Abstract

Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. −16 dBm sensitivity has been achieved for 3.8 × 10−3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. −19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Seven-core multicore fiber transmissions for passive optical network

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello
Opt. Express 18(11) 11117-11122 (2010)

OFDM/WDM PON With Laserless, Colorless 1  Gb/s ONUs Based on Si-PIC and Slow IC

A. Agmon, M. Nazarathy, D. M. Marom, S. Ben-Ezra, A. Tolmachev, R. Killey, P. Bayvel, L. Meder, M. Hübner, W. Meredith, G. Vickers, P. C. Schindler, R. Schmogrow, D. Hillerkuss, W. Freude, C. Koos, and J. Leuthold
J. Opt. Commun. Netw. 6(3) 225-237 (2014)

RSOA-Based FDM PON Upstream With Flexible Multiple Access Capabilities in an NG-PON2 Compliant Architecture

A. Gatto, P. Parolari, M. Brunero, P. Martelli, R. Brenot, and P. Boffi
J. Opt. Commun. Netw. 8(5) 302-307 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proceedings of 35th European Conference and Exhibition on Optical Communication (ECOC, 2009), paper 10.5.5.
  2. “Gigabit-capable Passive Optical Networks (G-PON),” ITU-T Recommendation G.984 series.
  3. IEEE Standard for Local and Metropolitan Area Networks—Specific Requirements—Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications-Amendment: Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks, IEEE Standard 802.3ah-2004.
  4. 10 Gigabit-Capable Passive Optical Network (XG-PON), ITU-T G.987 Series Recommendations.
  5. Physical layer specifications and management parameters for 10 Gb/s passive optical networks, IEEE Std 802.3av-2009, Oct. 2009.
  6. F. J. Effenberger, Y. Maeda, and J. Kani, “Standardization trends and prospective views on the next generation of broadband optical access systems,” J. Sel. Areas Commun. 28(6), 773–780 (2010).
    [Crossref]
  7. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gbps operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
    [Crossref]
  8. J.-I. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
    [Crossref]
  9. S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011) paper PDPD4.
    [Crossref]
  10. S. P. Jung, Y. Takushima, and Y. C. Chung, “Generation of 5-Gbps QPSK signal using directly modulated RSOA for 100-km coherent WDM PON,” in Optical Fiber Communication Conference, (Optical Society of America, 2011), paper OTuB3.
    [Crossref]
  11. D. Qian, T. Kwok, N. Cvijetic, J. Hu, and T. Wang, “41.25 Gb/s real time OFDM receiver for variable rate WDM-OFDMA-PON,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), paper PDPD9.
    [Crossref]
  12. E. Wong, “Next-Generation Broadband AccessNetworks and Technologies,” J. Lightwave Technol. 30(4), 597–608 (2012).
    [Crossref]
  13. N. K. Fontaine, C. R. Doerr, M. A. Mestre, R. Ryf, P. J. Winzer, L. L. Buhl, Y. Sun, X. Jiang, and R. L. Jr, “Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit,” in Optical Fiber Communication Conference, (Optical Society of America, 2012), paper PDP5B.1.
    [Crossref]
  14. K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5-6), 441–454 (2013).
    [Crossref]
  15. S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” Opt. Express 20(2), 706–711 (2012).
    [Crossref] [PubMed]
  16. K. Igarashi, K. Takeshima, T. Tsuritani, H. Takahashi, S. Sumita, I. Morita, Y. Tsuchida, M. Tadakuma, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA,” Opt. Express 21(15), 18053–18060 (2013).
    [Crossref] [PubMed]
  17. C. Xia, N. Chand, A. M. Velazquez-Benitez, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, F. Effenberger, R. Amezcua-Correa, and G. Li, “Demonstration of World’s First Few-Mode GPON”, in Proceedings of 40th European Conference and Exhibition on Optical Communication (ECOC, 2014), paper PD1.5.
  18. T. Hu, J. Li, P. Zhu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Experimental Demonstration of Mode-Division-Multiplexing and Time-Division-Multiplexing Passive Optical Network,” in Proc. of Asia Communications and Photonics’2014, paper AF4B.7 (2014).
    [Crossref]
  19. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
    [Crossref] [PubMed]
  20. N. Ghazisaidi, M. Maier, and C. Assi, “Fiber-wireless (FiWi) access networks: A survey,” IEEE Commun. Mag. 47(2), 160–167 (2009).
    [Crossref]
  21. D. Nesset, “NG-PON2 Technology and Standards,” J. Lightwave Technol. (to be published).
  22. W. Ren, Z. Tan, and G. Ren, “Analytical formulation of super-modes in multi-core fibers with hexagonally distributed cores,” Photonics Journal, IEEE 7(1), 1–11 (2015).
    [Crossref]
  23. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Optimized Design Method for Bend-Insensitive Heterogeneous Trench-Assisted Multi-Core Fiber with Ultra-Low Crosstalk and High Core Density,” J. Lightwave Technol. 31(15), 2590–2598 (2013).
    [Crossref]
  24. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
    [Crossref] [PubMed]
  25. Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
    [Crossref]
  26. B. Li, S. Fu, M. Tang, H. Wei, W. Tong, P. Shum, D. Liu, “Investigation on the Wavelength Dependent Crosstalk of,” in Proc. of Asia Communications and Photonics’2013, paper AF1D.5 (2013).
  27. B. Li, S. Fu, M. Tang, Y. Cheng, H. Wei, W. Tong, P. Shum, and D. Liu, “Role of wavelength dependent sensitivity in affecting the crosstalk mitigation of homogeneous multicore fiber: an analytical estimation approach,” Opt. Express 22(12), 14127–14134 (2014).
    [Crossref] [PubMed]
  28. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
    [Crossref] [PubMed]
  29. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305TB/s,” in Optical Fiber Communication Conference, (Optical Society of America, 2012) paper P,DP5C.1.
    [Crossref]
  30. O. Shimakawa, M. Shiozaki, T. Sano, and A. Inoue, “Pluggable Fan-out realizing Physical-contact and low coupling loss for Multi-core fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2013), paper OM3I.2.
    [Crossref]
  31. S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. 12(2), 56–65 (2005).
    [Crossref]
  32. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  33. C. Kachris and I. Tomkos, “A survey on optical interconnects for Data Centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
    [Crossref]

2015 (1)

W. Ren, Z. Tan, and G. Ren, “Analytical formulation of super-modes in multi-core fibers with hexagonally distributed cores,” Photonics Journal, IEEE 7(1), 1–11 (2015).
[Crossref]

2014 (1)

2013 (4)

2012 (4)

2011 (1)

2010 (3)

J.-I. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
[Crossref]

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
[Crossref] [PubMed]

F. J. Effenberger, Y. Maeda, and J. Kani, “Standardization trends and prospective views on the next generation of broadband optical access systems,” J. Sel. Areas Commun. 28(6), 773–780 (2010).
[Crossref]

2009 (1)

N. Ghazisaidi, M. Maier, and C. Assi, “Fiber-wireless (FiWi) access networks: A survey,” IEEE Commun. Mag. 47(2), 160–167 (2009).
[Crossref]

2008 (2)

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gbps operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[Crossref]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[Crossref] [PubMed]

2005 (1)

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. 12(2), 56–65 (2005).
[Crossref]

Arakawa, Y.

Assi, C.

N. Ghazisaidi, M. Maier, and C. Assi, “Fiber-wireless (FiWi) access networks: A survey,” IEEE Commun. Mag. 47(2), 160–167 (2009).
[Crossref]

Burrows, E. C.

Chandrasekhar, S.

Cheng, Y.

B. Li, S. Fu, M. Tang, Y. Cheng, H. Wei, W. Tong, P. Shum, and D. Liu, “Role of wavelength dependent sensitivity in affecting the crosstalk mitigation of homogeneous multicore fiber: an analytical estimation approach,” Opt. Express 22(12), 14127–14134 (2014).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Cho, K. Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gbps operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[Crossref]

Chung, Y. C.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gbps operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[Crossref]

Dimarcello, F. V.

Effenberger, F. J.

F. J. Effenberger, Y. Maeda, and J. Kani, “Standardization trends and prospective views on the next generation of broadband optical access systems,” J. Sel. Areas Commun. 28(6), 773–780 (2010).
[Crossref]

Fini, J. M.

Fishteyn, M.

Fu, S.

B. Li, S. Fu, M. Tang, Y. Cheng, H. Wei, W. Tong, P. Shum, and D. Liu, “Role of wavelength dependent sensitivity in affecting the crosstalk mitigation of homogeneous multicore fiber: an analytical estimation approach,” Opt. Express 22(12), 14127–14134 (2014).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Ghazisaidi, N.

N. Ghazisaidi, M. Maier, and C. Assi, “Fiber-wireless (FiWi) access networks: A survey,” IEEE Commun. Mag. 47(2), 160–167 (2009).
[Crossref]

Gnauck, A. H.

Han, S. H.

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. 12(2), 56–65 (2005).
[Crossref]

Igarashi, K.

Imamura, K.

Kachris, C.

C. Kachris and I. Tomkos, “A survey on optical interconnects for Data Centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

Kani, J.

F. J. Effenberger, Y. Maeda, and J. Kani, “Standardization trends and prospective views on the next generation of broadband optical access systems,” J. Sel. Areas Commun. 28(6), 773–780 (2010).
[Crossref]

Kani, J.-I.

J.-I. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
[Crossref]

Koshiba, M.

Lee, J. H.

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. 12(2), 56–65 (2005).
[Crossref]

Li, B.

Liu, D.

B. Li, S. Fu, M. Tang, Y. Cheng, H. Wei, W. Tong, P. Shum, and D. Liu, “Role of wavelength dependent sensitivity in affecting the crosstalk mitigation of homogeneous multicore fiber: an analytical estimation approach,” Opt. Express 22(12), 14127–14134 (2014).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Liu, S.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Liu, X.

Maeda, K.

Maeda, Y.

F. J. Effenberger, Y. Maeda, and J. Kani, “Standardization trends and prospective views on the next generation of broadband optical access systems,” J. Sel. Areas Commun. 28(6), 773–780 (2010).
[Crossref]

Maier, M.

N. Ghazisaidi, M. Maier, and C. Assi, “Fiber-wireless (FiWi) access networks: A survey,” IEEE Commun. Mag. 47(2), 160–167 (2009).
[Crossref]

Matsuo, S.

Monberg, E. M.

Morita, I.

Nesset, D.

D. Nesset, “NG-PON2 Technology and Standards,” J. Lightwave Technol. (to be published).

Pan, Y.

Ren, G.

W. Ren, Z. Tan, and G. Ren, “Analytical formulation of super-modes in multi-core fibers with hexagonally distributed cores,” Photonics Journal, IEEE 7(1), 1–11 (2015).
[Crossref]

Ren, W.

W. Ren, Z. Tan, and G. Ren, “Analytical formulation of super-modes in multi-core fibers with hexagonally distributed cores,” Photonics Journal, IEEE 7(1), 1–11 (2015).
[Crossref]

Saito, T.

Saitoh, K.

Sasaki, Y.

Savory, S. J.

Shum, P.

Shum, P. P.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Sugizaki, R.

Sumita, S.

Suzuki, M.

Tadakuma, M.

Takahashi, H.

Takenaga, K.

Takeshima, K.

Takushima, Y.

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gbps operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[Crossref]

Tan, Z.

W. Ren, Z. Tan, and G. Ren, “Analytical formulation of super-modes in multi-core fibers with hexagonally distributed cores,” Photonics Journal, IEEE 7(1), 1–11 (2015).
[Crossref]

Tang, M.

B. Li, S. Fu, M. Tang, Y. Cheng, H. Wei, W. Tong, P. Shum, and D. Liu, “Role of wavelength dependent sensitivity in affecting the crosstalk mitigation of homogeneous multicore fiber: an analytical estimation approach,” Opt. Express 22(12), 14127–14134 (2014).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Tanigawa, S.

Taunay, T. F.

Tomkos, I.

C. Kachris and I. Tomkos, “A survey on optical interconnects for Data Centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

Tong, W.

B. Li, S. Fu, M. Tang, Y. Cheng, H. Wei, W. Tong, P. Shum, and D. Liu, “Role of wavelength dependent sensitivity in affecting the crosstalk mitigation of homogeneous multicore fiber: an analytical estimation approach,” Opt. Express 22(12), 14127–14134 (2014).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Tsuchida, Y.

Tsuritani, T.

Tu, J.

Watanabe, K.

Wei, H.

B. Li, S. Fu, M. Tang, Y. Cheng, H. Wei, W. Tong, P. Shum, and D. Liu, “Role of wavelength dependent sensitivity in affecting the crosstalk mitigation of homogeneous multicore fiber: an analytical estimation approach,” Opt. Express 22(12), 14127–14134 (2014).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Winzer, P. J.

Wong, E.

Yan, M. F.

Zhao, Z.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Zhu, B.

Appl. Phys. B (1)

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

C. Kachris and I. Tomkos, “A survey on optical interconnects for Data Centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

IEEE Commun. Mag. (1)

N. Ghazisaidi, M. Maier, and C. Assi, “Fiber-wireless (FiWi) access networks: A survey,” IEEE Commun. Mag. 47(2), 160–167 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J.-I. Kani, “Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gbps operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[Crossref]

IEEE Wireless Commun. (1)

S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun. 12(2), 56–65 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Sel. Areas Commun. (1)

F. J. Effenberger, Y. Maeda, and J. Kani, “Standardization trends and prospective views on the next generation of broadband optical access systems,” J. Sel. Areas Commun. 28(6), 773–780 (2010).
[Crossref]

Nanophotonics (1)

K. Saitoh and S. Matsuo, “Multicore fibers for large capacity transmission,” Nanophotonics 2(5-6), 441–454 (2013).
[Crossref]

Opt. Express (7)

S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” Opt. Express 20(2), 706–711 (2012).
[Crossref] [PubMed]

K. Igarashi, K. Takeshima, T. Tsuritani, H. Takahashi, S. Sumita, I. Morita, Y. Tsuchida, M. Tadakuma, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA,” Opt. Express 21(15), 18053–18060 (2013).
[Crossref] [PubMed]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20(14), 15157–15170 (2012).
[Crossref] [PubMed]

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
[Crossref] [PubMed]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[Crossref] [PubMed]

B. Li, S. Fu, M. Tang, Y. Cheng, H. Wei, W. Tong, P. Shum, and D. Liu, “Role of wavelength dependent sensitivity in affecting the crosstalk mitigation of homogeneous multicore fiber: an analytical estimation approach,” Opt. Express 22(12), 14127–14134 (2014).
[Crossref] [PubMed]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19(26), B543–B550 (2011).
[Crossref] [PubMed]

Photonics Journal, IEEE (1)

W. Ren, Z. Tan, and G. Ren, “Analytical formulation of super-modes in multi-core fibers with hexagonally distributed cores,” Photonics Journal, IEEE 7(1), 1–11 (2015).
[Crossref]

Other (15)

D. Nesset, “NG-PON2 Technology and Standards,” J. Lightwave Technol. (to be published).

B. Li, S. Fu, M. Tang, H. Wei, W. Tong, P. Shum, D. Liu, “Investigation on the Wavelength Dependent Crosstalk of,” in Proc. of Asia Communications and Photonics’2013, paper AF1D.5 (2013).

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305TB/s,” in Optical Fiber Communication Conference, (Optical Society of America, 2012) paper P,DP5C.1.
[Crossref]

O. Shimakawa, M. Shiozaki, T. Sano, and A. Inoue, “Pluggable Fan-out realizing Physical-contact and low coupling loss for Multi-core fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2013), paper OM3I.2.
[Crossref]

C. Xia, N. Chand, A. M. Velazquez-Benitez, X. Liu, J. E. Antonio-Lopez, H. Wen, B. Zhu, F. Effenberger, R. Amezcua-Correa, and G. Li, “Demonstration of World’s First Few-Mode GPON”, in Proceedings of 40th European Conference and Exhibition on Optical Communication (ECOC, 2014), paper PD1.5.

T. Hu, J. Li, P. Zhu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Experimental Demonstration of Mode-Division-Multiplexing and Time-Division-Multiplexing Passive Optical Network,” in Proc. of Asia Communications and Photonics’2014, paper AF4B.7 (2014).
[Crossref]

N. K. Fontaine, C. R. Doerr, M. A. Mestre, R. Ryf, P. J. Winzer, L. L. Buhl, Y. Sun, X. Jiang, and R. L. Jr, “Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit,” in Optical Fiber Communication Conference, (Optical Society of America, 2012), paper PDP5B.1.
[Crossref]

S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2011) paper PDPD4.
[Crossref]

S. P. Jung, Y. Takushima, and Y. C. Chung, “Generation of 5-Gbps QPSK signal using directly modulated RSOA for 100-km coherent WDM PON,” in Optical Fiber Communication Conference, (Optical Society of America, 2011), paper OTuB3.
[Crossref]

D. Qian, T. Kwok, N. Cvijetic, J. Hu, and T. Wang, “41.25 Gb/s real time OFDM receiver for variable rate WDM-OFDMA-PON,” in Optical Fiber Communication Conference, (Optical Society of America, 2010), paper PDPD9.
[Crossref]

H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proceedings of 35th European Conference and Exhibition on Optical Communication (ECOC, 2009), paper 10.5.5.

“Gigabit-capable Passive Optical Networks (G-PON),” ITU-T Recommendation G.984 series.

IEEE Standard for Local and Metropolitan Area Networks—Specific Requirements—Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications-Amendment: Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks, IEEE Standard 802.3ah-2004.

10 Gigabit-Capable Passive Optical Network (XG-PON), ITU-T G.987 Series Recommendations.

Physical layer specifications and management parameters for 10 Gb/s passive optical networks, IEEE Std 802.3av-2009, Oct. 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Proposed WDM/SDM optical access network architecture.
Fig. 2
Fig. 2 (a) Refractive index profile of one MCF core; (b) cross section view of fabricated MCF (c) cross section view of fabricated fiber bundles.
Fig. 3
Fig. 3 (a) Side view of etched fiber bundles. (b) Picture of fan-in/fan-out device.
Fig. 4
Fig. 4 The experimental setup schematic diagram (OC: optical coupler, PC: polarization controller, WSS: wavelength selective switch, AWG: arbitrary waveform generator, IM: intensity modulator, VOA: variable optical attenuator, EDFA: erbium doped fiber amplifier, ECL: external cavity laser, DCM: dispersion compensation module).
Fig. 5
Fig. 5 optical spectrum of optical OFDM signals: (a) for ten wavelengths (b) for one channel after de-multiplexing.
Fig. 6
Fig. 6 The BER curve for DS transmission (inset figures: constellation diagrams of received DS signals from core 1 with optical power at −14dBm, −17dBm and −21dBm).
Fig. 7
Fig. 7 (a) The BER curve for DS transmission in core 1 with and without US transmission; (b) The BER curve for US transmission in core 1; (c) The eye diagrams at received optical power of −8dBm and −15dBm.
Fig. 8
Fig. 8 The BER curve for mobile backhaul transmission (inset figures: constellations and eye diagrams at received optical power of −17dBm).

Tables (1)

Tables Icon

Table 1 Insertion loss of fan-in/fan-out device

Metrics