Abstract

A novel distributed optical fiber sensor for spatially resolved monitoring of high direct electric current is proposed and analyzed. The sensor exploits Faraday rotation and is based on the polarization analysis of the Rayleigh backscattered light. Preliminary laboratory tests, performed on a section of electric cable for currents up to 2.5 kA, have confirmed the viability of the method.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization dynamics in optical ground wire network

Jesse Leeson, Xiaoyi Bao, and Alain Côté
Appl. Opt. 48(12) 2214-2219 (2009)

Stray magnetic-field response of linear birefringent optical current sensors

Trevor W. MacDougall and Ted F. Hutchinson
Appl. Opt. 34(21) 4373-4379 (1995)

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattam and B. T. Maggitt, Optical Fiber Sensor Technology (Kluwer Academic Publishers, 2000).
  2. S. C. Rashleigh and R. Ulrich, “Magneto-optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34, 768–770 (1979).
    [Crossref]
  3. S. C. Rashleigh, “Magnetic-field sensing with a single-mode fiber,” Opt. Lett. 6, 19–21 (1981).
    [Crossref] [PubMed]
  4. R. Laming and D. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Light-waveTechnol. 7, 2084–2094 (1989).
    [Crossref]
  5. V. Annovazzi-Lodi, S. Donati, and S. Merlo, “Coiled-fiber sensor for vectorial measurement of magnetic field,” J. Lightwave Technol. 10, 2006–2010 (1992).
    [Crossref]
  6. K. Bohnert, P. Gabus, J. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Laser Eng. 43, 511–526 (2005).
    [Crossref]
  7. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20, 1060–1074 (1981).
    [Crossref] [PubMed]
  8. J. N. Ross, “Measurement of magnetic field by polarisation optical time-domain reflectometry,” Electron. Lett. 17, 596–597 (1981).
    [Crossref]
  9. L. Palmieri and A. Galtarossa, “Distributed polarization-sensitive reflectometry in nonreciprocal single-mode optical fibers,” J. Lightwave Technol. 29, 3178–3184 (2011).
    [Crossref]
  10. L. Palmieri and A. Galtarossa, “Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry,” Proc. SPIE 8351, 835131 (2012).
    [Crossref]
  11. M. Aerssens, A. Gusarov, P. Moreau, P. Malard, V. Massaut, P. Mégret, and M. Wuilpart, “Development of a Jones vector based model for the measurement of a plasma current in a thermonuclear fusion reactor with a POTDR setup,” Proc. SPIE 8439, 84390D (2012).
    [Crossref]
  12. A. Masoudi and T. P. Newson, “Distributed optical fiber dynamic magnetic field sensor based on magnetostriction,” Appl. Opt. 53, 2833–2838 (2014).
    [Crossref] [PubMed]
  13. L. Palmieri, “Distributed polarimetric measurements for optical fiber sensing,” Optic. Fiber Technol. 19, 720–728 (2013).
    [Crossref]
  14. L. Palmieri, D. Sarchi, and A. Galtarossa, “Polarization optical fiber sensor for distributed current monitoring,” Proc. SPIE 9157, 91570O (2014).
    [Crossref]
  15. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979).
    [Crossref] [PubMed]
  16. J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20, 906–908 (1984).
    [Crossref]
  17. R. Jopson, L. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectors in optical fibers,” IEEE Photon. Technol. Lett. 11, 1153–1155 (1999).
    [Crossref]
  18. K. Kanatani, “Analysis of 3-d rotation fitting,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 543–549 (1994).
    [Crossref]
  19. L. Palmieri, T. Geisler, and A. Galtarossa, “Limits of applicability of polarization sensitive reflectometry,” Opt. Express 19, 10874–10879 (2011).
    [Crossref] [PubMed]
  20. S. C. Rashleigh and R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett. 5, 354–356 (1980).
    [Crossref] [PubMed]
  21. L. Palmieri, “Accurate distributed characterization of polarization properties in optical fibers,” in 36th European Conference on Optical Communications, (IEEE, 2010), pp. 1–6.
    [Crossref]
  22. A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers: theory and experiments,” J. Lightwave Technol. 20, 1149–1159 (2002).
    [Crossref]
  23. S. M. Kay, Modern Spectral Estimation (Prentice-Hall, 1988).

2014 (2)

L. Palmieri, D. Sarchi, and A. Galtarossa, “Polarization optical fiber sensor for distributed current monitoring,” Proc. SPIE 9157, 91570O (2014).
[Crossref]

A. Masoudi and T. P. Newson, “Distributed optical fiber dynamic magnetic field sensor based on magnetostriction,” Appl. Opt. 53, 2833–2838 (2014).
[Crossref] [PubMed]

2013 (1)

L. Palmieri, “Distributed polarimetric measurements for optical fiber sensing,” Optic. Fiber Technol. 19, 720–728 (2013).
[Crossref]

2012 (2)

L. Palmieri and A. Galtarossa, “Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry,” Proc. SPIE 8351, 835131 (2012).
[Crossref]

M. Aerssens, A. Gusarov, P. Moreau, P. Malard, V. Massaut, P. Mégret, and M. Wuilpart, “Development of a Jones vector based model for the measurement of a plasma current in a thermonuclear fusion reactor with a POTDR setup,” Proc. SPIE 8439, 84390D (2012).
[Crossref]

2011 (2)

2005 (1)

K. Bohnert, P. Gabus, J. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Laser Eng. 43, 511–526 (2005).
[Crossref]

2002 (1)

1999 (1)

R. Jopson, L. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectors in optical fibers,” IEEE Photon. Technol. Lett. 11, 1153–1155 (1999).
[Crossref]

1994 (1)

K. Kanatani, “Analysis of 3-d rotation fitting,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 543–549 (1994).
[Crossref]

1992 (1)

V. Annovazzi-Lodi, S. Donati, and S. Merlo, “Coiled-fiber sensor for vectorial measurement of magnetic field,” J. Lightwave Technol. 10, 2006–2010 (1992).
[Crossref]

1989 (1)

R. Laming and D. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Light-waveTechnol. 7, 2084–2094 (1989).
[Crossref]

1984 (1)

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20, 906–908 (1984).
[Crossref]

1981 (3)

1980 (1)

1979 (2)

R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979).
[Crossref] [PubMed]

S. C. Rashleigh and R. Ulrich, “Magneto-optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34, 768–770 (1979).
[Crossref]

Aerssens, M.

M. Aerssens, A. Gusarov, P. Moreau, P. Malard, V. Massaut, P. Mégret, and M. Wuilpart, “Development of a Jones vector based model for the measurement of a plasma current in a thermonuclear fusion reactor with a POTDR setup,” Proc. SPIE 8439, 84390D (2012).
[Crossref]

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, S. Donati, and S. Merlo, “Coiled-fiber sensor for vectorial measurement of magnetic field,” J. Lightwave Technol. 10, 2006–2010 (1992).
[Crossref]

Bohnert, K.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Laser Eng. 43, 511–526 (2005).
[Crossref]

Brändle, H.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Laser Eng. 43, 511–526 (2005).
[Crossref]

Donati, S.

V. Annovazzi-Lodi, S. Donati, and S. Merlo, “Coiled-fiber sensor for vectorial measurement of magnetic field,” J. Lightwave Technol. 10, 2006–2010 (1992).
[Crossref]

Gabus, P.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Laser Eng. 43, 511–526 (2005).
[Crossref]

Galtarossa, A.

Geisler, T.

Grattam, K. T. V.

K. T. V. Grattam and B. T. Maggitt, Optical Fiber Sensor Technology (Kluwer Academic Publishers, 2000).

Gusarov, A.

M. Aerssens, A. Gusarov, P. Moreau, P. Malard, V. Massaut, P. Mégret, and M. Wuilpart, “Development of a Jones vector based model for the measurement of a plasma current in a thermonuclear fusion reactor with a POTDR setup,” Proc. SPIE 8439, 84390D (2012).
[Crossref]

Hosaka, T.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20, 906–908 (1984).
[Crossref]

Jopson, R.

R. Jopson, L. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectors in optical fibers,” IEEE Photon. Technol. Lett. 11, 1153–1155 (1999).
[Crossref]

Kanatani, K.

K. Kanatani, “Analysis of 3-d rotation fitting,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 543–549 (1994).
[Crossref]

Kay, S. M.

S. M. Kay, Modern Spectral Estimation (Prentice-Hall, 1988).

Kogelnik, H.

R. Jopson, L. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectors in optical fibers,” IEEE Photon. Technol. Lett. 11, 1153–1155 (1999).
[Crossref]

Kostovic, J.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Laser Eng. 43, 511–526 (2005).
[Crossref]

Laming, R.

R. Laming and D. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Light-waveTechnol. 7, 2084–2094 (1989).
[Crossref]

Maggitt, B. T.

K. T. V. Grattam and B. T. Maggitt, Optical Fiber Sensor Technology (Kluwer Academic Publishers, 2000).

Malard, P.

M. Aerssens, A. Gusarov, P. Moreau, P. Malard, V. Massaut, P. Mégret, and M. Wuilpart, “Development of a Jones vector based model for the measurement of a plasma current in a thermonuclear fusion reactor with a POTDR setup,” Proc. SPIE 8439, 84390D (2012).
[Crossref]

Masoudi, A.

Massaut, V.

M. Aerssens, A. Gusarov, P. Moreau, P. Malard, V. Massaut, P. Mégret, and M. Wuilpart, “Development of a Jones vector based model for the measurement of a plasma current in a thermonuclear fusion reactor with a POTDR setup,” Proc. SPIE 8439, 84390D (2012).
[Crossref]

Mégret, P.

M. Aerssens, A. Gusarov, P. Moreau, P. Malard, V. Massaut, P. Mégret, and M. Wuilpart, “Development of a Jones vector based model for the measurement of a plasma current in a thermonuclear fusion reactor with a POTDR setup,” Proc. SPIE 8439, 84390D (2012).
[Crossref]

Merlo, S.

V. Annovazzi-Lodi, S. Donati, and S. Merlo, “Coiled-fiber sensor for vectorial measurement of magnetic field,” J. Lightwave Technol. 10, 2006–2010 (1992).
[Crossref]

Moreau, P.

M. Aerssens, A. Gusarov, P. Moreau, P. Malard, V. Massaut, P. Mégret, and M. Wuilpart, “Development of a Jones vector based model for the measurement of a plasma current in a thermonuclear fusion reactor with a POTDR setup,” Proc. SPIE 8439, 84390D (2012).
[Crossref]

Nelson, L.

R. Jopson, L. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectors in optical fibers,” IEEE Photon. Technol. Lett. 11, 1153–1155 (1999).
[Crossref]

Newson, T. P.

Noda, J.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20, 906–908 (1984).
[Crossref]

Palmieri, L.

L. Palmieri, D. Sarchi, and A. Galtarossa, “Polarization optical fiber sensor for distributed current monitoring,” Proc. SPIE 9157, 91570O (2014).
[Crossref]

L. Palmieri, “Distributed polarimetric measurements for optical fiber sensing,” Optic. Fiber Technol. 19, 720–728 (2013).
[Crossref]

L. Palmieri and A. Galtarossa, “Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry,” Proc. SPIE 8351, 835131 (2012).
[Crossref]

L. Palmieri, T. Geisler, and A. Galtarossa, “Limits of applicability of polarization sensitive reflectometry,” Opt. Express 19, 10874–10879 (2011).
[Crossref] [PubMed]

L. Palmieri and A. Galtarossa, “Distributed polarization-sensitive reflectometry in nonreciprocal single-mode optical fibers,” J. Lightwave Technol. 29, 3178–3184 (2011).
[Crossref]

A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers: theory and experiments,” J. Lightwave Technol. 20, 1149–1159 (2002).
[Crossref]

L. Palmieri, “Accurate distributed characterization of polarization properties in optical fibers,” in 36th European Conference on Optical Communications, (IEEE, 2010), pp. 1–6.
[Crossref]

Payne, D.

R. Laming and D. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Light-waveTechnol. 7, 2084–2094 (1989).
[Crossref]

Rashleigh, S. C.

Rogers, A. J.

Ross, J. N.

J. N. Ross, “Measurement of magnetic field by polarisation optical time-domain reflectometry,” Electron. Lett. 17, 596–597 (1981).
[Crossref]

Sarchi, D.

L. Palmieri, D. Sarchi, and A. Galtarossa, “Polarization optical fiber sensor for distributed current monitoring,” Proc. SPIE 9157, 91570O (2014).
[Crossref]

Sasaki, Y.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20, 906–908 (1984).
[Crossref]

Simon, A.

Ulrich, R.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20, 906–908 (1984).
[Crossref]

S. C. Rashleigh and R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett. 5, 354–356 (1980).
[Crossref] [PubMed]

R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979).
[Crossref] [PubMed]

S. C. Rashleigh and R. Ulrich, “Magneto-optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34, 768–770 (1979).
[Crossref]

Wuilpart, M.

M. Aerssens, A. Gusarov, P. Moreau, P. Malard, V. Massaut, P. Mégret, and M. Wuilpart, “Development of a Jones vector based model for the measurement of a plasma current in a thermonuclear fusion reactor with a POTDR setup,” Proc. SPIE 8439, 84390D (2012).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. C. Rashleigh and R. Ulrich, “Magneto-optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34, 768–770 (1979).
[Crossref]

Electron. Lett. (2)

J. N. Ross, “Measurement of magnetic field by polarisation optical time-domain reflectometry,” Electron. Lett. 17, 596–597 (1981).
[Crossref]

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20, 906–908 (1984).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Jopson, L. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectors in optical fibers,” IEEE Photon. Technol. Lett. 11, 1153–1155 (1999).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

K. Kanatani, “Analysis of 3-d rotation fitting,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 543–549 (1994).
[Crossref]

J. Light-waveTechnol. (1)

R. Laming and D. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Light-waveTechnol. 7, 2084–2094 (1989).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (1)

Opt. Laser Eng. (1)

K. Bohnert, P. Gabus, J. Kostovic, and H. Brändle, “Optical fiber sensors for the electric power industry,” Opt. Laser Eng. 43, 511–526 (2005).
[Crossref]

Opt. Lett. (2)

Optic. Fiber Technol. (1)

L. Palmieri, “Distributed polarimetric measurements for optical fiber sensing,” Optic. Fiber Technol. 19, 720–728 (2013).
[Crossref]

Proc. SPIE (3)

L. Palmieri, D. Sarchi, and A. Galtarossa, “Polarization optical fiber sensor for distributed current monitoring,” Proc. SPIE 9157, 91570O (2014).
[Crossref]

L. Palmieri and A. Galtarossa, “Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry,” Proc. SPIE 8351, 835131 (2012).
[Crossref]

M. Aerssens, A. Gusarov, P. Moreau, P. Malard, V. Massaut, P. Mégret, and M. Wuilpart, “Development of a Jones vector based model for the measurement of a plasma current in a thermonuclear fusion reactor with a POTDR setup,” Proc. SPIE 8439, 84390D (2012).
[Crossref]

Other (3)

K. T. V. Grattam and B. T. Maggitt, Optical Fiber Sensor Technology (Kluwer Academic Publishers, 2000).

L. Palmieri, “Accurate distributed characterization of polarization properties in optical fibers,” in 36th European Conference on Optical Communications, (IEEE, 2010), pp. 1–6.
[Crossref]

S. M. Kay, Modern Spectral Estimation (Prentice-Hall, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the POFDR. (b) Schematic of the experimental layout; the loose tube helically wound around conductors No. 1, 2 and 3 contains several G.652 fibers, two of which are concatenated (drawing not in scale).

Fig. 2
Fig. 2

(a) Power spectral density of the components of ŝB(z). (b) Components of Γ̄(z) for different current intensities. With respect to the graph of Γ3, curves (and respective colors) correspond (from the lower to the upper) to currents from 0 kA to 2.5 kA in steps of 0.5 kA.

Fig. 3
Fig. 3

Accumulated Faraday rotation for different current intensities (data, colors and conditions as in Fig. 2(b)). The top horizontal axis indicates positions with respect to the layout in Fig. 1(b).

Fig. 4
Fig. 4

(a) Mean values of the estimated current for different spatial resolutions; dashed lines are the nominal values (graphs share the same vertical axis). (b) Standard deviations of the estimated mean currents.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η ( z ) = 2 V B ( z ) cos ψ ( z ) ,
Γ 3 ( z ) = Γ 3 ( z 0 ) + 2 μ 0 V I ( z / ) ,

Metrics