Abstract

We experimentally demonstrate mode conversion by exploiting optical reflection of tilted few-mode fiber Bragg grating (FM-FBG). Mode conversions from LP01 mode to higher symmetric and asymmetric modes are achieved, and more than 99.5% conversion efficiency from LP01 to LP11 mode is obtained using a 1.6°-tilted FM-FBG. Influences of the weakly tilted FM-FBG parameters on the property of mode conversion is analyzed and discussed. A simultaneous mode conversion and demultiplexing scheme for 4-mode × 3-wavelength multiplexing transmission is proposed and the modal crosstalk is analyzed based on the transmission spectra of the tilted FM-FBGs. The proposed approach shows potential applications in mode and wavelength division multiplexing communication systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode converter based on the long-period fiber gratings written in the two-mode fiber

Yunhe Zhao, Yunqi Liu, Liang Zhang, Chenyi Zhang, Jianxiang Wen, and Tingyun Wang
Opt. Express 24(6) 6186-6195 (2016)

Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers

Sun Hyok Chang, Hwan Seok Chung, Roland Ryf, Nicolas K. Fontaine, Changyo Han, Kyung Jun Park, Kwangjoon Kim, Jyung Chan Lee, Jong Hyun Lee, Byoung Yoon Kim, and Young Kie Kim
Opt. Express 23(6) 7164-7172 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Proc. OFC(Los Angeles, CA, USA2011), paper PDPB5.
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  3. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [Crossref]
  4. A. Li, A. A. Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, “Reception of dual-spatial-mode CO-OFDM signal over a two-mode fiber,” J. Lightwave Technol. 30(4), 634–640 (2012).
    [Crossref]
  5. E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, S. Bickham, H. Tam, C. Lu, M. Li, and S. Ten, “88x3x112-Gb/s WDM transmission over 50-km of three-mode fiber with inline multimode fiber amplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America,2011), paper Th.13.C.2.
    [Crossref]
  6. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
    [Crossref]
  7. N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012).
    [Crossref]
  8. S. H. Murshid, A. Chakravarty, and R. Biswas, “Simultaneous transmission of two channels operating at the same wavelength in standard multimode fibers,” Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science.CLEO/QELS Conference, 2008, pp. 1–2.
    [Crossref]
  9. T. Isoda, H. Terauchi, K. Tatsumi, A. Maruta, R. Maruyama, N. Kuwaki, S. Matsuo, and K. Kitayama, “Mode division multiplexed transmission through two-mode fiber using space-optics based mode multiplexer/demultiplexer,” in 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (Optical Society of America, 2013), paper TuS4_3.
  10. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
    [Crossref] [PubMed]
  11. D. Sinefeld, C. R. Doerr, and D. M. Marom, “A photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator,” Opt. Express 19(15), 14532–14541 (2011).
    [Crossref] [PubMed]
  12. B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
    [Crossref] [PubMed]
  13. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission,” Opt. Express 21(22), 25752–25760 (2013).
    [Crossref] [PubMed]
  14. S. Yerolatsitis, I. Gris-Sánchez, and T. A. Birks, “Adiabatically-tapered fiber mode multiplexers,” Opt. Express 22(1), 608–617 (2014).
    [Crossref] [PubMed]
  15. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  16. M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(4), 314–316 (2011).
    [Crossref]
  17. M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23(5), 251–253 (2011).
    [Crossref]
  18. K. S. Lee and T. Erdogan, “Fiber mode coupling in transmissive and reflective tilted fiber gratings,” Appl. Opt. 39(9), 1394–1404 (2000).
    [Crossref] [PubMed]
  19. K. S. Lee and T. Erdogan, “Fiber mode conversion with tilted gratings in an optical fiber,” J. Opt. Soc. Am. A 18(5), 1176–1185 (2001).
    [Crossref] [PubMed]
  20. A. Li, X. Chen, A. Al Amin, and W. Shieh, “Mode converters and couplers for Few-mode transmission,” in 2012 IEEE Photonics Society Summer Topical Meeting Series, 2012, pp. 197–198.
  21. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [Crossref]

2014 (2)

2013 (3)

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, and F. Yamamoto, “Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission,” Opt. Express 21(22), 25752–25760 (2013).
[Crossref] [PubMed]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (4)

2011 (4)

2001 (1)

2000 (1)

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Albert, J.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(4), 314–316 (2011).
[Crossref]

M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23(5), 251–253 (2011).
[Crossref]

Amin, A. A.

Arkwright, J. W.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012).
[Crossref]

Astruc, M.

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Bigo, S.

Birks, T. A.

Bolle, C.

Boutin, A.

Brindel, P.

Burrows, E. C.

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Cerou, F.

Charlet, G.

Chen, S.

Chen, X.

Doerr, C. R.

Dorin, B. A.

Erdogan, T.

Esmaeelpour, M.

Essiambre, R.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Gao, G.

Gnauck, A. H.

Gris-Sánchez, I.

Hanzawa, N.

Koebele, C.

Koshiba, M.

Lee, K. S.

Li, A.

Li, M.

M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23(5), 251–253 (2011).
[Crossref]

M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(4), 314–316 (2011).
[Crossref]

Lingle, R.

Love, J. D.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012).
[Crossref]

Mardoyan, H.

Marom, D. M.

Matsui, T.

McCurdy, A. H.

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Mumtaz, S.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Peckham, D. W.

Poletti, F.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Provost, L.

Randel, S.

Richardson, D.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Riesen, N.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012).
[Crossref]

Ryf, R.

Saitoh, K.

Sakamoto, T.

Salsi, M.

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(4), 314–316 (2011).
[Crossref]

M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23(5), 251–253 (2011).
[Crossref]

Shieh, W.

Sierra, A.

Sillard, P.

Sinefeld, D.

Sperti, D.

Tran, P.

Tsujikawa, K.

Verluise, F.

Winzer, P.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

Winzer, P. J.

Yamamoto, F.

Yao, J. P.

M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(4), 314–316 (2011).
[Crossref]

M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23(5), 251–253 (2011).
[Crossref]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Ye, W. N.

Yerolatsitis, S.

Appl. Opt. (1)

IEEE Commun. Mag. (1)

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

IEEE Photon. Technol. Lett. (3)

M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating,” IEEE Photon. Technol. Lett. 23(4), 314–316 (2011).
[Crossref]

M. Li, L. Y. Shao, J. Albert, and J. P. Yao, “Tilted fiber Bragg grating for chirped microwave waveform generation,” IEEE Photon. Technol. Lett. 23(5), 251–253 (2011).
[Crossref]

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” IEEE Photon. Technol. Lett. 24(5), 344–346 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (5)

Other (5)

E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, S. Bickham, H. Tam, C. Lu, M. Li, and S. Ten, “88x3x112-Gb/s WDM transmission over 50-km of three-mode fiber with inline multimode fiber amplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America,2011), paper Th.13.C.2.
[Crossref]

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Proc. OFC(Los Angeles, CA, USA2011), paper PDPB5.

S. H. Murshid, A. Chakravarty, and R. Biswas, “Simultaneous transmission of two channels operating at the same wavelength in standard multimode fibers,” Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science.CLEO/QELS Conference, 2008, pp. 1–2.
[Crossref]

T. Isoda, H. Terauchi, K. Tatsumi, A. Maruta, R. Maruyama, N. Kuwaki, S. Matsuo, and K. Kitayama, “Mode division multiplexed transmission through two-mode fiber using space-optics based mode multiplexer/demultiplexer,” in 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (Optical Society of America, 2013), paper TuS4_3.

A. Li, X. Chen, A. Al Amin, and W. Shieh, “Mode converters and couplers for Few-mode transmission,” in 2012 IEEE Photonics Society Summer Topical Meeting Series, 2012, pp. 197–198.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Simulated results of intensity distributions of spatial modes in the fabricated FMF by using COMSOL toolkit.

Fig. 2
Fig. 2

(a) Simulated transmission spectra of non-tiled, 0.8°-tilted and 1.6°-tilted FM-FBG with LP01 incident; schematic diagram of (b) non-tilted FM-FBG and (c) weakly tilted FM-FBG.

Fig. 3
Fig. 3

The relationships of the normalized coupling efficiency between fundamental mode and backward modes against tilt angle of weakly tilted FM-FBG.

Fig. 4
Fig. 4

(a) Schematic diagram for inscription of non-tilted and weakly tilted FM-FBGs; (b) transmission spectra of EDFA ASE source (red line) and that with insertion of fabricated tilted FM-FBG.

Fig. 5
Fig. 5

Transmission spectra of the experimentally fabricated weakly tilted FM-FBG and theoretical result of a 1.6°-tilted FM-FBG with LP01 mode incident.

Fig. 6
Fig. 6

Experimental setup to observe the intensity distributions of exporting modes reflected by the weakly tilted FM-FBG with fundamental mode incident (the arrows show the light direction).

Fig. 7
Fig. 7

Intensity patterns of the exporting (a) LP01; (b) LP11; (c) LP21 mode; (d) transmission optical spectra corresponding to wavelengths (transmission power: −16.1 dBm @1550.05 nm, −28.5 dBm @1551.0 nm, −14.1 dBm @1551.8 nm; reference power: −5.5 dBm @1552.0 nm).

Fig. 8
Fig. 8

Schematic diagram of proposed 4-mode × 3-wavelength (4 modes in 3 wavelengths respectively) demultiplexer based on a series of FM-FBGs.

Fig. 9
Fig. 9

Transmission spectra of FM-FBGs in demultiplexer demodulating (a) LP01 mode; (b) LP11 mode; (c) LP02 mode; (d) LP21 mode (blue line for 1548 nm, black line for 1550 nm, red line for 1552 nm).

Fig. 10
Fig. 10

Transmission spectra of (a) G12; (b) G22; (c) G32; (d) G42 with different incident modes.

Tables (2)

Tables Icon

Table 1 Parameters of FM-FBGs in the demultiplexer

Tables Icon

Table 2 Mode coupling efficiency (dB) at working wavelengths

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d A μ dz =j ν Κ νμ t A ν exp[j( β ν β μ )z]+j ν Κ νμ t B ν exp[j( β μ + β ν )z]
d B μ dz =j ν Κ νμ t A ν exp[j( β ν + β μ )z]j ν Κ νμ t B ν exp[j( β μ β ν )z]
Κ νμ t = ω ε 0 4 ( n 2 n 0 2 ) e tμ e tν dxdy
λ coco μν =( n F μ + n B ν )Λ'

Metrics