Abstract

Mid-infrared scattering scanning near-field optical microscopy, in combination with far-field infrared spectroscopy, and simulations, was employed to investigate the effect of mutual-element coupling towards the edge of arrays of loop elements acting as frequency selective surfaces (FSSs). Two different square loop arrays on ZnS over a ground plane, resonant at 10.3 µm, were investigated. One array had elements that were closely spaced while the other array had elements with greater inter-element spacing. In addition to the dipolar resonance, we observed a new emergent resonance associated with the edge of the closely-spaced array as a finite size effect, due to the broken translational invariance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Array truncation effects in infrared frequency selective surfaces

Jeffrey D’ Archangel, Eric Tucker, Markus B. Raschke, and Glenn Boreman
Opt. Express 22(13) 16645-16659 (2014)

Near- and far-field investigation of dark and bright higher order resonances in square loop elements at mid-infrared wavelengths

Eric Tucker, Jeffrey D’Archangel, and Glenn Boreman
Opt. Express 25(5) 5594-5608 (2017)

Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces

Jeffrey D’ Archangel, Eric Tucker, Ed Kinzel, Eric A. Muller, Hans A. Bechtel, Michael C. Martin, Markus B. Raschke, and Glenn Boreman
Opt. Express 21(14) 17150-17160 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Rhoads, E. K. Damon, and B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21(15), 2814–2816 (1982).
    [Crossref] [PubMed]
  2. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Metallic subwavelength structures for a broadband infrared absorption control,” Opt. Lett. 32(8), 994–996 (2007).
    [Crossref] [PubMed]
  3. S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
    [Crossref]
  4. D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
    [Crossref]
  5. I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer, and R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies,” J. Vac. Sci. Technol. B 18(6), 3578–3581 (2000).
    [Crossref]
  6. M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
    [Crossref]
  7. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  8. J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design (Research Studies Press, 1997).
  9. R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
    [Crossref]
  10. E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express 20(11), 11986–11993 (2012).
    [Crossref] [PubMed]
  11. I. Puscasu, D. Spencer, and G. D. Boreman, “Refractive-index and element-spacing effects on the spectral behavior of infrared frequency-selective surfaces,” Appl. Opt. 39(10), 1570–1574 (2000).
    [Crossref] [PubMed]
  12. J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express 21(14), 17150–17160 (2013).
    [Crossref] [PubMed]
  13. J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
    [Crossref]
  14. D. Diessel, M. Decker, S. Linden, and M. Wegener, “Near-field optical experiments on low-symmetry split-ring-resonator arrays,” Opt. Lett. 35(21), 3661–3663 (2010).
    [Crossref] [PubMed]
  15. J. D’ Archangel, E. Tucker, M. B. Raschke, and G. Boreman, “Array truncation effects in infrared frequency selective surfaces,” Opt. Express 22(13), 16645–16659 (2014).
    [Crossref] [PubMed]
  16. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
    [Crossref] [PubMed]
  17. T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
    [Crossref]
  18. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
    [Crossref] [PubMed]
  19. P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
    [Crossref] [PubMed]
  20. R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19(22), 22113–22124 (2011).
    [Crossref] [PubMed]
  21. E. Tucker, J. D’Archangel, M. B. Raschke, and G. Boreman, “Near-and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths,” J. Appl. Phys. 116(4), 044903 (2014).
    [Crossref]
  22. B. A. Munk, Finite Antenna Arrays and FSS (John Wiley & Sons, 2003).
  23. T. Cwik and R. Mittra, “The effects of the truncation and curvature of periodic surfaces: a strip grating,” IEEE Trans. Antenn. Propag. 36(5), 612–622 (1988).
    [Crossref]
  24. F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci. 44(2), RS2S91 (2009).
    [Crossref]
  25. W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett. 10, 577–580 (2011).
    [Crossref]
  26. G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antenn. Propag. 59(2), 520–525 (2011).
    [Crossref]
  27. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
  28. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
    [Crossref]
  29. P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas,” Opt. Express 21(1), 1270–1280 (2013).
    [Crossref] [PubMed]
  30. Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
    [Crossref]
  31. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S.- Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23(5), 823–833 (2006).
    [Crossref]
  32. R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
    [Crossref] [PubMed]
  33. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
    [Crossref] [PubMed]
  34. M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
    [Crossref] [PubMed]
  35. D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
    [Crossref]
  36. J. D. Lacasse and J. Laurin, “A method for reflectarray antenna design assisted by near field measurements,” IEEE Trans. Antenn. Propag. 54(6), 1891–1897 (2006).
    [Crossref]
  37. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  38. A. Neto, D. Cavallo, and G. Gerini, “Finiteness effects in wideband connected arrays: Analytical models to highlight the effects of the loading impedances,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP)(IEEE, 2011), pp. 3934–3938.

2014 (3)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

J. D’ Archangel, E. Tucker, M. B. Raschke, and G. Boreman, “Array truncation effects in infrared frequency selective surfaces,” Opt. Express 22(13), 16645–16659 (2014).
[Crossref] [PubMed]

E. Tucker, J. D’Archangel, M. B. Raschke, and G. Boreman, “Near-and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths,” J. Appl. Phys. 116(4), 044903 (2014).
[Crossref]

2013 (2)

2012 (3)

E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, “Phase resolved near-field mode imaging for the design of frequency-selective surfaces,” Opt. Express 20(11), 11986–11993 (2012).
[Crossref] [PubMed]

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

2011 (4)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett. 10, 577–580 (2011).
[Crossref]

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antenn. Propag. 59(2), 520–525 (2011).
[Crossref]

R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19(22), 22113–22124 (2011).
[Crossref] [PubMed]

2010 (2)

D. Diessel, M. Decker, S. Linden, and M. Wegener, “Near-field optical experiments on low-symmetry split-ring-resonator arrays,” Opt. Lett. 35(21), 3661–3663 (2010).
[Crossref] [PubMed]

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

2009 (2)

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci. 44(2), RS2S91 (2009).
[Crossref]

2008 (3)

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

2003 (2)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[Crossref]

2002 (1)

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

2001 (1)

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

2000 (3)

I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer, and R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies,” J. Vac. Sci. Technol. B 18(6), 3578–3581 (2000).
[Crossref]

I. Puscasu, D. Spencer, and G. D. Boreman, “Refractive-index and element-spacing effects on the spectral behavior of infrared frequency-selective surfaces,” Appl. Opt. 39(10), 1570–1574 (2000).
[Crossref] [PubMed]

R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

1999 (1)

D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
[Crossref]

1988 (2)

T. Cwik and R. Mittra, “The effects of the truncation and curvature of periodic surfaces: a strip grating,” IEEE Trans. Antenn. Propag. 36(5), 612–622 (1988).
[Crossref]

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

1985 (1)

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

1982 (1)

Abbott, D.

W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett. 10, 577–580 (2011).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Aizpurua, J.

Albani, M.

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci. 44(2), RS2S91 (2009).
[Crossref]

Albella, P.

Alonso-González, P.

Arzubiaga, L.

Astolfi, D. K.

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Bachelot, R.

Bakker, R.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Bechtel, H. A.

Biener, G.

Blaize, S.

Blanchard, R.

Boltasseva, A.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Boreman, G.

J. D’ Archangel, E. Tucker, M. B. Raschke, and G. Boreman, “Array truncation effects in infrared frequency selective surfaces,” Opt. Express 22(13), 16645–16659 (2014).
[Crossref] [PubMed]

E. Tucker, J. D’Archangel, M. B. Raschke, and G. Boreman, “Near-and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths,” J. Appl. Phys. 116(4), 044903 (2014).
[Crossref]

J. D’ Archangel, E. Tucker, E. Kinzel, E. A. Muller, H. A. Bechtel, M. C. Martin, M. B. Raschke, and G. Boreman, “Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces,” Opt. Express 21(14), 17150–17160 (2013).
[Crossref] [PubMed]

I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer, and R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies,” J. Vac. Sci. Technol. B 18(6), 3578–3581 (2000).
[Crossref]

Boreman, G. D.

Boriskina, S. V.

Bouhelier, A.

Brener, I.

Brouns, A. J.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Byrne, D. M.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19(22), 22113–22124 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Capolino, F.

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci. 44(2), RS2S91 (2009).
[Crossref]

Capozzi, V.

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

Casanova, F.

Case, F. C.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Castro, M. E.

Cavallo, D.

A. Neto, D. Cavallo, and G. Gerini, “Finiteness effects in wideband connected arrays: Analytical models to highlight the effects of the loading impedances,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP)(IEEE, 2011), pp. 3934–3938.

Chan, C. H.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Chang, S.-

Chen, Y.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Cwik, T.

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

T. Cwik and R. Mittra, “The effects of the truncation and curvature of periodic surfaces: a strip grating,” IEEE Trans. Antenn. Propag. 36(5), 612–622 (1988).
[Crossref]

D’ Archangel, J.

D’Antonio, P.

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

D’Archangel, J.

E. Tucker, J. D’Archangel, M. B. Raschke, and G. Boreman, “Near-and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths,” J. Appl. Phys. 116(4), 044903 (2014).
[Crossref]

D’Orazio, A.

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

Dal Negro, L.

Damon, E. K.

De Vittorio, M.

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

Decker, M.

Diessel, D.

Dmitriev, A.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Doran, S. P.

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

Dorfmüller, J.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Drachev, V. P.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Esselle, K. P.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antenn. Propag. 59(2), 520–525 (2011).
[Crossref]

Esslinger, M.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

Esteban, R.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Fumeaux, C.

W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett. 10, 577–580 (2011).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19(22), 22113–22124 (2011).
[Crossref] [PubMed]

Gerini, G.

A. Neto, D. Cavallo, and G. Gerini, “Finiteness effects in wideband connected arrays: Analytical models to highlight the effects of the loading impedances,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP)(IEEE, 2011), pp. 3934–3938.

Giessen, H.

Ginn, J. C.

Golmar, F.

Gomez, L.

Grande, M.

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

Gray, S. K.

Hasman, E.

Hillenbrand, R.

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Hua, F.

Huang, F. M.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Hueso, L. E.

Inchingolo, A. V.

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

Jeon, S.

Kao, T. S.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Karlsson, A.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antenn. Propag. 59(2), 520–525 (2011).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19(22), 22113–22124 (2011).
[Crossref] [PubMed]

Keilmann, F.

R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

Kern, K.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Khunsin, W.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

Kiani, G. I.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antenn. Propag. 59(2), 520–525 (2011).
[Crossref]

Kildishev, A. V.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Kinzel, E.

Kinzel, E. C.

Kleiner, V.

Krchnavek, R. R.

I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer, and R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies,” J. Vac. Sci. Technol. B 18(6), 3578–3581 (2000).
[Crossref]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Lacasse, J. D.

J. D. Lacasse and J. Laurin, “A method for reflectarray antenna design assisted by near field measurements,” IEEE Trans. Antenn. Propag. 54(6), 1891–1897 (2006).
[Crossref]

Lail, B. A.

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Laurin, J.

J. D. Lacasse and J. Laurin, “A method for reflectarray antenna design assisted by near field measurements,” IEEE Trans. Antenn. Propag. 54(6), 1891–1897 (2006).
[Crossref]

Lederer, F.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Lerondel, G.

Linden, S.

Liu, Z.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Lyszczarz, T. M.

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

Magno, G.

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

Marhefka, R. J.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[Crossref]

Martin, M. C.

Mittra, R.

T. Cwik and R. Mittra, “The effects of the truncation and curvature of periodic surfaces: a strip grating,” IEEE Trans. Antenn. Propag. 36(5), 612–622 (1988).
[Crossref]

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Muller, E. A.

Munk, B. A.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[Crossref]

C. M. Rhoads, E. K. Damon, and B. A. Munk, “Mid-infrared filters using conducting elements,” Appl. Opt. 21(15), 2814–2816 (1982).
[Crossref] [PubMed]

Neto, A.

A. Neto, D. Cavallo, and G. Gerini, “Finiteness effects in wideband connected arrays: Analytical models to highlight the effects of the loading impedances,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP)(IEEE, 2011), pp. 3934–3938.

Nilsson, M.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antenn. Propag. 59(2), 520–525 (2011).
[Crossref]

Niv, A.

Olmon, R. L.

Olsson, L. G.

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antenn. Propag. 59(2), 520–525 (2011).
[Crossref]

Paul, K. E.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

Pedersen, R. H.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Perna, G.

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

Pertsch, T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

Petruzzelli, V.

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

Pokuls, R.

D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
[Crossref]

Pozar, D. M.

D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
[Crossref]

Pryor, J. B.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[Crossref]

Puscasu, I.

I. Puscasu, D. Spencer, and G. D. Boreman, “Refractive-index and element-spacing effects on the spectral behavior of infrared frequency-selective surfaces,” Appl. Opt. 39(10), 1570–1574 (2000).
[Crossref] [PubMed]

I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer, and R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies,” J. Vac. Sci. Technol. B 18(6), 3578–3581 (2000).
[Crossref]

Raschke, M. B.

Raynolds, J. E.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[Crossref]

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Rhoads, C. M.

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Rogers, E. T. F.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Rogers, J. A.

Royer, P.

Scully, M. O.

Shalaev, V. M.

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Shelton, D. J.

Sinclair, M. B.

Spector, S. J.

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

Spencer, D.

I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer, and R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies,” J. Vac. Sci. Technol. B 18(6), 3578–3581 (2000).
[Crossref]

I. Puscasu, D. Spencer, and G. D. Boreman, “Refractive-index and element-spacing effects on the spectral behavior of infrared frequency-selective surfaces,” Appl. Opt. 39(10), 1570–1574 (2000).
[Crossref] [PubMed]

Stefanon, I.

Stomeo, T.

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

Targonski, S. D.

D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
[Crossref]

Tetienne, J.-P.

R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19(22), 22113–22124 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tiberio, R. C.

I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer, and R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies,” J. Vac. Sci. Technol. B 18(6), 3578–3581 (2000).
[Crossref]

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Tucker, E.

Vogelgesang, R.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Wegener, M.

Weitz, R. T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

Whitehead, B. L.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Whitesides, G. M.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

Wiederrecht, G. P.

Withayachumnankul, W.

W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett. 10, 577–580 (2011).
[Crossref]

Wolf, E. D.

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

Wu, M.-H.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

Yang, J.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

R. Blanchard, S. V. Boriskina, P. Genevet, M. A. Kats, J.-P. Tetienne, N. Yu, M. O. Scully, L. Dal Negro, and F. Capasso, “Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point,” Opt. Express 19(22), 22113–22124 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zentgraf, T.

Zheludev, N. I.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[Crossref]

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

W. Withayachumnankul, C. Fumeaux, and D. Abbott, “Planar array of electric-resonators with broadband tunability,” IEEE Antennas Wirel. Propag. Lett. 10, 577–580 (2011).
[Crossref]

IEEE Trans. Antenn. Propag. (4)

G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, “Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,” IEEE Trans. Antenn. Propag. 59(2), 520–525 (2011).
[Crossref]

T. Cwik and R. Mittra, “The effects of the truncation and curvature of periodic surfaces: a strip grating,” IEEE Trans. Antenn. Propag. 36(5), 612–622 (1988).
[Crossref]

D. M. Pozar, S. D. Targonski, and R. Pokuls, “A shaped-beam microstrip patch reflectarray,” IEEE Trans. Antenn. Propag. 47(7), 1167–1173 (1999).
[Crossref]

J. D. Lacasse and J. Laurin, “A method for reflectarray antenna design assisted by near field measurements,” IEEE Trans. Antenn. Propag. 54(6), 1891–1897 (2006).
[Crossref]

J. Appl. Phys. (2)

E. Tucker, J. D’Archangel, M. B. Raschke, and G. Boreman, “Near-and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths,” J. Appl. Phys. 116(4), 044903 (2014).
[Crossref]

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (3)

S. J. Spector, D. K. Astolfi, S. P. Doran, T. M. Lyszczarz, and J. E. Raynolds, “Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks,” J. Vac. Sci. Technol. B 19(6), 2757–2760 (2001).
[Crossref]

D. M. Byrne, A. J. Brouns, F. C. Case, R. C. Tiberio, B. L. Whitehead, and E. D. Wolf, “Infrared mesh filters fabricated by electron‐beam lithography,” J. Vac. Sci. Technol. B 3(1), 268–271 (1985).
[Crossref]

I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer, and R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies,” J. Vac. Sci. Technol. B 18(6), 3578–3581 (2000).
[Crossref]

Metamaterials (Amst.) (1)

Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
[Crossref]

Nano Lett. (2)

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures,” Nano Lett. 9(6), 2372–2377 (2009).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Nanotechnology (1)

P. D’Antonio, A. V. Inchingolo, G. Perna, V. Capozzi, T. Stomeo, M. De Vittorio, G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate,” Nanotechnology 23(45), 455709 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

Proc. IEEE (1)

R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE 76(12), 1593–1615 (1988).
[Crossref]

Radio Sci. (1)

F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener-Hopf formulation,” Radio Sci. 44(2), RS2S91 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (4)

A. Neto, D. Cavallo, and G. Gerini, “Finiteness effects in wideband connected arrays: Analytical models to highlight the effects of the loading impedances,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP)(IEEE, 2011), pp. 3934–3938.

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).

J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design (Research Studies Press, 1997).

B. A. Munk, Finite Antenna Arrays and FSS (John Wiley & Sons, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SEM micrographs of (a) the smaller, closely-spaced loops on ZnS, and (b) the larger, more widely spaced loops on ZnS.

Fig. 2
Fig. 2

Schematic of the s-SNOM setup operating at a wavelength of 10.25 µm and based on a tapping mode AFM. The incident radiation is directed from a CO2 laser off a beam splitter (BS) towards an off-axis parabolic (OAP) reflector, focusing the beam onto the sample. The AFM tip, tapping with an oscillation frequency of Ω, scatters the near-field signal which is collected by the same set of optics used for excitation. Part of the incident beam transmits through the BS into a reference path where a quarter wave plate (QWP) rotates the polarization and a moveable mirror reflects the beam back to the BS. At the BS the reference beam is recombined with the scattered radiation from the sample where it is then focused onto a MCT detector using another OAP. This configuration allows for interferometric measurement of both amplitude and phase of the near-field.

Fig. 3
Fig. 3

Simulated (a) absorptance versus edge length for loops of 1.79 µm (blue dashed line) and 10 µm (black dotted line) periodicity when the structures were illuminated with a 10.25 μm wavelength incident wave 60° off normal to the surface plane. Simulated (b) resonant edge length versus periodicity (blue dash-dot line) when the structures were illuminated under the same conditions as in (a). There is a shift in the resonant size to large loop sizes as the periodicity is increased until about 2.5 µm periodicity and the plot suggests that at near 10 µm periodicity there is minimal effect of periodicity on the resonance.

Fig. 4
Fig. 4

Measured spectral absorptivity and simulated power loss towards the edge of the array of closely-spaced loop elements on ZnS. The experimental results were obtained by FT-IR and the simulated results were obtained by integrating the volume loss density over the same spectral range. The experimental and simulated data were both obtained at normal incidence. The inset shows a graph of experimental and simulated peak wavelength as a function of position towards the edge of the array, which was derived from the experimental and simulated spectra.

Fig. 5
Fig. 5

Measured (a, b) and simulated (c, d) near-field images near the edge of the array composed of the closely-spaced loop elements on ZnS. Specifically, this array had a periodicity of 1.79 µm. In these images the elements at the edge of the array are on the right side of the images as indicated by the arrows. In the measured amplitude images the values for the z-axis, represented by the color bar, are proportional to Ez.

Fig. 6
Fig. 6

Graphs of (a) simulated (red circular points) and experimental (black square points) near-field amplitude versus element number and (b) simulated (red circular points) and experimental (black square points) near-field phase versus element number for the closely-spaced loop elements on ZnS where element “1” is the element at the edge of the array as indicated by the arrows. The above values were determined by line scan analysis that was performed across a row of elements in the images in Fig. 5. The average value for each quantity was calculated over each element to yield the above values. The red lines are present as a guide to the eye and are the result of a moving average applied to the points.

Fig. 7
Fig. 7

Simulated spatially absorbed power for the 5th through 9th columns of loops from the edge of the closely-spaced array of loops on ZnS when illuminated at 60° off-normal. The 5th column of loops is closer to the edge of the array.

Fig. 8
Fig. 8

Plot of the location of the resonant wavelength for the two resonances observed in Fig. 7 vs element number. These results are derived from simulations of the spatial absorptivity of the closely-spaced array of loops on ZnS when illuminated at 60° off-normal. The red lines are present as a guide to the eye and are the result of a moving average applied to the points.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S d I= | E scat + E ref | 2 + I b = | E scat | 2 + | E ref | 2 +2| E scat × E ref |cosϕ+ I b

Metrics