Abstract

We propose and experimentally demonstrate a compact bending sensor. The head of the sensor is only 0.8 mm in length, and consists of an abrupt biconical fiber taper formed using a conventional fusion splicer, in which a fiber Bragg grating (FBG) is inscribed using a femtosecond laser. The biconical taper incorporating the FBG can couple light from the cladding to the backward-propagating core mode, which realizes an interferometer in reflection-mode. Bending of the structure can be detected from the contrast change of interference fringes. A configuration to measure curvature is investigated to demonstrate the sensing characteristics. The temperature cross-sensitivity of the sensor is studied, and the results demonstrate that it is insensitive to temperature.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling

Tuan Guo, Liyang Shao, Hwa-Yaw Tam, Peter A. Krug, and Jacques Albert
Opt. Express 17(23) 20651-20660 (2009)

Two-dimensional vector bending sensor based on seven-core fiber Bragg gratings

Maoxiang Hou, Kaiming Yang, Jun He, Xizhen Xu, Shuai Ju, Kuikui Guo, and Yiping Wang
Opt. Express 26(18) 23770-23781 (2018)

Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers

Ningliang Liu, Yuhua Li, Ying Wang, Haiyan Wang, Wenbin Liang, and Peixiang Lu
Opt. Express 19(15) 13880-13891 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  2. Y. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [Crossref]
  3. T. Guo, A. Ivanov, C. Chen, and J. Albert, “Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling,” Opt. Lett. 33(9), 1004–1006 (2008).
    [Crossref] [PubMed]
  4. T. Guo, L. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
    [Crossref] [PubMed]
  5. Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett. 31(12), 1794–1796 (2006).
    [Crossref] [PubMed]
  6. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [Crossref]
  7. S. Baek, Y. Jeong, and B. Lee, “Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors,” Appl. Opt. 41(4), 631–636 (2002).
    [Crossref] [PubMed]
  8. W. Shin, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
    [Crossref]
  9. A. Cusano, M. Consales, A. Crescitelli, and A. Ricciardi, Lab-On-Fiber Technology (Springer, 2015).
  10. L. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
    [Crossref]
  11. Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
    [Crossref]
  12. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
    [Crossref]
  13. D. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol, C. Photo. 17, 50–68 (2013).
    [Crossref]
  14. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  15. J. Qiu, “Femtosecond laser-induced microstructures in glasses and applications in micro-optics,” Chem. Rec. 4(1), 50–58 (2004).
    [Crossref] [PubMed]
  16. Z. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
    [Crossref] [PubMed]
  17. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  18. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc. J Optoelectron. 138(5), 343–354 (1991).
    [Crossref]
  19. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices. part 2: experimental and theoretical quantification,” IEE Proc. J Optoelectron. 138(5), 355–364 (1991).
    [Crossref]

2013 (1)

D. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol, C. Photo. 17, 50–68 (2013).
[Crossref]

2010 (2)

W. Shin, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

L. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

2009 (3)

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

T. Guo, L. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
[Crossref] [PubMed]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

2008 (3)

2006 (1)

2005 (1)

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

2004 (1)

J. Qiu, “Femtosecond laser-induced microstructures in glasses and applications in micro-optics,” Chem. Rec. 4(1), 50–58 (2004).
[Crossref] [PubMed]

2003 (2)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

2002 (1)

1997 (1)

Y. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

1991 (2)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc. J Optoelectron. 138(5), 343–354 (1991).
[Crossref]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices. part 2: experimental and theoretical quantification,” IEE Proc. J Optoelectron. 138(5), 355–364 (1991).
[Crossref]

Ahn, T. J.

W. Shin, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Albert, J.

Baek, S.

Black, R. J.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices. part 2: experimental and theoretical quantification,” IEE Proc. J Optoelectron. 138(5), 355–364 (1991).
[Crossref]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc. J Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Bock, W. J.

L. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Chan, C. C.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Chen, C.

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Dong, X. Y.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gonthier, F.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices. part 2: experimental and theoretical quantification,” IEE Proc. J Optoelectron. 138(5), 355–364 (1991).
[Crossref]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc. J Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Guo, T.

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc. J Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Huang, M.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Ivanov, A.

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Jeong, Y.

Jia, T. Q.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Jin, Y. X.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Khusro, N.

D. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol, C. Photo. 17, 50–68 (2013).
[Crossref]

Krug, P. A.

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Lacroix, S.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices. part 2: experimental and theoretical quantification,” IEE Proc. J Optoelectron. 138(5), 355–364 (1991).
[Crossref]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc. J Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Laronche, A.

L. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Lee, B.

Lee, J.

Lee, Y. L.

W. Shin, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Loock, H. P.

Love, J. D.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices. part 2: experimental and theoretical quantification,” IEE Proc. J Optoelectron. 138(5), 355–364 (1991).
[Crossref]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc. J Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Mikulic, P.

L. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Noh, Y.

W. Shin, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Qiu, J.

D. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol, C. Photo. 17, 50–68 (2013).
[Crossref]

J. Qiu, “Femtosecond laser-induced microstructures in glasses and applications in micro-optics,” Chem. Rec. 4(1), 50–58 (2004).
[Crossref] [PubMed]

Qiu, J. R.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Rao, Y.

Y. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Ruffin, P.

Shao, L.

L. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

T. Guo, L. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
[Crossref] [PubMed]

Shin, W.

W. Shin, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Smietana, M.

L. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc. J Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Tam, H. Y.

Tan, D.

D. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol, C. Photo. 17, 50–68 (2013).
[Crossref]

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Tian, Z.

Xu, Z. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Yam, S. S.

Yin, S.

Yong, Z.

Yu, B.

W. Shin, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Zhan, C.

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhang, Y. F.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhou, S.

D. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol, C. Photo. 17, 50–68 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chem. Rec. (1)

J. Qiu, “Femtosecond laser-induced microstructures in glasses and applications in micro-optics,” Chem. Rec. 4(1), 50–58 (2004).
[Crossref] [PubMed]

IEE Proc. J Optoelectron. (2)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc. J Optoelectron. 138(5), 343–354 (1991).
[Crossref]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices. part 2: experimental and theoretical quantification,” IEE Proc. J Optoelectron. 138(5), 355–364 (1991).
[Crossref]

J. Photochem. Photobiol, C. Photo. (1)

D. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol, C. Photo. 17, 50–68 (2013).
[Crossref]

Meas. Sci. Technol. (2)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Y. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (3)

L. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

W. Shin, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Lett. (3)

Phys. Rev. B (1)

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Other (1)

A. Cusano, M. Consales, A. Crescitelli, and A. Ricciardi, Lab-On-Fiber Technology (Springer, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Microscope image of the abrupt taper with a waist diameter of 57 µm over a length of 0.8 mm. The inset shows the grating fringes in the taper. The plane of the image is normal to the axis of the femtosecond laser beam.
Fig. 2
Fig. 2 Schematic diagram of the sensor. The FBG incorporating the abrupt biconical taper couples light from the cladding to the backward-propagating core mode in the taper.
Fig. 3
Fig. 3 Reflection spectra for straight and curved fibers. (a) The sensor with a 4-mm-long FBG and (b) the sensor with a short FBG inscribed only in the tapered region.
Fig. 4
Fig. 4 Orientation dependence of the sensor head.
Fig. 5
Fig. 5 (a) Configuration used for the curvature measurements. (b) Changes in the contrast of the interference fringes as a function of the curvature.
Fig. 6
Fig. 6 (a) Reflection spectra of the sensor at temperatures of 20°C and 70°C. (b) Change in the contrast of the interference fringes as a function of temperature.

Metrics