Abstract

A stable and wavelength-locked Q-switched narrow-linewidth Er:YAG laser with compact cavity structure, utilizing a volume Bragg grating (VBG) as a wavelength selector and a pump input mirror simultaneously, is reported. It yields high energy nanosecond pulse with pulse duration of 185 ns and pulse energy of 1.36 mJ at 1 kHz pulse repetition frequency for incident pump power of 21.6 W. The central wavelength of the Er:YAG laser is locked at 1645.3 nm with a spectral 3-dB linewidth of less than 0.08 nm, which coincides to the methane (CH4) absorption-line. The output has near diffraction-limited beam quality with M2 parameter of 1.08. Our work may provide an inroad for developing more miniaturized space-based integrated path differential absorption (IDPA) lidar transmitter.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-band pumped polarized, narrow-linewidth Er:YAG laser at 1645  nm

Mingjian Wang, Junqing Meng, Xia Hou, and Weibiao Chen
Appl. Opt. 53(30) 7153-7156 (2014)

Stable high-energy Q-switched resonantly diode-pumped Er:YAG laser at 1645  nm

Pinghua Tang, Rong Zhou, Chujun Zhao, Changwen Xu, Jun Liu, Han Zhang, Deyuan Shen, and Shuangchun Wen
Appl. Opt. 53(32) 7773-7777 (2014)

Resonantly pumped acousto-optic Q-switched Er:YAG lasers at 1617 and 1645  nm

Ran Wang, Qing Ye, and Chunqing Gao
Appl. Opt. 53(10) 2093-2096 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., “Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press 2007.
  2. A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
    [Crossref]
  3. O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows, “Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY,” Atmos. Chem. Phys. 11(6), 2863–2880 (2011).
    [Crossref]
  4. X. Wang, H. Fritsche, O. Lux, H. J. Eichler, Z. G. Zhao, C. Schuett, and B. Kruschke, “Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar,” Laser Phys. Lett. 10(11), 115804 (2013).
    [Crossref]
  5. R. Wang, C. Q. Gao, L. N. Zhu, M. W. Gao, Y. Zheng, Q. Ye, and Z. Q. Wu, “Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er:YAG laser at 1617 and 1645 nm,” Laser Phys. Lett. 10(2), 025802 (2013).
    [Crossref]
  6. O. Lux, H. Fritsche, and H. J. Eichler, “Trace gas remote sensing by lasers,” Optik Photonik 8(4), 48–51 (2013).
    [Crossref]
  7. C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(3), 3545–3592 (2011).
    [Crossref]
  8. C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36(20), 3996–3998 (2011).
    [Crossref] [PubMed]
  9. D. K. Killinger, “Er:YAG laser crystal characteri-zation,” Quarterly Tech. Rep. Solid-State Research (Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Mass., 1985), p.9.
  10. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
    [Crossref] [PubMed]
  11. N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett. 35(7), 922–924 (2010).
    [Crossref] [PubMed]
  12. A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38(6), 938–940 (2013).
    [Crossref] [PubMed]
  13. V. Leyva, K. Spariosu, and R. D. Stultz, “Saturable absorbed Er:YAG Q-switched laser with short pulse,” Proc. SPIE 6100, 61000D (2006).
    [Crossref]
  14. R. D. Stultz, V. Leyva, and K. Spariosu, “Short pulse, high-repetition rate, passively Q-switched Er:yttrium-aluminum-garnet laser at 1.6 microns,” Appl. Phys. Lett. 87(24), 241118 (2005).
    [Crossref]
  15. P. Tang, R. Zhou, C. Zhao, C. Xu, J. Liu, H. Zhang, D. Shen, and S. Wen, “Stable high-energy Q-switched resonantly diode-pumped Er:YAG laser at 1645 nm,” Appl. Opt. 53(32), 7773–7777 (2014).
    [Crossref] [PubMed]
  16. C. Gao, R. Wang, L. Zhu, M. Gao, Q. Wang, Z. Zhang, Z. Wei, J. Lin, and L. Guo, “Resonantly pumped 1.645 μm high repetition rate Er:YAG laser Q-switched by a graphene as a saturable absorber,” Opt. Lett. 37(4), 632–634 (2012).
    [Crossref] [PubMed]
  17. P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
    [Crossref]
  18. L. Zhu, M. Wang, J. Zhou, and W. Chen, “Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser pumped by 1532 nm narrow-band laser diode,” Opt. Express 19(27), 26810–26815 (2011).
    [Crossref] [PubMed]
  19. L. Jing, S. H. Yang, and T. He, “Diode laser in-band pumped, efficient 1645 nm continuous-wave and Q-switched Er:YLuAG lasers with near-diffraction- limited beam quality,” Laser Phys. Lett. 1(11), 015005 (2014).
  20. M. Wang, L. Zhu, W. Chen, and D. Fan, “Efficient all-solid-state mid-infrared optical parametric oscillator based on resonantly pumped 1.645 μm Er:YAG laser,” Opt. Lett. 37(13), 2682–2684 (2012).
    [Crossref] [PubMed]
  21. I. S. Moskalev, V. V. Fedorov, V. P. Gapontsev, D. V. Gapontsev, N. S. Platonov, and S. B. Mirov, “Highly efficient, narrow-linewidth, and single-frequency actively and passively Q-switched fiber-bulk hybrid Er:YAG lasers operating at 1645 nm,” Opt. Express 16(24), 19427–19433 (2008).
    [Crossref] [PubMed]
  22. X. Zhang, D. Shen, H. Huang, J. Liu, X. Liu, J. Zhang, J. Zhang, D. Tang, and D. Fan, “Widely tunable, narrow bandwidth polycrystalline ceramic Er:YAG laser with a volume Bragg grating,” Opt. Express 22(6), 7154–7159 (2014).
    [PubMed]
  23. P. Jelger and F. Laurell, “Efficient narrow-linewidth volume-Bragg grating-locked Nd:fiber laser,” Opt. Express 15(18), 11336–11340 (2007).
    [Crossref] [PubMed]
  24. T. McComb, V. Sudesh, and M. Richardson, “Volume Bragg grating stabilized spectrally narrow Tm fiber laser,” Opt. Lett. 33(8), 881–883 (2008).
    [Crossref] [PubMed]
  25. F. Wang, D. Shen, D. Fan, and Q. Lu, “Spectrum narrowing of high power Tm: fiber laser using a volume Bragg grating,” Opt. Express 18(9), 8937–8941 (2010).
    [Crossref] [PubMed]
  26. T. H. Wang, Y. L. Ju, X. M. Duan, B. Q. Yao, X. T. Yang, and Y. Z. Wang, “Narrow linewidth continuous wave diode-pumped Tm:YLF laser with a volume Bragg grating,” Laser Phys. Lett. 6(2), 10115 (2008).
  27. J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating,” Opt. Lett. 33(11), 1204–1206 (2008).
    [Crossref] [PubMed]
  28. J. Liu, D. Shen, H. Huang, C. Zhao, X. Zhang, and D. Fan, “High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings,” Opt. Express 22(6), 6605–6612 (2014).
    [Crossref] [PubMed]
  29. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express 16(13), 9507–9512 (2008).
    [Crossref] [PubMed]
  30. P. H. Tang, J. Liu, C. W. Xu, C. J. Zhao, and S. C. Wen, “Robust wavelength-locked narrow-linewidth Er-doped yttrium aluminum garnet laser,” Appl. Phys. Express 8(1), 012703 (2015).
    [Crossref]
  31. G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
    [Crossref]
  32. J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99(8), 083511 (2006).
    [Crossref]

2015 (1)

P. H. Tang, J. Liu, C. W. Xu, C. J. Zhao, and S. C. Wen, “Robust wavelength-locked narrow-linewidth Er-doped yttrium aluminum garnet laser,” Appl. Phys. Express 8(1), 012703 (2015).
[Crossref]

2014 (4)

2013 (5)

A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38(6), 938–940 (2013).
[Crossref] [PubMed]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

X. Wang, H. Fritsche, O. Lux, H. J. Eichler, Z. G. Zhao, C. Schuett, and B. Kruschke, “Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar,” Laser Phys. Lett. 10(11), 115804 (2013).
[Crossref]

R. Wang, C. Q. Gao, L. N. Zhu, M. W. Gao, Y. Zheng, Q. Ye, and Z. Q. Wu, “Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er:YAG laser at 1617 and 1645 nm,” Laser Phys. Lett. 10(2), 025802 (2013).
[Crossref]

O. Lux, H. Fritsche, and H. J. Eichler, “Trace gas remote sensing by lasers,” Optik Photonik 8(4), 48–51 (2013).
[Crossref]

2012 (2)

2011 (5)

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36(20), 3996–3998 (2011).
[Crossref] [PubMed]

L. Zhu, M. Wang, J. Zhou, and W. Chen, “Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser pumped by 1532 nm narrow-band laser diode,” Opt. Express 19(27), 26810–26815 (2011).
[Crossref] [PubMed]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(3), 3545–3592 (2011).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows, “Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY,” Atmos. Chem. Phys. 11(6), 2863–2880 (2011).
[Crossref]

2010 (2)

2008 (5)

2007 (1)

2006 (3)

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99(8), 083511 (2006).
[Crossref]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
[Crossref] [PubMed]

V. Leyva, K. Spariosu, and R. D. Stultz, “Saturable absorbed Er:YAG Q-switched laser with short pulse,” Proc. SPIE 6100, 61000D (2006).
[Crossref]

2005 (2)

R. D. Stultz, V. Leyva, and K. Spariosu, “Short pulse, high-repetition rate, passively Q-switched Er:yttrium-aluminum-garnet laser at 1.6 microns,” Appl. Phys. Lett. 87(24), 241118 (2005).
[Crossref]

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[Crossref]

Amediek, A.

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(3), 3545–3592 (2011).
[Crossref]

Aubourg, A.

Aubry, N.

Balembois, F.

Bovensmann, H.

O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows, “Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY,” Atmos. Chem. Phys. 11(6), 2863–2880 (2011).
[Crossref]

Buchwitz, M.

O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows, “Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY,” Atmos. Chem. Phys. 11(6), 2863–2880 (2011).
[Crossref]

Büdenbender, C.

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

Burrows, J. P.

O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows, “Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY,” Atmos. Chem. Phys. 11(6), 2863–2880 (2011).
[Crossref]

Castellani, C. E. S.

Chen, W.

Clarkson, W. A.

Didierjean, J.

Duan, X. M.

T. H. Wang, Y. L. Ju, X. M. Duan, B. Q. Yao, X. T. Yang, and Y. Z. Wang, “Narrow linewidth continuous wave diode-pumped Tm:YLF laser with a volume Bragg grating,” Laser Phys. Lett. 6(2), 10115 (2008).

Dubinskii, M.

Ehret, G.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(3), 3545–3592 (2011).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

Eichler, H. J.

X. Wang, H. Fritsche, O. Lux, H. J. Eichler, Z. G. Zhao, C. Schuett, and B. Kruschke, “Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar,” Laser Phys. Lett. 10(11), 115804 (2013).
[Crossref]

O. Lux, H. Fritsche, and H. J. Eichler, “Trace gas remote sensing by lasers,” Optik Photonik 8(4), 48–51 (2013).
[Crossref]

Fan, D.

Fan, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

Fedorov, V. V.

Ferrari, A. C.

Fix, A.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(3), 3545–3592 (2011).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

Flahaut, E.

Fritsche, H.

X. Wang, H. Fritsche, O. Lux, H. J. Eichler, Z. G. Zhao, C. Schuett, and B. Kruschke, “Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar,” Laser Phys. Lett. 10(11), 115804 (2013).
[Crossref]

O. Lux, H. Fritsche, and H. J. Eichler, “Trace gas remote sensing by lasers,” Optik Photonik 8(4), 48–51 (2013).
[Crossref]

Gao, C.

Gao, C. Q.

R. Wang, C. Q. Gao, L. N. Zhu, M. W. Gao, Y. Zheng, Q. Ye, and Z. Q. Wu, “Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er:YAG laser at 1617 and 1645 nm,” Laser Phys. Lett. 10(2), 025802 (2013).
[Crossref]

Gao, M.

Gao, M. W.

R. Wang, C. Q. Gao, L. N. Zhu, M. W. Gao, Y. Zheng, Q. Ye, and Z. Q. Wu, “Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er:YAG laser at 1617 and 1645 nm,” Laser Phys. Lett. 10(2), 025802 (2013).
[Crossref]

Gapontsev, D. V.

Gapontsev, V. P.

Georges, P.

Glebov, L. B.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99(8), 083511 (2006).
[Crossref]

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[Crossref]

Glebova, L. N.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99(8), 083511 (2006).
[Crossref]

Guo, L.

Hasan, T.

He, T.

L. Jing, S. H. Yang, and T. He, “Diode laser in-band pumped, efficient 1645 nm continuous-wave and Q-switched Er:YLuAG lasers with near-diffraction- limited beam quality,” Laser Phys. Lett. 1(11), 015005 (2014).

Heymann, J.

O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows, “Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY,” Atmos. Chem. Phys. 11(6), 2863–2880 (2011).
[Crossref]

Huang, H.

Jelger, P.

Jing, L.

L. Jing, S. H. Yang, and T. He, “Diode laser in-band pumped, efficient 1645 nm continuous-wave and Q-switched Er:YLuAG lasers with near-diffraction- limited beam quality,” Laser Phys. Lett. 1(11), 015005 (2014).

Ju, Y. L.

T. H. Wang, Y. L. Ju, X. M. Duan, B. Q. Yao, X. T. Yang, and Y. Z. Wang, “Narrow linewidth continuous wave diode-pumped Tm:YLF laser with a volume Bragg grating,” Laser Phys. Lett. 6(2), 10115 (2008).

Kelleher, E. J. R.

Kiemle, C.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(3), 3545–3592 (2011).
[Crossref]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

Kim, J. W.

Kruschke, B.

X. Wang, H. Fritsche, O. Lux, H. J. Eichler, Z. G. Zhao, C. Schuett, and B. Kruschke, “Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar,” Laser Phys. Lett. 10(11), 115804 (2013).
[Crossref]

Kupp, E. R.

Laurell, F.

Leyva, V.

V. Leyva, K. Spariosu, and R. D. Stultz, “Saturable absorbed Er:YAG Q-switched laser with short pulse,” Proc. SPIE 6100, 61000D (2006).
[Crossref]

R. D. Stultz, V. Leyva, and K. Spariosu, “Short pulse, high-repetition rate, passively Q-switched Er:yttrium-aluminum-garnet laser at 1.6 microns,” Appl. Phys. Lett. 87(24), 241118 (2005).
[Crossref]

Lin, J.

Liu, J.

Liu, X.

Lu, Q.

Lux, O.

O. Lux, H. Fritsche, and H. J. Eichler, “Trace gas remote sensing by lasers,” Optik Photonik 8(4), 48–51 (2013).
[Crossref]

X. Wang, H. Fritsche, O. Lux, H. J. Eichler, Z. G. Zhao, C. Schuett, and B. Kruschke, “Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar,” Laser Phys. Lett. 10(11), 115804 (2013).
[Crossref]

McComb, T.

Merkle, L. D.

Messing, G. L.

Mirov, S. B.

Moskalev, I. S.

Platonov, N. S.

Popa, D.

Popov, S. V.

Quatrevalet, M.

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(3), 3545–3592 (2011).
[Crossref]

Reuter, M.

O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows, “Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY,” Atmos. Chem. Phys. 11(6), 2863–2880 (2011).
[Crossref]

Richardson, M.

Rotari, E.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99(8), 083511 (2006).
[Crossref]

Sahu, J. K.

Schneider, J. F.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99(8), 083511 (2006).
[Crossref]

Schneising, O.

O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows, “Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY,” Atmos. Chem. Phys. 11(6), 2863–2880 (2011).
[Crossref]

Schuett, C.

X. Wang, H. Fritsche, O. Lux, H. J. Eichler, Z. G. Zhao, C. Schuett, and B. Kruschke, “Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar,” Laser Phys. Lett. 10(11), 115804 (2013).
[Crossref]

Sevian, A.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[Crossref]

Shen, D.

Shen, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
[Crossref] [PubMed]

Smirnov, V. I.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[Crossref]

Spariosu, K.

V. Leyva, K. Spariosu, and R. D. Stultz, “Saturable absorbed Er:YAG Q-switched laser with short pulse,” Proc. SPIE 6100, 61000D (2006).
[Crossref]

R. D. Stultz, V. Leyva, and K. Spariosu, “Short pulse, high-repetition rate, passively Q-switched Er:yttrium-aluminum-garnet laser at 1.6 microns,” Appl. Phys. Lett. 87(24), 241118 (2005).
[Crossref]

Stultz, R. D.

V. Leyva, K. Spariosu, and R. D. Stultz, “Saturable absorbed Er:YAG Q-switched laser with short pulse,” Proc. SPIE 6100, 61000D (2006).
[Crossref]

R. D. Stultz, V. Leyva, and K. Spariosu, “Short pulse, high-repetition rate, passively Q-switched Er:yttrium-aluminum-garnet laser at 1.6 microns,” Appl. Phys. Lett. 87(24), 241118 (2005).
[Crossref]

Sudesh, V.

Sun, Z.

Tang, D.

Tang, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

Tang, P.

Tang, P. H.

P. H. Tang, J. Liu, C. W. Xu, C. J. Zhao, and S. C. Wen, “Robust wavelength-locked narrow-linewidth Er-doped yttrium aluminum garnet laser,” Appl. Phys. Express 8(1), 012703 (2015).
[Crossref]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

Taylor, J. R.

Ter-Gabrielyan, N.

Travers, J. C.

Venus, G. B.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[Crossref]

Wang, F.

Wang, M.

Wang, P.

Wang, Q.

Wang, R.

R. Wang, C. Q. Gao, L. N. Zhu, M. W. Gao, Y. Zheng, Q. Ye, and Z. Q. Wu, “Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er:YAG laser at 1617 and 1645 nm,” Laser Phys. Lett. 10(2), 025802 (2013).
[Crossref]

C. Gao, R. Wang, L. Zhu, M. Gao, Q. Wang, Z. Zhang, Z. Wei, J. Lin, and L. Guo, “Resonantly pumped 1.645 μm high repetition rate Er:YAG laser Q-switched by a graphene as a saturable absorber,” Opt. Lett. 37(4), 632–634 (2012).
[Crossref] [PubMed]

Wang, T. H.

T. H. Wang, Y. L. Ju, X. M. Duan, B. Q. Yao, X. T. Yang, and Y. Z. Wang, “Narrow linewidth continuous wave diode-pumped Tm:YLF laser with a volume Bragg grating,” Laser Phys. Lett. 6(2), 10115 (2008).

Wang, X.

X. Wang, H. Fritsche, O. Lux, H. J. Eichler, Z. G. Zhao, C. Schuett, and B. Kruschke, “Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar,” Laser Phys. Lett. 10(11), 115804 (2013).
[Crossref]

Wang, Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

Wang, Y. Z.

T. H. Wang, Y. L. Ju, X. M. Duan, B. Q. Yao, X. T. Yang, and Y. Z. Wang, “Narrow linewidth continuous wave diode-pumped Tm:YLF laser with a volume Bragg grating,” Laser Phys. Lett. 6(2), 10115 (2008).

Wei, Z.

Wen, S.

Wen, S. C.

P. H. Tang, J. Liu, C. W. Xu, C. J. Zhao, and S. C. Wen, “Robust wavelength-locked narrow-linewidth Er-doped yttrium aluminum garnet laser,” Appl. Phys. Express 8(1), 012703 (2015).
[Crossref]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

Werner-Zwanziger, U.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99(8), 083511 (2006).
[Crossref]

Wirth, M.

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(3), 3545–3592 (2011).
[Crossref]

Wu, Z. Q.

R. Wang, C. Q. Gao, L. N. Zhu, M. W. Gao, Y. Zheng, Q. Ye, and Z. Q. Wu, “Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er:YAG laser at 1617 and 1645 nm,” Laser Phys. Lett. 10(2), 025802 (2013).
[Crossref]

Xu, C.

Xu, C. W.

P. H. Tang, J. Liu, C. W. Xu, C. J. Zhao, and S. C. Wen, “Robust wavelength-locked narrow-linewidth Er-doped yttrium aluminum garnet laser,” Appl. Phys. Express 8(1), 012703 (2015).
[Crossref]

Yang, S. H.

L. Jing, S. H. Yang, and T. He, “Diode laser in-band pumped, efficient 1645 nm continuous-wave and Q-switched Er:YLuAG lasers with near-diffraction- limited beam quality,” Laser Phys. Lett. 1(11), 015005 (2014).

Yang, X. T.

T. H. Wang, Y. L. Ju, X. M. Duan, B. Q. Yao, X. T. Yang, and Y. Z. Wang, “Narrow linewidth continuous wave diode-pumped Tm:YLF laser with a volume Bragg grating,” Laser Phys. Lett. 6(2), 10115 (2008).

Yao, B. Q.

T. H. Wang, Y. L. Ju, X. M. Duan, B. Q. Yao, X. T. Yang, and Y. Z. Wang, “Narrow linewidth continuous wave diode-pumped Tm:YLF laser with a volume Bragg grating,” Laser Phys. Lett. 6(2), 10115 (2008).

Ye, Q.

R. Wang, C. Q. Gao, L. N. Zhu, M. W. Gao, Y. Zheng, Q. Ye, and Z. Q. Wu, “Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er:YAG laser at 1617 and 1645 nm,” Laser Phys. Lett. 10(2), 025802 (2013).
[Crossref]

Zanotto, E. D.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99(8), 083511 (2006).
[Crossref]

Zhang, H.

P. Tang, R. Zhou, C. Zhao, C. Xu, J. Liu, H. Zhang, D. Shen, and S. Wen, “Stable high-energy Q-switched resonantly diode-pumped Er:YAG laser at 1645 nm,” Appl. Opt. 53(32), 7773–7777 (2014).
[Crossref] [PubMed]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

Zhang, J.

Zhang, X.

Zhang, X. Q.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

Zhang, Z.

Zhao, C.

Zhao, C. J.

P. H. Tang, J. Liu, C. W. Xu, C. J. Zhao, and S. C. Wen, “Robust wavelength-locked narrow-linewidth Er-doped yttrium aluminum garnet laser,” Appl. Phys. Express 8(1), 012703 (2015).
[Crossref]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

Zhao, Z. G.

X. Wang, H. Fritsche, O. Lux, H. J. Eichler, Z. G. Zhao, C. Schuett, and B. Kruschke, “Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar,” Laser Phys. Lett. 10(11), 115804 (2013).
[Crossref]

Zheng, Y.

R. Wang, C. Q. Gao, L. N. Zhu, M. W. Gao, Y. Zheng, Q. Ye, and Z. Q. Wu, “Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er:YAG laser at 1617 and 1645 nm,” Laser Phys. Lett. 10(2), 025802 (2013).
[Crossref]

Zhou, J.

Zhou, R.

Zhu, L.

Zhu, L. N.

R. Wang, C. Q. Gao, L. N. Zhu, M. W. Gao, Y. Zheng, Q. Ye, and Z. Q. Wu, “Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er:YAG laser at 1617 and 1645 nm,” Laser Phys. Lett. 10(2), 025802 (2013).
[Crossref]

Zwanziger, J. W.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99(8), 083511 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

P. H. Tang, J. Liu, C. W. Xu, C. J. Zhao, and S. C. Wen, “Robust wavelength-locked narrow-linewidth Er-doped yttrium aluminum garnet laser,” Appl. Phys. Express 8(1), 012703 (2015).
[Crossref]

Appl. Phys. Lett. (1)

R. D. Stultz, V. Leyva, and K. Spariosu, “Short pulse, high-repetition rate, passively Q-switched Er:yttrium-aluminum-garnet laser at 1.6 microns,” Appl. Phys. Lett. 87(24), 241118 (2005).
[Crossref]

Atmos. Chem. Phys. (1)

O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, and J. P. Burrows, “Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY,” Atmos. Chem. Phys. 11(6), 2863–2880 (2011).
[Crossref]

Atmos. Meas. Tech. (1)

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(3), 3545–3592 (2011).
[Crossref]

IEEE Photon. J. (1)

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5(2), 1500707 (2013).
[Crossref]

J. Appl. Phys. (1)

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99(8), 083511 (2006).
[Crossref]

Laser Phys. Lett. (4)

L. Jing, S. H. Yang, and T. He, “Diode laser in-band pumped, efficient 1645 nm continuous-wave and Q-switched Er:YLuAG lasers with near-diffraction- limited beam quality,” Laser Phys. Lett. 1(11), 015005 (2014).

T. H. Wang, Y. L. Ju, X. M. Duan, B. Q. Yao, X. T. Yang, and Y. Z. Wang, “Narrow linewidth continuous wave diode-pumped Tm:YLF laser with a volume Bragg grating,” Laser Phys. Lett. 6(2), 10115 (2008).

X. Wang, H. Fritsche, O. Lux, H. J. Eichler, Z. G. Zhao, C. Schuett, and B. Kruschke, “Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar,” Laser Phys. Lett. 10(11), 115804 (2013).
[Crossref]

R. Wang, C. Q. Gao, L. N. Zhu, M. W. Gao, Y. Zheng, Q. Ye, and Z. Q. Wu, “Continuous-wave and Q-switched operation of a resonantly pumped U-shaped Er:YAG laser at 1617 and 1645 nm,” Laser Phys. Lett. 10(2), 025802 (2013).
[Crossref]

Opt. Express (7)

F. Wang, D. Shen, D. Fan, and Q. Lu, “Spectrum narrowing of high power Tm: fiber laser using a volume Bragg grating,” Opt. Express 18(9), 8937–8941 (2010).
[Crossref] [PubMed]

J. Liu, D. Shen, H. Huang, C. Zhao, X. Zhang, and D. Fan, “High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings,” Opt. Express 22(6), 6605–6612 (2014).
[Crossref] [PubMed]

X. Zhang, D. Shen, H. Huang, J. Liu, X. Liu, J. Zhang, J. Zhang, D. Tang, and D. Fan, “Widely tunable, narrow bandwidth polycrystalline ceramic Er:YAG laser with a volume Bragg grating,” Opt. Express 22(6), 7154–7159 (2014).
[PubMed]

P. Jelger and F. Laurell, “Efficient narrow-linewidth volume-Bragg grating-locked Nd:fiber laser,” Opt. Express 15(18), 11336–11340 (2007).
[Crossref] [PubMed]

P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express 16(13), 9507–9512 (2008).
[Crossref] [PubMed]

I. S. Moskalev, V. V. Fedorov, V. P. Gapontsev, D. V. Gapontsev, N. S. Platonov, and S. B. Mirov, “Highly efficient, narrow-linewidth, and single-frequency actively and passively Q-switched fiber-bulk hybrid Er:YAG lasers operating at 1645 nm,” Opt. Express 16(24), 19427–19433 (2008).
[Crossref] [PubMed]

L. Zhu, M. Wang, J. Zhou, and W. Chen, “Efficient 1645 nm continuous-wave and Q-switched Er:YAG laser pumped by 1532 nm narrow-band laser diode,” Opt. Express 19(27), 26810–26815 (2011).
[Crossref] [PubMed]

Opt. Lett. (8)

C. Gao, R. Wang, L. Zhu, M. Gao, Q. Wang, Z. Zhang, Z. Wei, J. Lin, and L. Guo, “Resonantly pumped 1.645 μm high repetition rate Er:YAG laser Q-switched by a graphene as a saturable absorber,” Opt. Lett. 37(4), 632–634 (2012).
[Crossref] [PubMed]

M. Wang, L. Zhu, W. Chen, and D. Fan, “Efficient all-solid-state mid-infrared optical parametric oscillator based on resonantly pumped 1.645 μm Er:YAG laser,” Opt. Lett. 37(13), 2682–2684 (2012).
[Crossref] [PubMed]

A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38(6), 938–940 (2013).
[Crossref] [PubMed]

N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett. 35(7), 922–924 (2010).
[Crossref] [PubMed]

T. McComb, V. Sudesh, and M. Richardson, “Volume Bragg grating stabilized spectrally narrow Tm fiber laser,” Opt. Lett. 33(8), 881–883 (2008).
[Crossref] [PubMed]

J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating,” Opt. Lett. 33(11), 1204–1206 (2008).
[Crossref] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett. 36(20), 3996–3998 (2011).
[Crossref] [PubMed]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
[Crossref] [PubMed]

Optik Photonik (1)

O. Lux, H. Fritsche, and H. J. Eichler, “Trace gas remote sensing by lasers,” Optik Photonik 8(4), 48–51 (2013).
[Crossref]

Proc. SPIE (3)

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
[Crossref]

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[Crossref]

V. Leyva, K. Spariosu, and R. D. Stultz, “Saturable absorbed Er:YAG Q-switched laser with short pulse,” Proc. SPIE 6100, 61000D (2006).
[Crossref]

Other (2)

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., “Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press 2007.

D. K. Killinger, “Er:YAG laser crystal characteri-zation,” Quarterly Tech. Rep. Solid-State Research (Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Mass., 1985), p.9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup of the Q-switched narrow-linewidth Er:YAG laser. L1, Lens 1. L2, Lens 2. P, polarizer. QWP, quarter-wave plate. Q-S, Q-switcher.
Fig. 2
Fig. 2 Output spectrum characteristics of the resonantly pumped Q-switched Er:YAG laser under the free-running and wavelength-locked operation regimes with different transmittances of 13 and 21% of the output coupler at the incident pump power of 21.6 W. OC, output coupler.
Fig. 3
Fig. 3 Q-switched pulse width and pulse energy as function of incident pump power. Inset: Typical pulse trace at the repetition rate of 1 kHz.
Fig. 4
Fig. 4 Measured beam radii of the Q-switched wavelength-locked Er:YAG laser at different positions along propagation axis.

Metrics