Abstract

A waveguide-mode sensor of the spectral-readout type can be used to detect changes in the complex refractive index in the vicinity of the surface of a sensing plate by observing the change in the spectrum of light reflected on the surface. The sensor’s configuration can be simplified by adopting a parallel-incidence-type optical setup. To obtain a high sensitivity, the optimization of the sensing-plate structure, incidence angle, and detection wavelength band is essential for the sensor. In the present report, the results predicted by simulations are compared with experimental results in order to evaluate their validity. A discussion of the optimal design for the parallel-incidence-type sensor is also presented, according to the results obtained.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silica-based monolithic sensing plates for waveguide-mode sensors

Makoto Fujimaki, Carsten Rockstuhl, Xiaomin Wang, Koichi Awazu, Junji Tominaga, Yuuki Koganezawa, Yoshimichi Ohki, and Tetsuro Komatsubara
Opt. Express 16(9) 6408-6416 (2008)

Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout

Yah Leng Lim, Milan Nikolic, Karl Bertling, Russell Kliese, and Aleksandar D. Rakić
Opt. Express 17(7) 5517-5525 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. Karlsson, A. Michaelsson, and L. Mattsson, “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system,” J. Immunol. Methods 145(1-2), 229–240 (1991).
    [Crossref] [PubMed]
  2. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [Crossref]
  3. W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” MRS Bull. 16(7), 29–39 (1991).
    [Crossref]
  4. A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
    [Crossref] [PubMed]
  5. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005).
    [Crossref] [PubMed]
  6. M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19(9), 095503 (2008).
    [Crossref] [PubMed]
  7. M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16(9), 6408–6416 (2008).
    [Crossref] [PubMed]
  8. R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7–8), 347–354 (1993).
    [Crossref]
  9. P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards, D. Pollard-Knight, and C. R. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions Part II: applications,” Biosens. Bioelectron. 8(7–8), 355–363 (1993).
    [Crossref]
  10. H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel) 10(11), 9630–9646 (2010).
    [Crossref] [PubMed]
  11. M. Tanaka, K. Yoshioka, Y. Hirata, M. Fujimaki, M. Kuwahara, and O. Niwa, “Design and fabrication of biosensing interface for waveguide-mode sensor,” Langmuir 29(42), 13111–13120 (2013).
    [Crossref] [PubMed]
  12. G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
    [Crossref]
  13. M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
    [Crossref] [PubMed]
  14. M. Fujimaki, K. Nomura, K. Sato, T. Kato, S. C. B. Gopinath, X. Wang, K. Awazu, and Y. Ohki, “Detection of colored nanomaterials using evanescent field-based waveguide sensors,” Opt. Express 18(15), 15732–15740 (2010).
    [Crossref] [PubMed]
  15. K. Sato, Y. Ohki, K. Nomura, M. Fujimaki, and K. Awazu, “Shape-sensitive reflectance by nanostructured metal attached on an optical waveguide-mode sensor,” Nanotechnology 22(24), 245503 (2011).
    [Crossref] [PubMed]
  16. S. C. B. Gopinath, K. Awazu, M. Fujimaki, K. Shimizu, and T. Shima, “Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors,” PLoS ONE 8(7), e69121 (2013).
    [Crossref] [PubMed]
  17. E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
    [Crossref]
  18. I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B Chem. 54(1–2), 98–105 (1999).
    [Crossref]
  19. O. R. Bolduc, L. S. Live, and J. F. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77(5), 1680–1687 (2009).
    [Crossref] [PubMed]
  20. X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
    [Crossref] [PubMed]
  21. D. J. Gentleman, L. A. Obando, J. Masson, J. R. Holloway, and K. S. Booksh, “Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems,” Anal. Chim. Acta 515(2), 291–302 (2004).
    [Crossref]
  22. S. C. B. Gopinath, K. Awazu, and M. Fujimaki, “Waveguide-mode sensors as aptasensors,” Sensors (Basel) 12(12), 2136–2151 (2012).
    [Crossref] [PubMed]
  23. T. Lakshmipriya, M. Fujimaki, S. C. B. Gopinath, K. Awazu, Y. Horiguchi, and Y. Nagasaki, “A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity,” Analyst (Lond.) 138(10), 2863–2870 (2013).
    [Crossref] [PubMed]
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon Ltd., 1986). (Reprinted, with corrections).
  25. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  26. G. E. Jellison., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1(1), 41–47 (1992).
    [Crossref]
  27. S. Busse, V. Scheumann, B. Menges, and S. Mittler, “Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods,” Biosens. Bioelectron. 17(8), 704–710 (2002).
    [Crossref] [PubMed]

2013 (3)

M. Tanaka, K. Yoshioka, Y. Hirata, M. Fujimaki, M. Kuwahara, and O. Niwa, “Design and fabrication of biosensing interface for waveguide-mode sensor,” Langmuir 29(42), 13111–13120 (2013).
[Crossref] [PubMed]

S. C. B. Gopinath, K. Awazu, M. Fujimaki, K. Shimizu, and T. Shima, “Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors,” PLoS ONE 8(7), e69121 (2013).
[Crossref] [PubMed]

T. Lakshmipriya, M. Fujimaki, S. C. B. Gopinath, K. Awazu, Y. Horiguchi, and Y. Nagasaki, “A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity,” Analyst (Lond.) 138(10), 2863–2870 (2013).
[Crossref] [PubMed]

2012 (1)

S. C. B. Gopinath, K. Awazu, and M. Fujimaki, “Waveguide-mode sensors as aptasensors,” Sensors (Basel) 12(12), 2136–2151 (2012).
[Crossref] [PubMed]

2011 (2)

K. Sato, Y. Ohki, K. Nomura, M. Fujimaki, and K. Awazu, “Shape-sensitive reflectance by nanostructured metal attached on an optical waveguide-mode sensor,” Nanotechnology 22(24), 245503 (2011).
[Crossref] [PubMed]

X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
[Crossref] [PubMed]

2010 (2)

M. Fujimaki, K. Nomura, K. Sato, T. Kato, S. C. B. Gopinath, X. Wang, K. Awazu, and Y. Ohki, “Detection of colored nanomaterials using evanescent field-based waveguide sensors,” Opt. Express 18(15), 15732–15740 (2010).
[Crossref] [PubMed]

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel) 10(11), 9630–9646 (2010).
[Crossref] [PubMed]

2009 (1)

O. R. Bolduc, L. S. Live, and J. F. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77(5), 1680–1687 (2009).
[Crossref] [PubMed]

2008 (3)

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16(9), 6408–6416 (2008).
[Crossref] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19(9), 095503 (2008).
[Crossref] [PubMed]

2005 (1)

2004 (1)

D. J. Gentleman, L. A. Obando, J. Masson, J. R. Holloway, and K. S. Booksh, “Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems,” Anal. Chim. Acta 515(2), 291–302 (2004).
[Crossref]

2002 (1)

S. Busse, V. Scheumann, B. Menges, and S. Mittler, “Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods,” Biosens. Bioelectron. 17(8), 704–710 (2002).
[Crossref] [PubMed]

1999 (2)

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B Chem. 54(1–2), 98–105 (1999).
[Crossref]

M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
[Crossref] [PubMed]

1993 (3)

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7–8), 347–354 (1993).
[Crossref]

P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards, D. Pollard-Knight, and C. R. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions Part II: applications,” Biosens. Bioelectron. 8(7–8), 355–363 (1993).
[Crossref]

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

1992 (1)

G. E. Jellison., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1(1), 41–47 (1992).
[Crossref]

1991 (2)

W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” MRS Bull. 16(7), 29–39 (1991).
[Crossref]

R. Karlsson, A. Michaelsson, and L. Mattsson, “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system,” J. Immunol. Methods 145(1-2), 229–240 (1991).
[Crossref] [PubMed]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

1971 (1)

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

Awazu, K.

S. C. B. Gopinath, K. Awazu, M. Fujimaki, K. Shimizu, and T. Shima, “Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors,” PLoS ONE 8(7), e69121 (2013).
[Crossref] [PubMed]

T. Lakshmipriya, M. Fujimaki, S. C. B. Gopinath, K. Awazu, Y. Horiguchi, and Y. Nagasaki, “A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity,” Analyst (Lond.) 138(10), 2863–2870 (2013).
[Crossref] [PubMed]

S. C. B. Gopinath, K. Awazu, and M. Fujimaki, “Waveguide-mode sensors as aptasensors,” Sensors (Basel) 12(12), 2136–2151 (2012).
[Crossref] [PubMed]

X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
[Crossref] [PubMed]

K. Sato, Y. Ohki, K. Nomura, M. Fujimaki, and K. Awazu, “Shape-sensitive reflectance by nanostructured metal attached on an optical waveguide-mode sensor,” Nanotechnology 22(24), 245503 (2011).
[Crossref] [PubMed]

M. Fujimaki, K. Nomura, K. Sato, T. Kato, S. C. B. Gopinath, X. Wang, K. Awazu, and Y. Ohki, “Detection of colored nanomaterials using evanescent field-based waveguide sensors,” Opt. Express 18(15), 15732–15740 (2010).
[Crossref] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16(9), 6408–6416 (2008).
[Crossref] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19(9), 095503 (2008).
[Crossref] [PubMed]

Bayer, E.

M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
[Crossref] [PubMed]

Bolduc, O. R.

O. R. Bolduc, L. S. Live, and J. F. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77(5), 1680–1687 (2009).
[Crossref] [PubMed]

Booksh, K. S.

D. J. Gentleman, L. A. Obando, J. Masson, J. R. Holloway, and K. S. Booksh, “Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems,” Anal. Chim. Acta 515(2), 291–302 (2004).
[Crossref]

Brecht, A.

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B Chem. 54(1–2), 98–105 (1999).
[Crossref]

M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
[Crossref] [PubMed]

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

Buckle, P. E.

P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards, D. Pollard-Knight, and C. R. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions Part II: applications,” Biosens. Bioelectron. 8(7–8), 355–363 (1993).
[Crossref]

Busse, S.

S. Busse, V. Scheumann, B. Menges, and S. Mittler, “Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods,” Biosens. Bioelectron. 17(8), 704–710 (2002).
[Crossref] [PubMed]

Charissé, K.

M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
[Crossref] [PubMed]

Chen, W.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Chu, S. T.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Clarke, J.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Cronin, J. M.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7–8), 347–354 (1993).
[Crossref]

Cush, R.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7–8), 347–354 (1993).
[Crossref]

Daghestani, H. N.

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel) 10(11), 9630–9646 (2010).
[Crossref] [PubMed]

Davies, R. J.

P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards, D. Pollard-Knight, and C. R. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions Part II: applications,” Biosens. Bioelectron. 8(7–8), 355–363 (1993).
[Crossref]

Day, B. W.

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel) 10(11), 9630–9646 (2010).
[Crossref] [PubMed]

Edwards, P. R.

P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards, D. Pollard-Knight, and C. R. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions Part II: applications,” Biosens. Bioelectron. 8(7–8), 355–363 (1993).
[Crossref]

Flood, E. M.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Fujimaki, M.

M. Tanaka, K. Yoshioka, Y. Hirata, M. Fujimaki, M. Kuwahara, and O. Niwa, “Design and fabrication of biosensing interface for waveguide-mode sensor,” Langmuir 29(42), 13111–13120 (2013).
[Crossref] [PubMed]

S. C. B. Gopinath, K. Awazu, M. Fujimaki, K. Shimizu, and T. Shima, “Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors,” PLoS ONE 8(7), e69121 (2013).
[Crossref] [PubMed]

T. Lakshmipriya, M. Fujimaki, S. C. B. Gopinath, K. Awazu, Y. Horiguchi, and Y. Nagasaki, “A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity,” Analyst (Lond.) 138(10), 2863–2870 (2013).
[Crossref] [PubMed]

S. C. B. Gopinath, K. Awazu, and M. Fujimaki, “Waveguide-mode sensors as aptasensors,” Sensors (Basel) 12(12), 2136–2151 (2012).
[Crossref] [PubMed]

X. Wang, M. Fujimaki, T. Kato, K. Nomura, K. Awazu, and Y. Ohki, “Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure,” Opt. Express 19(21), 20205–20213 (2011).
[Crossref] [PubMed]

K. Sato, Y. Ohki, K. Nomura, M. Fujimaki, and K. Awazu, “Shape-sensitive reflectance by nanostructured metal attached on an optical waveguide-mode sensor,” Nanotechnology 22(24), 245503 (2011).
[Crossref] [PubMed]

M. Fujimaki, K. Nomura, K. Sato, T. Kato, S. C. B. Gopinath, X. Wang, K. Awazu, and Y. Ohki, “Detection of colored nanomaterials using evanescent field-based waveguide sensors,” Opt. Express 18(15), 15732–15740 (2010).
[Crossref] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16(9), 6408–6416 (2008).
[Crossref] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19(9), 095503 (2008).
[Crossref] [PubMed]

Fukuda, N.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19(9), 095503 (2008).
[Crossref] [PubMed]

Gauglitz, G.

M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
[Crossref] [PubMed]

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B Chem. 54(1–2), 98–105 (1999).
[Crossref]

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

Gentleman, D. J.

D. J. Gentleman, L. A. Obando, J. Masson, J. R. Holloway, and K. S. Booksh, “Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems,” Anal. Chim. Acta 515(2), 291–302 (2004).
[Crossref]

Gerster, M.

M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
[Crossref] [PubMed]

Gill, D.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Goad, D.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Goddard, N. J.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7–8), 347–354 (1993).
[Crossref]

Gopinath, S. C. B.

S. C. B. Gopinath, K. Awazu, M. Fujimaki, K. Shimizu, and T. Shima, “Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors,” PLoS ONE 8(7), e69121 (2013).
[Crossref] [PubMed]

T. Lakshmipriya, M. Fujimaki, S. C. B. Gopinath, K. Awazu, Y. Horiguchi, and Y. Nagasaki, “A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity,” Analyst (Lond.) 138(10), 2863–2870 (2013).
[Crossref] [PubMed]

S. C. B. Gopinath, K. Awazu, and M. Fujimaki, “Waveguide-mode sensors as aptasensors,” Sensors (Basel) 12(12), 2136–2151 (2012).
[Crossref] [PubMed]

M. Fujimaki, K. Nomura, K. Sato, T. Kato, S. C. B. Gopinath, X. Wang, K. Awazu, and Y. Ohki, “Detection of colored nanomaterials using evanescent field-based waveguide sensors,” Opt. Express 18(15), 15732–15740 (2010).
[Crossref] [PubMed]

Hirata, Y.

M. Tanaka, K. Yoshioka, Y. Hirata, M. Fujimaki, M. Kuwahara, and O. Niwa, “Design and fabrication of biosensing interface for waveguide-mode sensor,” Langmuir 29(42), 13111–13120 (2013).
[Crossref] [PubMed]

Holloway, J. R.

D. J. Gentleman, L. A. Obando, J. Masson, J. R. Holloway, and K. S. Booksh, “Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems,” Anal. Chim. Acta 515(2), 291–302 (2004).
[Crossref]

Horiguchi, Y.

T. Lakshmipriya, M. Fujimaki, S. C. B. Gopinath, K. Awazu, Y. Horiguchi, and Y. Nagasaki, “A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity,” Analyst (Lond.) 138(10), 2863–2870 (2013).
[Crossref] [PubMed]

Hryniewicz, J. V.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Ja, S. J.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Jellison, G. E.

G. E. Jellison., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1(1), 41–47 (1992).
[Crossref]

Karlsson, R.

R. Karlsson, A. Michaelsson, and L. Mattsson, “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system,” J. Immunol. Methods 145(1-2), 229–240 (1991).
[Crossref] [PubMed]

Kato, T.

King, O.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Kinning, T.

P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards, D. Pollard-Knight, and C. R. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions Part II: applications,” Biosens. Bioelectron. 8(7–8), 355–363 (1993).
[Crossref]

Knobbe, E.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Knoll, W.

W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” MRS Bull. 16(7), 29–39 (1991).
[Crossref]

Koganezawa, Y.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19(9), 095503 (2008).
[Crossref] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16(9), 6408–6416 (2008).
[Crossref] [PubMed]

Komatsubara, T.

Kraus, G.

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

Kretschmann, E.

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

Ksendzov, A.

Kuwahara, M.

M. Tanaka, K. Yoshioka, Y. Hirata, M. Fujimaki, M. Kuwahara, and O. Niwa, “Design and fabrication of biosensing interface for waveguide-mode sensor,” Langmuir 29(42), 13111–13120 (2013).
[Crossref] [PubMed]

Lakshmipriya, T.

T. Lakshmipriya, M. Fujimaki, S. C. B. Gopinath, K. Awazu, Y. Horiguchi, and Y. Nagasaki, “A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity,” Analyst (Lond.) 138(10), 2863–2870 (2013).
[Crossref] [PubMed]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Lin, Y.

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Little, B. E.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Live, L. S.

O. R. Bolduc, L. S. Live, and J. F. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77(5), 1680–1687 (2009).
[Crossref] [PubMed]

Lowe, C. R.

P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards, D. Pollard-Knight, and C. R. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions Part II: applications,” Biosens. Bioelectron. 8(7–8), 355–363 (1993).
[Crossref]

Mahm, W.

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

Maier, M.

M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
[Crossref] [PubMed]

Masson, J.

D. J. Gentleman, L. A. Obando, J. Masson, J. R. Holloway, and K. S. Booksh, “Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems,” Anal. Chim. Acta 515(2), 291–302 (2004).
[Crossref]

Masson, J. F.

O. R. Bolduc, L. S. Live, and J. F. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77(5), 1680–1687 (2009).
[Crossref] [PubMed]

Mattsson, L.

R. Karlsson, A. Michaelsson, and L. Mattsson, “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system,” J. Immunol. Methods 145(1-2), 229–240 (1991).
[Crossref] [PubMed]

Maule, C. H.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7–8), 347–354 (1993).
[Crossref]

Menges, B.

S. Busse, V. Scheumann, B. Menges, and S. Mittler, “Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods,” Biosens. Bioelectron. 17(8), 704–710 (2002).
[Crossref] [PubMed]

Michaelsson, A.

R. Karlsson, A. Michaelsson, and L. Mattsson, “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system,” J. Immunol. Methods 145(1-2), 229–240 (1991).
[Crossref] [PubMed]

Mittler, S.

S. Busse, V. Scheumann, B. Menges, and S. Mittler, “Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods,” Biosens. Bioelectron. 17(8), 704–710 (2002).
[Crossref] [PubMed]

Molloy, J.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7–8), 347–354 (1993).
[Crossref]

Nagasaki, Y.

T. Lakshmipriya, M. Fujimaki, S. C. B. Gopinath, K. Awazu, Y. Horiguchi, and Y. Nagasaki, “A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity,” Analyst (Lond.) 138(10), 2863–2870 (2013).
[Crossref] [PubMed]

Niwa, O.

M. Tanaka, K. Yoshioka, Y. Hirata, M. Fujimaki, M. Kuwahara, and O. Niwa, “Design and fabrication of biosensing interface for waveguide-mode sensor,” Langmuir 29(42), 13111–13120 (2013).
[Crossref] [PubMed]

Nomura, K.

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Obando, L. A.

D. J. Gentleman, L. A. Obando, J. Masson, J. R. Holloway, and K. S. Booksh, “Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems,” Anal. Chim. Acta 515(2), 291–302 (2004).
[Crossref]

Ohki, Y.

Pollard-Knight, D.

P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards, D. Pollard-Knight, and C. R. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions Part II: applications,” Biosens. Bioelectron. 8(7–8), 355–363 (1993).
[Crossref]

Ramachandran, A.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Rockstuhl, C.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19(9), 095503 (2008).
[Crossref] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16(9), 6408–6416 (2008).
[Crossref] [PubMed]

Sato, K.

K. Sato, Y. Ohki, K. Nomura, M. Fujimaki, and K. Awazu, “Shape-sensitive reflectance by nanostructured metal attached on an optical waveguide-mode sensor,” Nanotechnology 22(24), 245503 (2011).
[Crossref] [PubMed]

M. Fujimaki, K. Nomura, K. Sato, T. Kato, S. C. B. Gopinath, X. Wang, K. Awazu, and Y. Ohki, “Detection of colored nanomaterials using evanescent field-based waveguide sensors,” Opt. Express 18(15), 15732–15740 (2010).
[Crossref] [PubMed]

Sauer, M.

M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
[Crossref] [PubMed]

Scheumann, V.

S. Busse, V. Scheumann, B. Menges, and S. Mittler, “Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods,” Biosens. Bioelectron. 17(8), 704–710 (2002).
[Crossref] [PubMed]

Shima, T.

S. C. B. Gopinath, K. Awazu, M. Fujimaki, K. Shimizu, and T. Shima, “Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors,” PLoS ONE 8(7), e69121 (2013).
[Crossref] [PubMed]

Shimizu, K.

S. C. B. Gopinath, K. Awazu, M. Fujimaki, K. Shimizu, and T. Shima, “Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors,” PLoS ONE 8(7), e69121 (2013).
[Crossref] [PubMed]

Stemmler, I.

M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
[Crossref] [PubMed]

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B Chem. 54(1–2), 98–105 (1999).
[Crossref]

Stewart, W. J.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7–8), 347–354 (1993).
[Crossref]

Tanaka, M.

M. Tanaka, K. Yoshioka, Y. Hirata, M. Fujimaki, M. Kuwahara, and O. Niwa, “Design and fabrication of biosensing interface for waveguide-mode sensor,” Langmuir 29(42), 13111–13120 (2013).
[Crossref] [PubMed]

Tominaga, J.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19(9), 095503 (2008).
[Crossref] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16(9), 6408–6416 (2008).
[Crossref] [PubMed]

Wald, L.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Wang, S.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Wang, X.

Yeung, D.

P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards, D. Pollard-Knight, and C. R. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions Part II: applications,” Biosens. Bioelectron. 8(7–8), 355–363 (1993).
[Crossref]

Yoshioka, K.

M. Tanaka, K. Yoshioka, Y. Hirata, M. Fujimaki, M. Kuwahara, and O. Niwa, “Design and fabrication of biosensing interface for waveguide-mode sensor,” Langmuir 29(42), 13111–13120 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

M. Sauer, A. Brecht, K. Charissé, M. Maier, M. Gerster, I. Stemmler, G. Gauglitz, and E. Bayer, “Interaction of chemically modified antisense oligonucleotides with sense DNA: A label-free interaction study with reflectometric interference spectroscopy,” Anal. Chem. 71(14), 2850–2857 (1999).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

D. J. Gentleman, L. A. Obando, J. Masson, J. R. Holloway, and K. S. Booksh, “Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems,” Anal. Chim. Acta 515(2), 291–302 (2004).
[Crossref]

Analyst (Lond.) (1)

T. Lakshmipriya, M. Fujimaki, S. C. B. Gopinath, K. Awazu, Y. Horiguchi, and Y. Nagasaki, “A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity,” Analyst (Lond.) 138(10), 2863–2870 (2013).
[Crossref] [PubMed]

Biosens. Bioelectron. (4)

S. Busse, V. Scheumann, B. Menges, and S. Mittler, “Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods,” Biosens. Bioelectron. 17(8), 704–710 (2002).
[Crossref] [PubMed]

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7–8), 347–354 (1993).
[Crossref]

P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards, D. Pollard-Knight, and C. R. Lowe, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions Part II: applications,” Biosens. Bioelectron. 8(7–8), 355–363 (1993).
[Crossref]

J. Immunol. Methods (1)

R. Karlsson, A. Michaelsson, and L. Mattsson, “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system,” J. Immunol. Methods 145(1-2), 229–240 (1991).
[Crossref] [PubMed]

Langmuir (1)

M. Tanaka, K. Yoshioka, Y. Hirata, M. Fujimaki, M. Kuwahara, and O. Niwa, “Design and fabrication of biosensing interface for waveguide-mode sensor,” Langmuir 29(42), 13111–13120 (2013).
[Crossref] [PubMed]

MRS Bull. (1)

W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” MRS Bull. 16(7), 29–39 (1991).
[Crossref]

Nanotechnology (2)

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19(9), 095503 (2008).
[Crossref] [PubMed]

K. Sato, Y. Ohki, K. Nomura, M. Fujimaki, and K. Awazu, “Shape-sensitive reflectance by nanostructured metal attached on an optical waveguide-mode sensor,” Nanotechnology 22(24), 245503 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

G. E. Jellison., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1(1), 41–47 (1992).
[Crossref]

PLoS ONE (1)

S. C. B. Gopinath, K. Awazu, M. Fujimaki, K. Shimizu, and T. Shima, “Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors,” PLoS ONE 8(7), e69121 (2013).
[Crossref] [PubMed]

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Sens. Actuators B Chem. (2)

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[Crossref]

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B Chem. 54(1–2), 98–105 (1999).
[Crossref]

Sensors (Basel) (2)

S. C. B. Gopinath, K. Awazu, and M. Fujimaki, “Waveguide-mode sensors as aptasensors,” Sensors (Basel) 12(12), 2136–2151 (2012).
[Crossref] [PubMed]

H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel) 10(11), 9630–9646 (2010).
[Crossref] [PubMed]

Talanta (1)

O. R. Bolduc, L. S. Live, and J. F. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77(5), 1680–1687 (2009).
[Crossref] [PubMed]

Z. Phys. (1)

E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon Ltd., 1986). (Reprinted, with corrections).

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the optical system of the parallel-incident-type waveguide-mode sensor.
Fig. 2
Fig. 2 Schematic of the optical system model used for the simulation.
Fig. 3
Fig. 3 (a) Reflection spectra obtained from a calculation performed by setting tSi, tSiO2, and θ to 220 nm, 430 nm, and 70°, respectively. The black line represents the spectrum without a protein layer. The red line represents the spectrum for the case where a protein layer with a refraction index of 1.45, extinction coefficient of 0, and thickness of 5 nm, was adsorbed on the surface of the sensing plate. (b) ⊿R obtained by subtracting the spectrum without the protein layer from the spectrum with the protein layer.
Fig. 4
Fig. 4 (a) Incident wavelength and tSiO2 dependency of the reflectance, where tSi and θ are set to 220 nm and 70°, respectively. The regions with a smaller R indicated by blue color correspond to the resonance dips. The white dotted line indicates the smallest values of tSiO2 at which the resonance dips with the largest ⊿Rdip are observed with respective wavelengths. (b) Incident wavelength and tSiO2 dependence of ⊿R obtained by subtracting the reflectance without the protein layer from the reflectance with the protein layer, where tSi and θ are set to 220 nm and 70°, respectively.
Fig. 5
Fig. 5 (a) Relationship between λdip and the smallest tSiO2 for the largest ⊿Rdip, similar to the white dotted line in Fig. 4(a), (b) between λdip and ⊿λ, and (c) between λdip and Max ⊿R. The values are obtained by setting tSi to 220 nm and θ between 67° and 75°. The ⊿λ and Max ⊿R are obtained by assuming that the protein layer is adsorbed on the sensing plate, where the values of tSiO2 that correspond to the respective λdip shown in Fig. 5(a) are used.
Fig. 6
Fig. 6 Relationship among tSi, λdip and the smallest tSiO2 for the largest ⊿Rdip for θ of 68° (a) and 75° (b), among tSi, λdip, and ⊿λ for θ of 68° (c) and 75° (d), and among tSi, λdip, and Max ⊿R for θ of 68° (e) and 75° (f). The ⊿λ and Max ⊿R are obtained by assuming that the protein layer is adsorbed on the sensing plate. The values of tSiO2 that correspond to the respective tSi and λdip in Fig. 6(a) were used as tSiO2 in the calculations for Figs. 6(c) and 6(e). The values of tSiO2 that correspond to the respective tSi and λdip in Fig. 6(b) were used as tSiO2 in the calculations for Figs. 6(d) and 6(f).
Fig. 7
Fig. 7 Reflection spectra of the waveguide-mode sensor with tSi, tSiO2, and λdip corresponding to the white dot (1) in Fig. 6(a)-(a) and the white dot (2) in Fig. 6(a)-(b). The black and red lines represent the spectrum prior to and following the protein adsorption, respectively.
Fig. 8
Fig. 8 Reflection spectrum obtained in the experiment measured by filling the liquid cell with the PBS buffer (black line) and reflection spectrum obtained after the adsorption of streptavidin on the biotin immobilized on the sensing plate (red line). A sensing plate with tSi of 160 nm and a prism with α of 32° were used in this experiment. The blue dotted line is a fitting curve of the black spectrum obtained using the transfer matrix method.
Fig. 9
Fig. 9 Relationship between λdip and ⊿λ observed using sensing plates with tSi of 25 nm (a) and 160 nm (b), and relationship between λdip and Max ⊿R observed using sensing plates with tSi of 25 nm (c) and 160 nm (d). The α of the prism used was 32°. The dotted lines represent values obtained from the simulation.
Fig. 10
Fig. 10 Relationship between λdip and ⊿λ observed using sensing plates with tSi of 85 nm (a) and 220 nm (b), and relationship between λdip and Max ⊿R observed using sensing plates with tSi of 85 nm (c) and 220 nm (d). The α of the prism used was 38°. The dotted lines represent values obtained from the simulation.
Fig. 11
Fig. 11 Relationship between α and w at a wavelength of 600 nm when w0 is set to 1 mm.

Tables (2)

Tables Icon

Table 1 Values of tSi, tSiO2, λdip, ⊿λ, and Max ⊿R at the white dots (1) and (2) in Fig. 6

Tables Icon

Table 2 Values of tSi and tSiO2 of the sensing plates estimated by the spectral fitting as shown in Fig. 8. These 16 plates were used for the detection of streptavidin.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ=α+ sin 1 ( sin( 90α ) n SiO2 ),
w= w 0 cosβ sinα×cosθ ,

Metrics