Abstract

We demonstrate highly sensitive infrared spectroscopy of sample volumes close to the diffraction limit by coupling a femtosecond fiber-feedback optical parametric oscillator (OPO) to a conventional Fourier-transform infrared (FTIR) spectrometer. The high brilliance and long-term stable infrared radiation with 1e2-bandwidths up to 125 nm is easily tunable between 1.4 μm and 4.2 μm at 43 MHz repetition rate and thus enables rapid and low-noise infrared spectroscopy. We demonstrate this by measuring typical molecular vibrations in the range of 3 μm. Combined with surface-enhanced infrared spectroscopy, where the confined electromagnetic near-fields of resonantly excited metal nanoparticles are employed to enhance molecular vibrations, we realize the spectroscopic detection of a molecular monolayer of octadecanethiol. In comparison to conventional light sources and synchrotron radiation, our compact table-top OPO system features a significantly improved performance making it highly suitable for rapid analysis of minute amounts of molecular species in life science and medicine laboratories.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing the sensitivity of nano-FTIR spectroscopy

Peter Hermann, Bernd Kästner, Arne Hoehl, Vyacheslavs Kashcheyevs, Piotr Patoka, Georg Ulrich, Jörg Feikes, Markus Ries, Tobias Tydecks, Burkhard Beckhoff, Eckart Rühl, and Gerhard Ulm
Opt. Express 25(14) 16574-16588 (2017)

Mid-infrared Fourier transform spectroscopy with a broadband frequency comb

Florian Adler, Piotr Masłowski, Aleksandra Foltynowicz, Kevin C. Cossel, Travis C. Briles, Ingmar Hartl, and Jun Ye
Opt. Express 18(21) 21861-21872 (2010)

Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy

Peter Hermann, Arne Hoehl, Georg Ulrich, Claudia Fleischmann, Antje Hermelink, Bernd Kästner, Piotr Patoka, Andrea Hornemann, Burkhard Beckhoff, Eckart Rühl, and Gerhard Ulm
Opt. Express 22(15) 17948-17958 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, “A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004),” Analyst. 129, 880–885 (2004).
    [Crossref] [PubMed]
  2. C. Petibois and G. M. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455–462 (2006).
    [Crossref] [PubMed]
  3. C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nature Photon. 3, 179 (2009).
    [Crossref]
  4. M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Anal. Chem. 29, 453–460 (2010).
    [Crossref]
  5. L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
    [Crossref]
  6. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 103, 157403 (2008).
    [Crossref]
  7. R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
    [Crossref] [PubMed]
  8. T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21, 9005–9010 (2013).
    [Crossref] [PubMed]
  9. P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications (John Wiley & Sons, 2011).
    [Crossref]
  10. P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. Giorgetta, and S. Lefrancois, “Synchrotron infrared microscopy at the French synchrotron facility SOLEIL,” Infrared Phys. Technol. 49, 152–160 (2006).
    [Crossref]
  11. Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ’continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97, 081115 (2010).
    [Crossref]
  12. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nature Photon. 6, 432–439 (2012).
    [Crossref]
  13. A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Opt. Express 23, 5670–5680 (2015).
    [Crossref] [PubMed]
  14. P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103, 131114 (2014).
  15. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 1, 21–41 (2010).
    [Crossref]
  16. S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404 (2011).
    [Crossref]
  17. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
    [Crossref]
  18. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
    [Crossref]
  19. T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26, 304–306 (2001).
    [Crossref]
  20. A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of ClEO 2011, (Optical Society of America, 2011), CThAA5.
  21. R. Hegenbarth, A. Steinmann, Sergey Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett. 37, 3513–3515 (2012).
    [Crossref] [PubMed]
  22. C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
    [Crossref] [PubMed]
  23. F. Schreiber, “Structure and growth of self-assembling monolayers,” Prog. Surf. Sci. 65, 151–257 (2000).
    [Crossref]
  24. D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (John Wiley & Sons, 1991).
  25. C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
    [Crossref]
  26. R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
    [Crossref]
  27. S. Bensmann, F. Gaussmann, M. Lewin, J. Wuppen, S. Nyga, C. Janzen, B. Jungbluth, and T. Taubner, “Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser,” Opt. Express 22, 22369–22381 (2014).
    [Crossref] [PubMed]
  28. X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
    [Crossref]
  29. S. Bagheri, H. Giessen, and F. Neubrech, “Large-area antenna-assisted SEIRA substrates by laser interference lithography,” Adv. Opt. Mater. 11, 1050–1056 (2014).
    [Crossref]

2015 (1)

2014 (6)

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103, 131114 (2014).

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
[Crossref]

S. Bensmann, F. Gaussmann, M. Lewin, J. Wuppen, S. Nyga, C. Janzen, B. Jungbluth, and T. Taubner, “Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser,” Opt. Express 22, 22369–22381 (2014).
[Crossref] [PubMed]

S. Bagheri, H. Giessen, and F. Neubrech, “Large-area antenna-assisted SEIRA substrates by laser interference lithography,” Adv. Opt. Mater. 11, 1050–1056 (2014).
[Crossref]

2013 (3)

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21, 9005–9010 (2013).
[Crossref] [PubMed]

2012 (3)

R. Hegenbarth, A. Steinmann, Sergey Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett. 37, 3513–3515 (2012).
[Crossref] [PubMed]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nature Photon. 6, 432–439 (2012).
[Crossref]

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

2011 (2)

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404 (2011).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

2010 (3)

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Anal. Chem. 29, 453–460 (2010).
[Crossref]

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ’continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97, 081115 (2010).
[Crossref]

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 1, 21–41 (2010).
[Crossref]

2009 (1)

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nature Photon. 3, 179 (2009).
[Crossref]

2008 (1)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 103, 157403 (2008).
[Crossref]

2007 (1)

2006 (2)

P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. Giorgetta, and S. Lefrancois, “Synchrotron infrared microscopy at the French synchrotron facility SOLEIL,” Infrared Phys. Technol. 49, 152–160 (2006).
[Crossref]

C. Petibois and G. M. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455–462 (2006).
[Crossref] [PubMed]

2004 (1)

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, “A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004),” Analyst. 129, 880–885 (2004).
[Crossref] [PubMed]

2001 (1)

2000 (1)

F. Schreiber, “Structure and growth of self-assembling monolayers,” Prog. Surf. Sci. 65, 151–257 (2000).
[Crossref]

Adato, R.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 103, 157403 (2008).
[Crossref]

Altug, H.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

Amarie, S.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
[Crossref]

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404 (2011).
[Crossref]

Aus der Au, J.

Bagheri, S.

S. Bagheri, H. Giessen, and F. Neubrech, “Large-area antenna-assisted SEIRA substrates by laser interference lithography,” Adv. Opt. Mater. 11, 1050–1056 (2014).
[Crossref]

Bassan, P.

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103, 131114 (2014).

Bensmann, S.

Bochterle, J.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Boydston-White, S.

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, “A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004),” Analyst. 129, 880–885 (2004).
[Crossref] [PubMed]

Buchenauer, A.

Cestelli-Guidi, M.

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nature Photon. 3, 179 (2009).
[Crossref]

Choi, D.-Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Chubar, O.

P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. Giorgetta, and S. Lefrancois, “Synchrotron infrared microscopy at the French synchrotron facility SOLEIL,” Infrared Phys. Technol. 49, 152–160 (2006).
[Crossref]

Coen, S.

Colthup, N. W.

D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (John Wiley & Sons, 1991).

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 103, 157403 (2008).
[Crossref]

Craig, I. M.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

D’Andrea, C.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Deleris, G.

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nature Photon. 3, 179 (2009).
[Crossref]

Deleris, G. M.

C. Petibois and G. M. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455–462 (2006).
[Crossref] [PubMed]

Di Fabrizio, E.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Diem, M.

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, “A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004),” Analyst. 129, 880–885 (2004).
[Crossref] [PubMed]

Dudley, J. M.

Dumas, P.

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Anal. Chem. 29, 453–460 (2010).
[Crossref]

P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. Giorgetta, and S. Lefrancois, “Synchrotron infrared microscopy at the French synchrotron facility SOLEIL,” Infrared Phys. Technol. 49, 152–160 (2006).
[Crossref]

Fan, J.-Y.

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ’continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97, 081115 (2010).
[Crossref]

Fateley, W. G.

D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (John Wiley & Sons, 1991).

Fazio, B.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 1, 21–41 (2010).
[Crossref]

Gai, X.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Garcia-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 103, 157403 (2008).
[Crossref]

Gardner, P.

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103, 131114 (2014).

Gaussmann, F.

Genty, G.

Gerbert, D.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

Giessen, H.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
[Crossref]

S. Bagheri, H. Giessen, and F. Neubrech, “Large-area antenna-assisted SEIRA substrates by laser interference lithography,” Adv. Opt. Mater. 11, 1050–1056 (2014).
[Crossref]

R. Hegenbarth, A. Steinmann, Sergey Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett. 37, 3513–3515 (2012).
[Crossref] [PubMed]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of ClEO 2011, (Optical Society of America, 2011), CThAA5.

Giorgetta, J.

P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. Giorgetta, and S. Lefrancois, “Synchrotron infrared microscopy at the French synchrotron facility SOLEIL,” Infrared Phys. Technol. 49, 152–160 (2006).
[Crossref]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nature Photon. 6, 432–439 (2012).
[Crossref]

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ’continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97, 081115 (2010).
[Crossref]

Grasselli, J. G.

D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (John Wiley & Sons, 1991).

Gucciardi, P. G.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Hanna, D. C.

Hartling, T.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

Hasenkampf, A.

Hegenbarth, R.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
[Crossref]

R. Hegenbarth, A. Steinmann, Sergey Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett. 37, 3513–3515 (2012).
[Crossref] [PubMed]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of ClEO 2011, (Optical Society of America, 2011), CThAA5.

Hillenbrand, R.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nature Photon. 6, 432–439 (2012).
[Crossref]

Huber, A.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
[Crossref]

Huck, C.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Janzen, C.

Jungbluth, B.

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 103, 157403 (2008).
[Crossref]

Katzmann, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

Keilmann, F.

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404 (2011).
[Crossref]

Keller, U.

Kim, C.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 1, 21–41 (2010).
[Crossref]

Kröger, N.

Lagarde, B.

P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. Giorgetta, and S. Lefrancois, “Synchrotron infrared microscopy at the French synchrotron facility SOLEIL,” Infrared Phys. Technol. 49, 152–160 (2006).
[Crossref]

Lamy de La Chapelle, M.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Lefrancois, S.

P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. Giorgetta, and S. Lefrancois, “Synchrotron infrared microscopy at the French synchrotron facility SOLEIL,” Infrared Phys. Technol. 49, 152–160 (2006).
[Crossref]

Lerch, P.

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Anal. Chem. 29, 453–460 (2010).
[Crossref]

Lewin, M.

Lin-Vien, D.

D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (John Wiley & Sons, 1991).

Luther-Davies, B.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Ma, P.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Madden, S. J.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Marag, O. M.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Marcelli, A.

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nature Photon. 3, 179 (2009).
[Crossref]

Martin, M.

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Anal. Chem. 29, 453–460 (2010).
[Crossref]

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 1, 21–41 (2010).
[Crossref]

Mastel, S.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
[Crossref]

Matthaus, C.

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, “A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004),” Analyst. 129, 880–885 (2004).
[Crossref] [PubMed]

Messina, E.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Metzger, B.

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of ClEO 2011, (Optical Society of America, 2011), CThAA5.

Miljkovic, M.

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, “A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004),” Analyst. 129, 880–885 (2004).
[Crossref] [PubMed]

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 1, 21–41 (2010).
[Crossref]

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 1, 21–41 (2010).
[Crossref]

Neubrech, F.

S. Bagheri, H. Giessen, and F. Neubrech, “Large-area antenna-assisted SEIRA substrates by laser interference lithography,” Adv. Opt. Mater. 11, 1050–1056 (2014).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 103, 157403 (2008).
[Crossref]

Nguyen, V. H.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Nyga, S.

Paschotta, R.

Petibois, C.

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nature Photon. 3, 179 (2009).
[Crossref]

C. Petibois and G. M. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455–462 (2006).
[Crossref] [PubMed]

Petrich, W.

Piccinini, M.

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nature Photon. 3, 179 (2009).
[Crossref]

Polack, F.

P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. Giorgetta, and S. Lefrancois, “Synchrotron infrared microscopy at the French synchrotron facility SOLEIL,” Infrared Phys. Technol. 49, 152–160 (2006).
[Crossref]

Pucci, A.

A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Opt. Express 23, 5670–5680 (2015).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 103, 157403 (2008).
[Crossref]

Rang, M.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

Raschke, M. B.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

Romeo, M.

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, “A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004),” Analyst. 129, 880–885 (2004).
[Crossref] [PubMed]

Ross, G. W.

Rowlette, J.

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103, 131114 (2014).

Sarkisov, S.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
[Crossref]

Sarkisov, Sergey

Schade, U.

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Anal. Chem. 29, 453–460 (2010).
[Crossref]

Schnakenberg, U.

Schönhals, A.

Schreiber, F.

F. Schreiber, “Structure and growth of self-assembling monolayers,” Prog. Surf. Sci. 65, 151–257 (2000).
[Crossref]

Smith, P. G. R.

Steinmann, A.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
[Crossref]

R. Hegenbarth, A. Steinmann, Sergey Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett. 37, 3513–3515 (2012).
[Crossref] [PubMed]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of ClEO 2011, (Optical Society of America, 2011), CThAA5.

Südmeyer, T.

Taubner, T.

Toma, A.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Vogt, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

Wang, R.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Wang, T.

Wang, X.

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ’continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97, 081115 (2010).
[Crossref]

Weida, M. J.

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103, 131114 (2014).

Willmott, P.

P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications (John Wiley & Sons, 2011).
[Crossref]

Wuppen, J.

Xu, X. G.

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

Yang, Z.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nature Photon. 6, 432–439 (2012).
[Crossref]

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ’continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97, 081115 (2010).
[Crossref]

Yu, Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

ACS Nano (2)

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Hartling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Marag, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy,” ACS Nano 7, 3522–3531 (2013).
[Crossref]

Adv. Opt. Mater. (1)

S. Bagheri, H. Giessen, and F. Neubrech, “Large-area antenna-assisted SEIRA substrates by laser interference lithography,” Adv. Opt. Mater. 11, 1050–1056 (2014).
[Crossref]

Analyst. (1)

M. Diem, M. Romeo, S. Boydston-White, M. Miljkovic, and C. Matthaus, “A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004),” Analyst. 129, 880–885 (2004).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Y. Yao, X. Wang, J.-Y. Fan, and C. F. Gmachl, “High performance ’continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm−1,” Appl. Phys. Lett. 97, 081115 (2010).
[Crossref]

P. Bassan, M. J. Weida, J. Rowlette, and P. Gardner, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103, 131114 (2014).

Infrared Phys. Technol. (1)

P. Dumas, F. Polack, B. Lagarde, O. Chubar, J. Giorgetta, and S. Lefrancois, “Synchrotron infrared microscopy at the French synchrotron facility SOLEIL,” Infrared Phys. Technol. 49, 152–160 (2006).
[Crossref]

J. Opt. (1)

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. Huber, R. Hillenbrand, S. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16, 094003 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

X. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

Laser & Photon. Rev. (1)

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser & Photon. Rev. 1, 21–41 (2010).
[Crossref]

Laser Photon. Rev. (1)

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Nat. Commun. (1)

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref] [PubMed]

Nature Photon. (3)

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

C. Petibois, G. Deleris, M. Piccinini, M. Cestelli-Guidi, and A. Marcelli, “A bright future for synchrotron imaging,” Nature Photon. 3, 179 (2009).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nature Photon. 6, 432–439 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83, 045404 (2011).
[Crossref]

Phys. Rev. Lett. (1)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 103, 157403 (2008).
[Crossref]

Prog. Surf. Sci. (1)

F. Schreiber, “Structure and growth of self-assembling monolayers,” Prog. Surf. Sci. 65, 151–257 (2000).
[Crossref]

Trends Anal. Chem. (1)

M. Martin, U. Schade, P. Lerch, and P. Dumas, “Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy,” Trends Anal. Chem. 29, 453–460 (2010).
[Crossref]

Trends Biotechnol. (1)

C. Petibois and G. M. Deleris, “Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology,” Trends Biotechnol. 24, 455–462 (2006).
[Crossref] [PubMed]

Other (3)

P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications (John Wiley & Sons, 2011).
[Crossref]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, “Compact 7.4 W femtosecond oscillator for white-light generation and nonlinear microscopy,” in Proceedings of ClEO 2011, (Optical Society of America, 2011), CThAA5.

D. Lin-Vien, N. W. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Frequencies of Organic Molecules (John Wiley & Sons, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of our experiments. Different IR light sources are coupled to a microscope attached to a standard FTIR spectrometer. The performance of our OPO source is demonstrated by (a) conventional IR spectroscopy of a polymer (XARP) with spot sizes down to the diffraction limit and (b) surface-enhanced infrared absorption (SEIRA) of a molecular monolayer (octadecanethiol, ODT) attached to a single plasmonic nanostructure.

Fig. 2
Fig. 2

a) Experimental setup of a fiber-feedback OPO pumped with an Yb:KGW solid-state laser. The generated idler wavelengths, ranging from 2.12 μm to 4.17 μm, are coupled into an infrared microscope attached to a standard FTIR spectrometer (TC: temperature control, DM: dichroic mirror, OC: output coupler, HWP: half-wave plate, PBS: polarizing beam splitter). Tuning range and corresponding power level of the OPO signal (b) and idler (c). The spectral range from 1.38 μm to 4.17 μm can be completely addressed with typical spectral bandwidths ( 1 e 2) of 20 nm to 125 nm, increasing with center wavelength.

Fig. 3
Fig. 3

SEIRA using a nanoantenna array (a–c) and an individual nanoantenna (d–f) covered with a molecular monolayer of ODT. a) Antennas illuminated by a thermal light source (globar) feature broadband plasmonic resonances and resonantly enhanced ODT vibrations at 3.425 and 3.51 μm (hardly visible, indicated by boxes) for parallel polarized light (E). IR spectroscopy with the OPO source provides a significantly improved SNR in a 50 times shorter acquisition time t as seen for the symmetric (b) and asymmetric (c) ODT stretching vibrations (dashed lines). d) Polarization dependent SEIRA with a single ODT-covered nanoantenna illuminated by IR synchrotron radiation. The spectra close to the symmetric ODT vibration (3.425 μm, dashed line) acquired with the OPO (f, t = 17 min) provide a significantly improved SNR compared to synchrotron studies (e, t = 170 min).

Fig. 4
Fig. 4

b) Spectral power density and RMS noise level of a thermal light source (globar) compared to the OPO source in dependence of square aperture (edge length A given, see a)) demonstrating the excellent focusability of the laser radiation. If the OPO power is maximized at the MCT detector, the spectral power density is only limited by the saturation of the detector (dashed line). For the OPO, the RMS noise level remains almost constant, regardless of the aperture size. c) Relative transmittance (shifted) of air taken with the globar (light colors) and the OPO (intense colors and thick lines) for different square apertures. Relative IR transmittance (shifted) of a 5 μm thick polymer layer (XARP) measured with the globar (d) and the OPO (e).

Fig. 5
Fig. 5

Spectral power density of the OPO idler (black) and Gaussian fit (grey, dashed) showing the peak intensity I0, the center wavelength λc, and the spectral bandwidth Δλ (a). As a measure of stability, these quantities are monitored with the FTIR spectrometer over 15 min with one frame every 12 s, using the DTGS detector. The peak intensity shows RMS noise of 0.23% RMS (b), while the variances of center wavelength (c) and spectral bandwidth (d) are 0.09 nm and 0.02 nm, respectively. No active stabilization of the OPO is employed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

brilliance = photons ( s ) ( mm 2 ) ( sr ) ( 0.1 % BW ) .

Metrics