
[Crossref] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref] [PubMed]

2008 (2)

T. Xu, C. Wang, C. Du, and X. Luo, “Plasmonic beam deflector,” Opt. Express 16(7), 4753–4759 (2008).
[Crossref] [PubMed]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

2007 (2)

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

2006 (4)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
[Crossref] [PubMed]

2004 (1)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

An, Z. H.

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Andrews, A. M.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

Atwater, H. A.

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Aydin, K.

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Benz, A.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

Beruete, M.

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bonache, J.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Boyd, E. M.

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Campillo, I.

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

Cao, W.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, W. C.

W. C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “A subwavelength extraordinary-optical-transmission channel in Babinet metamaterials,” Adv. Opt. Mater. 1(3), 221–226 (2013).
[Crossref]

Chen, Z. C.

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: Design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Chen, Z. H.

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Cheng, Q.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Chettiar, U. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Cheville, R. A.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Chigrin, D. N.

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

Choe, J. H.

Chong, C. T.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cong, L. Q.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Cui, J. H.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Cui, T. J.

X. P. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Detz, H.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

Dicken, M. J.

Dietze, D.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

Dong, H.

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: Design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

H. Dong, Y. D. Gong, V. Paulose, and M. H. Hong, “Polarization state and Mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

Drachev, V. P.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Du, C.

Du, C. L.

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Economou, E. N.

Falcone, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Fedotov, V. A.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Feng, Y.

C. W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gallot, G.

García-Meca, C.

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gong, Y. D.

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: Design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

H. Dong, Y. D. Gong, V. Paulose, and M. H. Hong, “Polarization state and Mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Gu, J. Q.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Han, J. G.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Hao, J.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Hao, J. M.

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

He, Q.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hong, M. H.

D. C. Wang, Q. Huang, C. W. Qiu, and M. H. Hong, “Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation,” Sci. China: Phys., Mech. Astron. 58, 084201 (2015).

H. Dong, Y. D. Gong, V. Paulose, and M. H. Hong, “Polarization state and Mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Hu, L.

C. W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

Huang, C.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Huang, Q.

D. C. Wang, Q. Huang, C. W. Qiu, and M. H. Hong, “Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation,” Sci. China: Phys., Mech. Astron. 58, 084201 (2015).

Huang, X. Q.

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Jepsen, P. U.

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jordens, C.

K. Wiesauer and C. Jordens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kafesaki, M.

Kang, J. H.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Katsarakis, N.

Kempa, K.

W. C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “A subwavelength extraordinary-optical-transmission channel in Babinet metamaterials,” Adv. Opt. Mater. 1(3), 221–226 (2013).
[Crossref]

Kenanakis, G.

Kildishev, A. V.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Kim, D. S.

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Krall, M.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

Kremers, C.

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

Landy, N. I.

W. C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “A subwavelength extraordinary-optical-transmission channel in Babinet metamaterials,” Adv. Opt. Mater. 1(3), 221–226 (2013).
[Crossref]

Laso, M. A. G.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Lavrinenko, A. V.

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

Lederer, F.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Li, H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Li, T.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Liu, H.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Luo, X.

Luo, X. G.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Ma, J.

Ma, X. L.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Malureanu, R.

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Martí, J.

Martín, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Martínez, A.

Masson, J. B.

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Menzel, C.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Minamide, H.

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: Design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Minghui, H.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Nam, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

Navarro-Cía, M.

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Ni, X.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Notake, T.

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: Design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Novitsky, A.

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

Ortuño, R.

Padilla, W. J.

W. C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “A subwavelength extraordinary-optical-transmission channel in Babinet metamaterials,” Adv. Opt. Mater. 1(3), 221–226 (2013).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pan, W. B.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Park, Q. H.

Park, Y. S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

Paulose, V.

H. Dong, Y. D. Gong, V. Paulose, and M. H. Hong, “Polarization state and Mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Plum, E.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Pryce, I. M.

Pu, M. B.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Qiu, C. W.

D. C. Wang, Q. Huang, C. W. Qiu, and M. H. Hong, “Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation,” Sci. China: Phys., Mech. Astron. 58, 084201 (2015).

C. W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

Qiu, M.

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Rahmani, M.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Ren, Q. J.

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Rho, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Rodríguez-Fortuño, F. J.

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Schrenk, W.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Schwarz, S.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

Shalaev, V. M.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, X. P.

X. P. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Singh, R.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Sorolla, M.

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Soukoulis, C. M.

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Strasser, G.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

Sun, W.

Sweatlock, L. A.

Tang, P. T.

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tian, Z.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Unterrainer, K.

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Walavalkar, S.

Wang, C.

Wang, C. T.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Wang, D. C.

D. C. Wang, Q. Huang, C. W. Qiu, and M. H. Hong, “Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation,” Sci. China: Phys., Mech. Astron. 58, 084201 (2015).

Wang, F. M.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Wang, S. M.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Wang, Y. Q.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Wiesauer, K.

K. Wiesauer and C. Jordens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

Xiao, S.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Xu, N. N.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Xu, T.

T. Xu, C. Wang, C. Du, and X. Luo, “Plasmonic beam deflector,” Opt. Express 16(7), 4753–4759 (2008).
[Crossref] [PubMed]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

Xu, X.

C. W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

Yandong, G.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Yin, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

Yin, X. G.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, H. K.

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zaichun, C.

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Zalkovskij, M.

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

Zhang, W.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Zhang, W. L.

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, X.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

Zhang, X. A.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Zhang, X. Q.

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhao, B.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Zhao, R.

Zheludev, N. I.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express 18(13), 13425–13430 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Zhou, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

Zhou, L.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref] [PubMed]

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhu, S. N.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

Zhukovsky, S.

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Adv. Mater. (1)

C. Zaichun, M. Rahmani, G. Yandong, C. T. Chong, and H. Minghui, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater. 24(23), OP143–OP147 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. G. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

W. C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “A subwavelength extraordinary-optical-transmission channel in Babinet metamaterials,” Adv. Opt. Mater. 1(3), 221–226 (2013).
[Crossref]

Appl. Phys. Lett. (3)

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. A. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[Crossref]

L. Q. Cong, W. Cao, X. Q. Zhang, Z. Tian, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
[Crossref]

J. Appl. Phys. (1)

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

K. Wiesauer and C. Jordens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter, Terahertz Waves 34(11), 663–681 (2013).
[Crossref]

J. Opt. (1)

X. P. Shen and T. J. Cui, “Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber,” J. Opt. 14(11), 114012 (2012).
[Crossref]

Laser Photonics Rev. (2)

L. Q. Cong, N. N. Xu, J. Q. Gu, R. Singh, J. G. Han, and W. L. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, P. T. Tang, P. U. Jepsen, and A. V. Lavrinenko, “Optically active Babinet planar metamaterial film for terahertz polarization manipulation,” Laser Photonics Rev. 7(5), 810–817 (2013).
[Crossref]

Nat. Commun. (1)

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942–948 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Nature (2)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010).
[Crossref] [PubMed]

Opt. Commun. (2)

H. Dong, Y. D. Gong, V. Paulose, and M. H. Hong, “Polarization state and Mueller matrix measurements in terahertz-time domain spectroscopy,” Opt. Commun. 282(18), 3671–3675 (2009).
[Crossref]

Z. C. Chen, Y. D. Gong, H. Dong, T. Notake, and H. Minamide, “Terahertz achromatic quarter wave plate: Design, fabrication, and characterization,” Opt. Commun. 311, 1–5 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. A (1)

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009).
[Crossref]

Phys. Rev. B (2)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

C. W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 047602 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Sci. China: Phys., Mech. Astron. (1)

D. C. Wang, Q. Huang, C. W. Qiu, and M. H. Hong, “Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation,” Sci. China: Phys., Mech. Astron. 58, 084201 (2015).

Sci. Rep. (1)

A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant metamaterial detectors based on THz quantum-cascade structures,” Sci. Rep. 4, 4269 (2014).
[Crossref] [PubMed]

Science (5)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Other (2)

W. M. Zhu, H. Cai, T. Mei, T. Bourouina, J. F. Tao, G. Q. Lo, D. L. Kwong, and A. Q. Liu, “A MEMS tunable metamaterial filter,” Proc. IEEE Micr. Elect. Jan 24–28, pp.196–199 (2010).
[Crossref]

D. Goldstein, Polarized Light 2nd ed. (Marcel Dekker, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of one unit cell. (b) Schematic of working principle of the QWP. The normal incident THz wave is polarized at θ = 45 degrees to x-axis. (c) Microscope image of the fabricated asymmetric cross apertures with a zoomed image as the insert. The scale bar is 100 μm. (d) Photograph of the fabricated THz QWP.
Fig. 2
Fig. 2 (a) Measured, (b) numerical simulated and (c) analytical model calculated transmission and phase delay between two resonant modes for (d) experimental, (e) simulation and (f) theoretical results.
Fig. 3
Fig. 3 (a) Measured and (b) simulated Stokes parameter S0, and calculated ellipticities for (c) experiment and (d) simulation.
Fig. 4
Fig. 4 (a) Measured, simulated and (b) analytical model calculated ellipticities with respect to different polarization angles of the incident wave.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ¯ = E ¯ x + E ¯ y = t ˜ x cosθ+ t ˜ y sinθ.
S 0 = | E ¯ x | 2 + | E ¯ y | 2 , S 1 = | E ¯ x | 2 | E ¯ y | 2 , S 2 =2| E ¯ x || E ¯ y |cosφ, S 3 =2| E ¯ x || E ¯ y |sinφ.
t ¨ x + γ x t ˙ x + ω 0 2 t x = g x E 0 exp(iωt),
t x = g x E 0 ( ω 0 2 ω 2 )+ ω 2 γ x 2 ,
tan φ x = ω γ x ω 0 2 ω 2 .

Metrics