Abstract

Laser operation of a GaN vertical cavity surface emitting laser (VCSEL) is demonstrated under optical pumping with a nanoporous distributed Bragg reflector (DBR). High reflectivity, approaching 100%, is obtained due to the high index-contrast of the nanoporous DBR. The VCSEL system exhibits low threshold power density due to the formation of high Q-factor cavity, which shows the potential of nanoporous medium for optical devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave operation of monolithically grown 1.5-μm optically pumped vertical-external-cavity surface-emitting lasers

Clémentine Symonds, Isabelle Sagnes, Arnaud Garnache, Sjoerd Hoogland, Guillaume Saint-Girons, Anne C. Tropper, and Jean-Louis Oudar
Appl. Opt. 42(33) 6678-6681 (2003)

Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers

Guoen Weng, Yang Mei, Jianping Liu, Werner Hofmann, Leiying Ying, Jiangyong Zhang, Yikun Bu, Zengcheng Li, Hui Yang, and Baoping Zhang
Opt. Express 24(14) 15546-15553 (2016)

Bistable output of an optically pumped vertical-cavity surface-emitting laser

Matthew J. Bohn and J. G. McInerney
J. Opt. Soc. Am. B 14(12) 3430-3436 (1997)

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
    [Crossref]
  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
    [Crossref]
  3. A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71(16), 2334–2336 (1997).
    [Crossref]
  4. J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room-temperature cw operation of GaInAsP/InP double-heterostructure diode lasers emitting at 1.1 μm,” Appl. Phys. Lett. 28(12), 709–711 (1976).
    [Crossref]
  5. A. Gatto, A. Boletti, P. Boffi, N. Christian, M. Ortsiefer, E. Ronneberg, and M. Martinelli, “1.3-μm VCSEL Transmission Performance up to 12.5 Gb/s for Metro Access Networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).
  6. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40(24), 4404–4415 (2001).
    [Crossref] [PubMed]
  7. A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).
  8. B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
    [Crossref]
  9. T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K. H. Ploog, “Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001),” Appl. Phys. Lett. 85(11), 1970–1972 (2004).
    [Crossref]
  10. X. H. Zhang, S. J. Chua, W. Liu, L. S. Wang, A. M. Yong, and S. Y. Chow, “Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells,” Appl. Phys. Lett. 88(19), 191111 (2006).
    [Crossref]
  11. C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
    [Crossref]
  12. T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” IEEE J. Sel. Top. Quantum Electron. 48(9), 1107–1112 (2012).
    [Crossref]
  13. M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films,” Langmuir 23(5), 2414–2422 (2007).
    [Crossref] [PubMed]
  14. E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000).
    [Crossref]
  15. L. A. Golovan, P. K. Kashkarov, and V. Y. Timoshenko, “Form birefringence in porous semiconductors and dielectrics,” Crystallogr. Rep. 52(4), 672–685 (2007).
    [Crossref]
  16. J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
    [Crossref]
  17. J. Park, J.-H. Kang, and S.-W. Ryu, “High Diffuse Reflectivity of Nanoporous GaN Distributed Bragg Reflector Formed by Electrochemical Etching,” Appl. Phys. Express 6(7), 072201 (2013).
    [Crossref]
  18. R. J. Horowicz, H. Heitmann, Y. Kadota, and Y. Yamamoto, “GaAs microcavity quantum-well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61(4), 393–395 (1992).
    [Crossref]
  19. T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
    [Crossref]
  20. C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
    [Crossref]
  21. J. Álvarez, P. Bettotti, I. Suárez, N. Kumar, D. Hill, V. Chirvony, L. Pavesi, and J. Martínez-Pastor, “Birefringent porous silicon membranes for optical sensing,” Opt. Express 19(27), 26106–26116 (2011).
    [Crossref] [PubMed]
  22. S.-H. Gong, A. Stolz, G.-H. Myeong, E. Dogheche, A. Gokarna, S.-W. Ryu, D. Decoster, and Y.-H. Cho, “Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique,” Opt. Lett. 36(21), 4272–4274 (2011).
    [Crossref] [PubMed]
  23. B. Alshehri, S.-M. Lee, J.-H. Kang, S.-H. Gong, S.-W. Ryu, Y.-H. Cho, and E. Dogheche, “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett. 94, 221907 (2014).
  24. T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 8×8 vertical‐cavity surface‐emitting laser matrix arrays,” Appl. Phys. Lett. 66(8), 908–910 (1995).
    [Crossref]

2014 (1)

B. Alshehri, S.-M. Lee, J.-H. Kang, S.-H. Gong, S.-W. Ryu, Y.-H. Cho, and E. Dogheche, “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett. 94, 221907 (2014).

2013 (1)

J. Park, J.-H. Kang, and S.-W. Ryu, “High Diffuse Reflectivity of Nanoporous GaN Distributed Bragg Reflector Formed by Electrochemical Etching,” Appl. Phys. Express 6(7), 072201 (2013).
[Crossref]

2012 (2)

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” IEEE J. Sel. Top. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

2011 (2)

2009 (1)

A. Gatto, A. Boletti, P. Boffi, N. Christian, M. Ortsiefer, E. Ronneberg, and M. Martinelli, “1.3-μm VCSEL Transmission Performance up to 12.5 Gb/s for Metro Access Networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).

2008 (1)

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

2007 (2)

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films,” Langmuir 23(5), 2414–2422 (2007).
[Crossref] [PubMed]

L. A. Golovan, P. K. Kashkarov, and V. Y. Timoshenko, “Form birefringence in porous semiconductors and dielectrics,” Crystallogr. Rep. 52(4), 672–685 (2007).
[Crossref]

2006 (1)

X. H. Zhang, S. J. Chua, W. Liu, L. S. Wang, A. M. Yong, and S. Y. Chow, “Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells,” Appl. Phys. Lett. 88(19), 191111 (2006).
[Crossref]

2005 (1)

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

2004 (1)

T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K. H. Ploog, “Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001),” Appl. Phys. Lett. 85(11), 1970–1972 (2004).
[Crossref]

2001 (2)

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40(24), 4404–4415 (2001).
[Crossref] [PubMed]

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

2000 (1)

E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000).
[Crossref]

1998 (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

1997 (2)

A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71(16), 2334–2336 (1997).
[Crossref]

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

1995 (1)

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 8×8 vertical‐cavity surface‐emitting laser matrix arrays,” Appl. Phys. Lett. 66(8), 908–910 (1995).
[Crossref]

1994 (1)

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

1992 (1)

R. J. Horowicz, H. Heitmann, Y. Kadota, and Y. Yamamoto, “GaAs microcavity quantum-well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61(4), 393–395 (1992).
[Crossref]

1976 (1)

J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room-temperature cw operation of GaInAsP/InP double-heterostructure diode lasers emitting at 1.1 μm,” Appl. Phys. Lett. 28(12), 709–711 (1976).
[Crossref]

Allara, D. L.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films,” Langmuir 23(5), 2414–2422 (2007).
[Crossref] [PubMed]

Alshehri, B.

B. Alshehri, S.-M. Lee, J.-H. Kang, S.-H. Gong, S.-W. Ryu, Y.-H. Cho, and E. Dogheche, “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett. 94, 221907 (2014).

Álvarez, J.

Astrova, E. V.

E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000).
[Crossref]

Berger, C.

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Bettotti, P.

Bläsing, J.

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Boffi, P.

A. Gatto, A. Boletti, P. Boffi, N. Christian, M. Ortsiefer, E. Ronneberg, and M. Martinelli, “1.3-μm VCSEL Transmission Performance up to 12.5 Gb/s for Metro Access Networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).

Boletti, A.

A. Gatto, A. Boletti, P. Boffi, N. Christian, M. Ortsiefer, E. Ronneberg, and M. Martinelli, “1.3-μm VCSEL Transmission Performance up to 12.5 Gb/s for Metro Access Networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).

Brandt, O.

T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K. H. Ploog, “Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001),” Appl. Phys. Lett. 85(11), 1970–1972 (2004).
[Crossref]

Chan, M. H. W.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films,” Langmuir 23(5), 2414–2422 (2007).
[Crossref] [PubMed]

Chandramani, P.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Chang, Y. H.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Chirovsky, L. M. F.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Chirvony, V.

Cho, Y.-H.

B. Alshehri, S.-M. Lee, J.-H. Kang, S.-H. Gong, S.-W. Ryu, Y.-H. Cho, and E. Dogheche, “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett. 94, 221907 (2014).

S.-H. Gong, A. Stolz, G.-H. Myeong, E. Dogheche, A. Gokarna, S.-W. Ryu, D. Decoster, and Y.-H. Cho, “Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique,” Opt. Lett. 36(21), 4272–4274 (2011).
[Crossref] [PubMed]

Chocho, K.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Chow, S. Y.

X. H. Zhang, S. J. Chua, W. Liu, L. S. Wang, A. M. Yong, and S. Y. Chow, “Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells,” Appl. Phys. Lett. 88(19), 191111 (2006).
[Crossref]

Christen, J.

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Christian, N.

A. Gatto, A. Boletti, P. Boffi, N. Christian, M. Ortsiefer, E. Ronneberg, and M. Martinelli, “1.3-μm VCSEL Transmission Performance up to 12.5 Gb/s for Metro Access Networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).

Chu, J. T.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Chua, S. J.

X. H. Zhang, S. J. Chua, W. Liu, L. S. Wang, A. M. Yong, and S. Y. Chow, “Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells,” Appl. Phys. Lett. 88(19), 191111 (2006).
[Crossref]

D’Asaro, L. A.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Dadgar, A.

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Daniel, T. A.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films,” Langmuir 23(5), 2414–2422 (2007).
[Crossref] [PubMed]

Decoster, D.

Dixon, M. C.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films,” Langmuir 23(5), 2414–2422 (2007).
[Crossref] [PubMed]

Dogheche, E.

B. Alshehri, S.-M. Lee, J.-H. Kang, S.-H. Gong, S.-W. Ryu, Y.-H. Cho, and E. Dogheche, “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett. 94, 221907 (2014).

S.-H. Gong, A. Stolz, G.-H. Myeong, E. Dogheche, A. Gokarna, S.-W. Ryu, D. Decoster, and Y.-H. Cho, “Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique,” Opt. Lett. 36(21), 4272–4274 (2011).
[Crossref] [PubMed]

Donnelly, J. P.

J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room-temperature cw operation of GaInAsP/InP double-heterostructure diode lasers emitting at 1.1 μm,” Appl. Phys. Lett. 28(12), 709–711 (1976).
[Crossref]

Ebeling, K. J.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Gangopadhyay, S.

A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71(16), 2334–2336 (1997).
[Crossref]

Gaska, R.

A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71(16), 2334–2336 (1997).
[Crossref]

Gatto, A.

A. Gatto, A. Boletti, P. Boffi, N. Christian, M. Ortsiefer, E. Ronneberg, and M. Martinelli, “1.3-μm VCSEL Transmission Performance up to 12.5 Gb/s for Metro Access Networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).

Gokarna, A.

Golovan, L. A.

L. A. Golovan, P. K. Kashkarov, and V. Y. Timoshenko, “Form birefringence in porous semiconductors and dielectrics,” Crystallogr. Rep. 52(4), 672–685 (2007).
[Crossref]

Gong, S.-H.

B. Alshehri, S.-M. Lee, J.-H. Kang, S.-H. Gong, S.-W. Ryu, Y.-H. Cho, and E. Dogheche, “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett. 94, 221907 (2014).

S.-H. Gong, A. Stolz, G.-H. Myeong, E. Dogheche, A. Gokarna, S.-W. Ryu, D. Decoster, and Y.-H. Cho, “Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique,” Opt. Lett. 36(21), 4272–4274 (2011).
[Crossref] [PubMed]

Goossen, K. W.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Grabherr, M.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Hanson, R. K.

Heitmann, H.

R. J. Horowicz, H. Heitmann, Y. Kadota, and Y. Yamamoto, “GaAs microcavity quantum-well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61(4), 393–395 (1992).
[Crossref]

Hempel, T.

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Hesjedal, T.

T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K. H. Ploog, “Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001),” Appl. Phys. Lett. 85(11), 1970–1972 (2004).
[Crossref]

Hieda, M.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films,” Langmuir 23(5), 2414–2422 (2007).
[Crossref] [PubMed]

Hill, D.

Hobson, W. S.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Horowicz, R. J.

R. J. Horowicz, H. Heitmann, Y. Kadota, and Y. Yamamoto, “GaAs microcavity quantum-well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61(4), 393–395 (1992).
[Crossref]

Hsieh, J. J.

J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room-temperature cw operation of GaInAsP/InP double-heterostructure diode lasers emitting at 1.1 μm,” Appl. Phys. Lett. 28(12), 709–711 (1976).
[Crossref]

Huang, G. S.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

Huang, H. W.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Hui, S. P.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Imafuji, O.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” IEEE J. Sel. Top. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Ive, T.

T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K. H. Ploog, “Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001),” Appl. Phys. Lett. 85(11), 1970–1972 (2004).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Jager, R.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Jeffries, J. B.

Jung, C.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Kadota, Y.

R. J. Horowicz, H. Heitmann, Y. Kadota, and Y. Yamamoto, “GaAs microcavity quantum-well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61(4), 393–395 (1992).
[Crossref]

Kajita, M.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 8×8 vertical‐cavity surface‐emitting laser matrix arrays,” Appl. Phys. Lett. 66(8), 908–910 (1995).
[Crossref]

Kang, J.-H.

B. Alshehri, S.-M. Lee, J.-H. Kang, S.-H. Gong, S.-W. Ryu, Y.-H. Cho, and E. Dogheche, “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett. 94, 221907 (2014).

J. Park, J.-H. Kang, and S.-W. Ryu, “High Diffuse Reflectivity of Nanoporous GaN Distributed Bragg Reflector Formed by Electrochemical Etching,” Appl. Phys. Express 6(7), 072201 (2013).
[Crossref]

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Kao, C. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Kao, T. T.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Kasahara, K.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 8×8 vertical‐cavity surface‐emitting laser matrix arrays,” Appl. Phys. Lett. 66(8), 908–910 (1995).
[Crossref]

Kashkarov, P. K.

L. A. Golovan, P. K. Kashkarov, and V. Y. Timoshenko, “Form birefringence in porous semiconductors and dielectrics,” Crystallogr. Rep. 52(4), 672–685 (2007).
[Crossref]

Kawaguchi, M.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” IEEE J. Sel. Top. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Khan, M. A.

A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71(16), 2334–2336 (1997).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Kosaka, H.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 8×8 vertical‐cavity surface‐emitting laser matrix arrays,” Appl. Phys. Lett. 66(8), 908–910 (1995).
[Crossref]

Kostial, H.

T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K. H. Ploog, “Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001),” Appl. Phys. Lett. 85(11), 1970–1972 (2004).
[Crossref]

Kozaki, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Krost, A.

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Kuksenkov, D.

A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71(16), 2334–2336 (1997).
[Crossref]

Kumar, N.

Kuo, H. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Kurihara, K.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 8×8 vertical‐cavity surface‐emitting laser matrix arrays,” Appl. Phys. Lett. 66(8), 908–910 (1995).
[Crossref]

Lee, B.

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Lee, J. K.

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Lee, J.-H.

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Lee, S.-M.

B. Alshehri, S.-M. Lee, J.-H. Kang, S.-H. Gong, S.-W. Ryu, Y.-H. Cho, and E. Dogheche, “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett. 94, 221907 (2014).

Lesnik, A.

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Lin, C. F.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Liu, W.

X. H. Zhang, S. J. Chua, W. Liu, L. S. Wang, A. M. Yong, and S. Y. Chow, “Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells,” Appl. Phys. Lett. 88(19), 191111 (2006).
[Crossref]

Lopata, J.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Lu, T. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Martinelli, M.

A. Gatto, A. Boletti, P. Boffi, N. Christian, M. Ortsiefer, E. Ronneberg, and M. Martinelli, “1.3-μm VCSEL Transmission Performance up to 12.5 Gb/s for Metro Access Networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).

Martínez-Pastor, J.

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Michalzik, R.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Mukai, T.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

Myeong, G.-H.

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Nagamatsu, K.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” IEEE J. Sel. Top. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

Onishi, T.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” IEEE J. Sel. Top. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Ortsiefer, M.

A. Gatto, A. Boletti, P. Boffi, N. Christian, M. Ortsiefer, E. Ronneberg, and M. Martinelli, “1.3-μm VCSEL Transmission Performance up to 12.5 Gb/s for Metro Access Networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).

Osinsky, A.

A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71(16), 2334–2336 (1997).
[Crossref]

Park, J.

J. Park, J.-H. Kang, and S.-W. Ryu, “High Diffuse Reflectivity of Nanoporous GaN Distributed Bragg Reflector Formed by Electrochemical Etching,” Appl. Phys. Express 6(7), 072201 (2013).
[Crossref]

Pavesi, L.

Peng, Y. C.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Ploog, K. H.

T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K. H. Ploog, “Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001),” Appl. Phys. Lett. 85(11), 1970–1972 (2004).
[Crossref]

Ramsteiner, M.

T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K. H. Ploog, “Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001),” Appl. Phys. Lett. 85(11), 1970–1972 (2004).
[Crossref]

Reiner, G.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Ronneberg, E.

A. Gatto, A. Boletti, P. Boffi, N. Christian, M. Ortsiefer, E. Ronneberg, and M. Martinelli, “1.3-μm VCSEL Transmission Performance up to 12.5 Gb/s for Metro Access Networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).

Rossi, J. A.

J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room-temperature cw operation of GaInAsP/InP double-heterostructure diode lasers emitting at 1.1 μm,” Appl. Phys. Lett. 28(12), 709–711 (1976).
[Crossref]

Rozier, R. G.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Ryu, S.-W.

B. Alshehri, S.-M. Lee, J.-H. Kang, S.-H. Gong, S.-W. Ryu, Y.-H. Cho, and E. Dogheche, “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett. 94, 221907 (2014).

J. Park, J.-H. Kang, and S.-W. Ryu, “High Diffuse Reflectivity of Nanoporous GaN Distributed Bragg Reflector Formed by Electrochemical Etching,” Appl. Phys. Express 6(7), 072201 (2013).
[Crossref]

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

S.-H. Gong, A. Stolz, G.-H. Myeong, E. Dogheche, A. Gokarna, S.-W. Ryu, D. Decoster, and Y.-H. Cho, “Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique,” Opt. Lett. 36(21), 4272–4274 (2011).
[Crossref] [PubMed]

Sanders, S. T.

Sano, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Schmidt, G.

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

Smilgies, D. M.

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films,” Langmuir 23(5), 2414–2422 (2007).
[Crossref] [PubMed]

Sowada, D.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Stolz, A.

Strittmatter, A.

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Suárez, I.

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 8×8 vertical‐cavity surface‐emitting laser matrix arrays,” Appl. Phys. Lett. 66(8), 908–910 (1995).
[Crossref]

Takigawa, S.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” IEEE J. Sel. Top. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Temkin, H.

A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71(16), 2334–2336 (1997).
[Crossref]

Timoshenko, V. Y.

L. A. Golovan, P. K. Kashkarov, and V. Y. Timoshenko, “Form birefringence in porous semiconductors and dielectrics,” Crystallogr. Rep. 52(4), 672–685 (2007).
[Crossref]

Tolmachev, V. A.

E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000).
[Crossref]

Tsai, J. Y.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Umemoto, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Veit, P.

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Walker, J. A.

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Wang, J.

Wang, L. S.

X. H. Zhang, S. J. Chua, W. Liu, L. S. Wang, A. M. Yong, and S. Y. Chow, “Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells,” Appl. Phys. Lett. 88(19), 191111 (2006).
[Crossref]

Wang, S. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Weigl, B.

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

Williams, B.

A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71(16), 2334–2336 (1997).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

Yamamoto, Y.

R. J. Horowicz, H. Heitmann, Y. Kadota, and Y. Yamamoto, “GaAs microcavity quantum-well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61(4), 393–395 (1992).
[Crossref]

Yamanaka, K.

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” IEEE J. Sel. Top. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

Yao, H. H.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

Yong, A. M.

X. H. Zhang, S. J. Chua, W. Liu, L. S. Wang, A. M. Yong, and S. Y. Chow, “Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells,” Appl. Phys. Lett. 88(19), 191111 (2006).
[Crossref]

Yoshikawa, T.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 8×8 vertical‐cavity surface‐emitting laser matrix arrays,” Appl. Phys. Lett. 66(8), 908–910 (1995).
[Crossref]

Zhang, X. H.

X. H. Zhang, S. J. Chua, W. Liu, L. S. Wang, A. M. Yong, and S. Y. Chow, “Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells,” Appl. Phys. Lett. 88(19), 191111 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

J. Park, J.-H. Kang, and S.-W. Ryu, “High Diffuse Reflectivity of Nanoporous GaN Distributed Bragg Reflector Formed by Electrochemical Etching,” Appl. Phys. Express 6(7), 072201 (2013).
[Crossref]

Appl. Phys. Lett. (11)

R. J. Horowicz, H. Heitmann, Y. Kadota, and Y. Yamamoto, “GaAs microcavity quantum-well laser with enhanced coupling of spontaneous emission to the lasing mode,” Appl. Phys. Lett. 61(4), 393–395 (1992).
[Crossref]

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[Crossref]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN / GaN and Ta2O5 / SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[Crossref]

T. Ive, O. Brandt, H. Kostial, T. Hesjedal, M. Ramsteiner, and K. H. Ploog, “Crack-free and conductive Si-doped AlN/GaN distributed Bragg reflectors grown on 6H-SiC(0001),” Appl. Phys. Lett. 85(11), 1970–1972 (2004).
[Crossref]

X. H. Zhang, S. J. Chua, W. Liu, L. S. Wang, A. M. Yong, and S. Y. Chow, “Crack-free fully epitaxial nitride microcavity with AlGaN/GaN distributed Bragg reflectors and InGaN/GaN quantum wells,” Appl. Phys. Lett. 88(19), 191111 (2006).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72(2), 211–213 (1998).
[Crossref]

A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett. 71(16), 2334–2336 (1997).
[Crossref]

J. J. Hsieh, J. A. Rossi, and J. P. Donnelly, “Room-temperature cw operation of GaInAsP/InP double-heterostructure diode lasers emitting at 1.1 μm,” Appl. Phys. Lett. 28(12), 709–711 (1976).
[Crossref]

B. Alshehri, S.-M. Lee, J.-H. Kang, S.-H. Gong, S.-W. Ryu, Y.-H. Cho, and E. Dogheche, “Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique,” Appl. Phys. Lett. 94, 221907 (2014).

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 8×8 vertical‐cavity surface‐emitting laser matrix arrays,” Appl. Phys. Lett. 66(8), 908–910 (1995).
[Crossref]

Crystallogr. Rep. (1)

L. A. Golovan, P. K. Kashkarov, and V. Y. Timoshenko, “Form birefringence in porous semiconductors and dielectrics,” Crystallogr. Rep. 52(4), 672–685 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” IEEE J. Sel. Top. Quantum Electron. 48(9), 1107–1112 (2012).
[Crossref]

B. Weigl, M. Grabherr, C. Jung, R. Jager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Gatto, A. Boletti, P. Boffi, N. Christian, M. Ortsiefer, E. Ronneberg, and M. Martinelli, “1.3-μm VCSEL Transmission Performance up to 12.5 Gb/s for Metro Access Networks,” IEEE Photon. Technol. Lett. 21(12), 778–780 (2009).

A. V. Krishnamoorthy, K. W. Goossen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16 x 16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 8, 1073–1075 (2001).

Langmuir (1)

M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, and D. L. Allara, “Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films,” Langmuir 23(5), 2414–2422 (2007).
[Crossref] [PubMed]

Mater. Sci. Eng. B (1)

E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Thin Solid Films (1)

J.-H. Lee, B. Lee, J.-H. Kang, J. K. Lee, and S.-W. Ryu, “Optical characterization of nanoporous GaN by spectroscopic ellipsometry,” Thin Solid Films 525, 84–87 (2012).
[Crossref]

Other (1)

C. Berger, A. Dadgar, J. Bläsing, A. Lesnik, P. Veit, G. Schmidt, T. Hempel, J. Christen, A. Krost, and A. Strittmatter, “Growth of AlInN/GaN distributed Bragg reflectors with improved interface quality,” J. Cryst. Growth. in press., doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of the GaN VCSEL structure with nanoporous DBRs. Cross-sectional SEM images of nanoporous DBRs etched in 70% HNO3 at (b) 15 V, (c) 17 V, and (d) 19 V are displayed.
Fig. 2
Fig. 2 Measured (solid line) and simulated (dashed line) reflectivity spectra of the GaN VCSEL with nanoporous DBRs, etched at (a) 15 V, (b) 17 V, and (c) 19 V. The blue lines represent μ-PL spectra from the corresponding VCSEL cavities.
Fig. 3
Fig. 3 Laser output intensity as a function of the pump power. The VCSELs were etched at (a) 15 V, (b) 17 V, and (c) 19 V. The insets show the laser emission spectra and associated linewidths.
Fig. 4
Fig. 4 Laser emission intensity as a function of the pump power, plotted on a logarithmic scale, fitted by the semiconductor rate equation for nanoporous VCSELs etched at (a) 15 V, (b) 17 V, and (c) 19 V.
Fig. 5
Fig. 5 Polarization characteristics of nanoporous VCSEL (black dot). The data were fitted by a sine function (red line). The inset was added to display the preferential polarization direction in connection with the nanopore propagation direction.

Metrics