Abstract

A full three-dimensional Finite-Difference Time-Domain (FDTD)-based toolkit is developed to simulate the whispering gallery modes of a microsphere in the vicinity of a dipole source. This provides a guide for experiments that rely on efficient coupling to the modes of microspheres. The resultant spectra are compared to those of analytic models used in the field. In contrast to the analytic models, the FDTD method is able to collect flux from a variety of possible collection regions, such as a disk-shaped region. The customizability of the technique allows one to consider a variety of mode excitation scenarios, which are particularly useful for investigating novel properties of optical resonators, and are valuable in assessing the viability of a resonator for biosensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of whispering gallery resonator design for biosensing applications

T. Reynolds, M. R. Henderson, A. François, N. Riesen, J. M. M. Hall, S. V. Afshar, S. J. Nicholls, and T. M. Monro
Opt. Express 23(13) 17067-17076 (2015)

Whispering gallery mode spectra of channel waveguide coupled microspheres

Y. Panitchob, G.Senthil Murugan, M. N. Zervas, P. Horak, S. Berneschi, S. Pelli, G.Nunzi Conti, and J. S. Wilkinson
Opt. Express 16(15) 11066-11076 (2008)

Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators

Alexandre François, Kristopher J. Rowland, Shahraam Afshar, V., Matthew R. Henderson, and Tanya M. Monro
Opt. Express 21(19) 22566-22577 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
    [Crossref] [PubMed]
  2. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
    [Crossref]
  3. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref] [PubMed]
  4. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742–5747 (2001).
    [Crossref]
  5. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref] [PubMed]
  6. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344–3346 (2005).
    [Crossref]
  7. J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron. 23, 1003–1009 (2008).
    [Crossref]
  8. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3–4) 267–291 (2012).
    [Crossref]
  9. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [Crossref] [PubMed]
  10. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref] [PubMed]
  11. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
    [Crossref] [PubMed]
  12. A. Schliesser and T. J. Kippenberg, “Chapter 5 - cavity optomechanics with whispering-gallery mode optical micro-resonators,” in “Advances In Atomic, Molecular, and Optical Physics,”, vol. 58 of Advances In Atomic, Molecular, and Optical Physics, E. A. Paul Berman and C. Lin, eds. (Academic Press, 2010), pp. 207–323.
    [Crossref]
  13. D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83, 063847 (2011).
    [Crossref]
  14. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref] [PubMed]
  15. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14, 10800–10810 (2006).
    [Crossref] [PubMed]
  16. D. Xiao-Wei, L. Shao-Hua, F. Su-Chun, X. Ou, and J. Shui-Sheng, “All-fibre micro-ring resonator based on tapered microfibre,” Chin. Phys. B 17, 1029 (2008).
    [Crossref]
  17. A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors 10, 1765–1781 (2010).
    [Crossref] [PubMed]
  18. F. Monifi, S. Odemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
    [Crossref]
  19. A. François, K. J. Rowland, V. S. Afshar, M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators,” Opt. Express 21, 22566–22577 (2013).
    [Crossref] [PubMed]
  20. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
    [Crossref] [PubMed]
  21. S. I. Shopova, G. Farca, A. Naweed, and A. T. Rosenberger, “Whispering-gallery-mode microlaser consisting of a HgTe-quantum-dot-coated microsphere,” in Proceedings of Frontiers in Optics (2003), p. TuT4.
  22. M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single dielectric spheroid excited by gaussian beam,” Jpn. J. Appl. Phys. 44, 4948 (2005).
    [Crossref]
  23. M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single spheroid: Dependence on the direction of incident light,” J. Korean Phys. Soc. 47, S38–S42 (2005).
  24. H. Quan and Z. Guo, “Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors,” J. Quant. Spectrosc. Radiat. Trans. 93, 231–243 (2005).
    [Crossref]
  25. H. Chew, P. J. McNulty, and M. Kerker, “Model for raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
    [Crossref]
  26. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 65 (1978).
  27. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
    [Crossref]
  28. J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
    [Crossref]
  29. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
    [Crossref]
  30. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
    [Crossref] [PubMed]
  31. R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76, 1681–1684 (1982).
    [Crossref]
  32. M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas -a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
    [Crossref] [PubMed]
  33. V S. Afshar, M. R. Henderson, A. D. Greentree, B. C. Gibson, and T. M. Monro, “Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems,” Opt. Express 22, 11301–11311 (2014).
    [Crossref]
  34. A. Taflove, Computational Electrodynamics: The Finite - Difference Time - Domain Method, Antennas and Propagation Library (Artech House, Inc., 1995).
  35. P. S. Kuo, W. Fang, and G. S. Solomon, “4̄-quasi-phase-matched interactions in GaAs microdisk cavities,” Opt. Lett. 34, 3580 (2009).
    [Crossref] [PubMed]
  36. B. E. Little, J.-P. Laine, H. A. Haus, and L. Fellow, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17, 704 (1999).
    [Crossref]
  37. K. Vahala, Optical Microcavities, Advanced series in applied physics (World Scientific, 2004).
  38. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343–352 (1993).
    [Crossref]
  39. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389 (2006).
    [Crossref]
  40. C. F. Bohren and D. R. Huffman, Absorption and Scattering by a Sphere (Wiley-VCH Verlag GmbH, 2007), pp. 82–129.
  41. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  42. T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001).
    [Crossref]
  43. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
    [Crossref] [PubMed]
  44. M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
    [Crossref]
  45. K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Muller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chem. Eur. J. 16, 158–166 (2010).
    [Crossref]
  46. M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors 10, 6257–6274 (2010).
    [Crossref] [PubMed]
  47. C. Marki and S. D. E. E. P. University of California, Design and Optimization of Bidirectional and Optical Logic Systems in the Presence of Noise (University of CaliforniaSan Diego, 2007).
  48. A. François, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
    [Crossref]

2014 (2)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

V S. Afshar, M. R. Henderson, A. D. Greentree, B. C. Gibson, and T. M. Monro, “Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems,” Opt. Express 22, 11301–11311 (2014).
[Crossref]

2013 (3)

F. Monifi, S. Odemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

A. François, K. J. Rowland, V. S. Afshar, M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators,” Opt. Express 21, 22566–22577 (2013).
[Crossref] [PubMed]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

2012 (2)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3–4) 267–291 (2012).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas -a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[Crossref] [PubMed]

2011 (3)

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
[Crossref] [PubMed]

D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83, 063847 (2011).
[Crossref]

A. François, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
[Crossref]

2010 (4)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Muller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chem. Eur. J. 16, 158–166 (2010).
[Crossref]

M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors 10, 6257–6274 (2010).
[Crossref] [PubMed]

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors 10, 1765–1781 (2010).
[Crossref] [PubMed]

2009 (2)

P. S. Kuo, W. Fang, and G. S. Solomon, “4̄-quasi-phase-matched interactions in GaAs microdisk cavities,” Opt. Lett. 34, 3580 (2009).
[Crossref] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

2008 (3)

D. Xiao-Wei, L. Shao-Hua, F. Su-Chun, X. Ou, and J. Shui-Sheng, “All-fibre micro-ring resonator based on tapered microfibre,” Chin. Phys. B 17, 1029 (2008).
[Crossref]

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron. 23, 1003–1009 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

2007 (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (4)

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single dielectric spheroid excited by gaussian beam,” Jpn. J. Appl. Phys. 44, 4948 (2005).
[Crossref]

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single spheroid: Dependence on the direction of incident light,” J. Korean Phys. Soc. 47, S38–S42 (2005).

H. Quan and Z. Guo, “Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors,” J. Quant. Spectrosc. Radiat. Trans. 93, 231–243 (2005).
[Crossref]

A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344–3346 (2005).
[Crossref]

2003 (1)

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

2001 (2)

R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742–5747 (2001).
[Crossref]

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001).
[Crossref]

1999 (1)

1997 (1)

1993 (1)

1992 (1)

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[Crossref]

1990 (1)

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

1988 (1)

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[Crossref] [PubMed]

1987 (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
[Crossref]

1982 (1)

R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76, 1681–1684 (1982).
[Crossref]

1981 (1)

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

1980 (1)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[Crossref]

1978 (1)

R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 65 (1978).

1976 (1)

H. Chew, P. J. McNulty, and M. Kerker, “Model for raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

Aizpurua, J.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Arnold, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389 (2006).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Barnes, M. D.

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[Crossref]

Belov, V. N.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Muller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chem. Eur. J. 16, 158–166 (2010).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Bierwagen, J.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Muller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chem. Eur. J. 16, 158–166 (2010).
[Crossref]

Birks, T. A.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering by a Sphere (Wiley-VCH Verlag GmbH, 2007), pp. 82–129.

Boleininger, A.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors 10, 1765–1781 (2010).
[Crossref] [PubMed]

Boyd, R. W.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Caldwell, C. W.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron. 23, 1003–1009 (2008).
[Crossref]

Chance, R.

R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 65 (1978).

Cheung, G.

Chew, H.

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[Crossref] [PubMed]

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
[Crossref]

H. Chew, P. J. McNulty, and M. Kerker, “Model for raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Eggeling, C.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Muller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chem. Eur. J. 16, 158–166 (2010).
[Crossref]

Esteban, R.

Fan, X.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron. 23, 1003–1009 (2008).
[Crossref]

Fang, W.

Farca, G.

S. I. Shopova, G. Farca, A. Naweed, and A. T. Rosenberger, “Whispering-gallery-mode microlaser consisting of a HgTe-quantum-dot-coated microsphere,” in Proceedings of Frontiers in Optics (2003), p. TuT4.

Fellow, L.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

François, A.

A. François, K. J. Rowland, V. S. Afshar, M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators,” Opt. Express 21, 22566–22577 (2013).
[Crossref] [PubMed]

A. François, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
[Crossref]

M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors 10, 6257–6274 (2010).
[Crossref] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Friedlein, J.

F. Monifi, S. Odemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Fujii, M.

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single dielectric spheroid excited by gaussian beam,” Jpn. J. Appl. Phys. 44, 4948 (2005).
[Crossref]

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single spheroid: Dependence on the direction of incident light,” J. Korean Phys. Soc. 47, S38–S42 (2005).

Fukui, M.

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single spheroid: Dependence on the direction of incident light,” J. Korean Phys. Soc. 47, S38–S42 (2005).

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single dielectric spheroid excited by gaussian beam,” Jpn. J. Appl. Phys. 44, 4948 (2005).
[Crossref]

Gersten, J.

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[Crossref]

Gibson, B. C.

Greentree, A. D.

Guo, Z.

H. Quan and Z. Guo, “Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors,” J. Quant. Spectrosc. Radiat. Trans. 93, 231–243 (2005).
[Crossref]

Hami, S.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors 10, 1765–1781 (2010).
[Crossref] [PubMed]

Haraguchi, M.

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single spheroid: Dependence on the direction of incident light,” J. Korean Phys. Soc. 47, S38–S42 (2005).

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single dielectric spheroid excited by gaussian beam,” Jpn. J. Appl. Phys. 44, 4948 (2005).
[Crossref]

Haus, H. A.

Heebner, J. E.

Hell, S. W.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Muller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chem. Eur. J. 16, 158–166 (2010).
[Crossref]

Henderson, M. R.

Hill, S. C.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Himmelhaus, M.

M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors 10, 6257–6274 (2010).
[Crossref] [PubMed]

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Hossein-Zadeh, M.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering by a Sphere (Wiley-VCH Verlag GmbH, 2007), pp. 82–129.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ilchenko, V. S.

Jacques, F.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Johnson, B. R.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Keng, D.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Kerker, M.

H. Chew, P. J. McNulty, and M. Kerker, “Model for raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Kippenberg, T. J.

A. Schliesser and T. J. Kippenberg, “Chapter 5 - cavity optomechanics with whispering-gallery mode optical micro-resonators,” in “Advances In Atomic, Molecular, and Optical Physics,”, vol. 58 of Advances In Atomic, Molecular, and Optical Physics, E. A. Paul Berman and C. Lin, eds. (Academic Press, 2010), pp. 207–323.
[Crossref]

Knight, J. C.

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Kolmakov, K.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Muller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chem. Eur. J. 16, 158–166 (2010).
[Crossref]

Korystov, D.

D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83, 063847 (2011).
[Crossref]

Krishnamoorthy, S.

M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors 10, 6257–6274 (2010).
[Crossref] [PubMed]

Ksendzov, A.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Kuo, P. S.

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Laine, J.-P.

Lake, T.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors 10, 1765–1781 (2010).
[Crossref] [PubMed]

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Liang, W.

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Lin, Y.

Little, B. E.

Longdell, J. J.

D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83, 063847 (2011).
[Crossref]

Mackowski, S.

Maleki, L.

Marki, C.

C. Marki and S. D. E. E. P. University of California, Design and Optimization of Bidirectional and Optical Logic Systems in the Presence of Noise (University of CaliforniaSan Diego, 2007).

Matsko, A. B.

McAuslan, D. L.

D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83, 063847 (2011).
[Crossref]

McNulty, P. J.

H. Chew, P. J. McNulty, and M. Kerker, “Model for raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Monifi, F.

F. Monifi, S. Odemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Monro, T. M.

Muller, V.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Muller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chem. Eur. J. 16, 158–166 (2010).
[Crossref]

Naweed, A.

S. I. Shopova, G. Farca, A. Naweed, and A. T. Rosenberger, “Whispering-gallery-mode microlaser consisting of a HgTe-quantum-dot-coated microsphere,” in Proceedings of Frontiers in Optics (2003), p. TuT4.

Nitzan, A.

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[Crossref]

Odemir, S.

F. Monifi, S. Odemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

Okamoto, T.

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single dielectric spheroid excited by gaussian beam,” Jpn. J. Appl. Phys. 44, 4948 (2005).
[Crossref]

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single spheroid: Dependence on the direction of incident light,” J. Korean Phys. Soc. 47, S38–S42 (2005).

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Ou, X.

D. Xiao-Wei, L. Shao-Hua, F. Su-Chun, X. Ou, and J. Shui-Sheng, “All-fibre micro-ring resonator based on tapered microfibre,” Chin. Phys. B 17, 1029 (2008).
[Crossref]

Prock, A.

R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 65 (1978).

Quan, H.

H. Quan and Z. Guo, “Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors,” J. Quant. Spectrosc. Radiat. Trans. 93, 231–243 (2005).
[Crossref]

Ramsey, J. M.

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[Crossref]

Ringemann, C.

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Muller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chem. Eur. J. 16, 158–166 (2010).
[Crossref]

Rosenberger, A. T.

S. I. Shopova, G. Farca, A. Naweed, and A. T. Rosenberger, “Whispering-gallery-mode microlaser consisting of a HgTe-quantum-dot-coated microsphere,” in Proceedings of Frontiers in Optics (2003), p. TuT4.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Rowland, K. J.

A. François, K. J. Rowland, V. S. Afshar, M. R. Henderson, and T. M. Monro, “Enhancing the radiation efficiency of dye doped whispering gallery mode microresonators,” Opt. Express 21, 22566–22577 (2013).
[Crossref] [PubMed]

A. François, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
[Crossref]

Ruppin, R.

R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76, 1681–1684 (1982).
[Crossref]

S. Afshar, V

S. Afshar, V.

Sáenz, J. J.

Savchenkov, A. A.

Schliesser, A.

A. Schliesser and T. J. Kippenberg, “Chapter 5 - cavity optomechanics with whispering-gallery mode optical micro-resonators,” in “Advances In Atomic, Molecular, and Optical Physics,”, vol. 58 of Advances In Atomic, Molecular, and Optical Physics, E. A. Paul Berman and C. Lin, eds. (Academic Press, 2010), pp. 207–323.
[Crossref]

Schmidt, M. K.

Seidel, D.

Shao-Hua, L.

D. Xiao-Wei, L. Shao-Hua, F. Su-Chun, X. Ou, and J. Shui-Sheng, “All-fibre micro-ring resonator based on tapered microfibre,” Chin. Phys. B 17, 1029 (2008).
[Crossref]

Shi, H.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron. 23, 1003–1009 (2008).
[Crossref]

Shopova, S. I.

S. I. Shopova, G. Farca, A. Naweed, and A. T. Rosenberger, “Whispering-gallery-mode microlaser consisting of a HgTe-quantum-dot-coated microsphere,” in Proceedings of Frontiers in Optics (2003), p. TuT4.

Shui-Sheng, J.

D. Xiao-Wei, L. Shao-Hua, F. Su-Chun, X. Ou, and J. Shui-Sheng, “All-fibre micro-ring resonator based on tapered microfibre,” Chin. Phys. B 17, 1029 (2008).
[Crossref]

Silbey, R.

R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 65 (1978).

Solomon, G. S.

Søndergaard, T.

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001).
[Crossref]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Suárez-Lacalle, I.

Su-Chun, F.

D. Xiao-Wei, L. Shao-Hua, F. Su-Chun, X. Ou, and J. Shui-Sheng, “All-fibre micro-ring resonator based on tapered microfibre,” Chin. Phys. B 17, 1029 (2008).
[Crossref]

Suter, J. D.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron. 23, 1003–1009 (2008).
[Crossref]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite - Difference Time - Domain Method, Antennas and Propagation Library (Artech House, Inc., 1995).

Teraoka, I.

Tromborg, B.

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001).
[Crossref]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

K. Vahala, Optical Microcavities, Advanced series in applied physics (World Scientific, 2004).

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14, 10800–10810 (2006).
[Crossref] [PubMed]

Vallance, C.

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors 10, 1765–1781 (2010).
[Crossref] [PubMed]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3–4) 267–291 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

White, I. M.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron. 23, 1003–1009 (2008).
[Crossref]

Whitten, W. B.

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[Crossref]

Xiao-Wei, D.

D. Xiao-Wei, L. Shao-Hua, F. Su-Chun, X. Ou, and J. Shui-Sheng, “All-fibre micro-ring resonator based on tapered microfibre,” Chin. Phys. B 17, 1029 (2008).
[Crossref]

Yang, L.

F. Monifi, S. Odemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3–4) 267–291 (2012).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Young, K.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Zhu, H.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron. 23, 1003–1009 (2008).
[Crossref]

Adv. Chem. Phys. (1)

R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 65 (1978).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. François, K. J. Rowland, and T. M. Monro, “Highly efficient excitation and detection of whispering gallery modes in a dye-doped microsphere using a microstructured optical fiber,” Appl. Phys. Lett. 99, 141111 (2011).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Biosens. Bioelectron. (1)

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron. 23, 1003–1009 (2008).
[Crossref]

Chem. Eur. J. (1)

K. Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Muller, C. Eggeling, and S. W. Hell, “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy,” Chem. Eur. J. 16, 158–166 (2010).
[Crossref]

Chin. Phys. B (1)

D. Xiao-Wei, L. Shao-Hua, F. Su-Chun, X. Ou, and J. Shui-Sheng, “All-fibre micro-ring resonator based on tapered microfibre,” Chin. Phys. B 17, 1029 (2008).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Monifi, S. Odemir, J. Friedlein, and L. Yang, “Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix,” IEEE Photon. Technol. Lett. 25, 1458–1461 (2013).
[Crossref]

J. Chem. Phys. (5)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[Crossref]

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
[Crossref]

M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992).
[Crossref]

R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys. 76, 1681–1684 (1982).
[Crossref]

J. Korean Phys. Soc. (1)

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single spheroid: Dependence on the direction of incident light,” J. Korean Phys. Soc. 47, S38–S42 (2005).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Trans. (1)

H. Quan and Z. Guo, “Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors,” J. Quant. Spectrosc. Radiat. Trans. 93, 231–243 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Fujii, M. Haraguchi, T. Okamoto, and M. Fukui, “Characteristics of whispering gallery modes in single dielectric spheroid excited by gaussian beam,” Jpn. J. Appl. Phys. 44, 4948 (2005).
[Crossref]

Nano Lett. (1)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3–4) 267–291 (2012).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

Nature (1)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. A (5)

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001).
[Crossref]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
[Crossref] [PubMed]

H. Chew, P. J. McNulty, and M. Kerker, “Model for raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[Crossref] [PubMed]

D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A 83, 063847 (2011).
[Crossref]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Sensors (2)

A. Boleininger, T. Lake, S. Hami, and C. Vallance, “Whispering gallery modes in standard optical fibres for fibre profiling measurements and sensing of unlabelled chemical species,” Sensors 10, 1765–1781 (2010).
[Crossref] [PubMed]

M. Himmelhaus, S. Krishnamoorthy, and A. François, “Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions,” Sensors 10, 6257–6274 (2010).
[Crossref] [PubMed]

Other (6)

C. Marki and S. D. E. E. P. University of California, Design and Optimization of Bidirectional and Optical Logic Systems in the Presence of Noise (University of CaliforniaSan Diego, 2007).

A. Taflove, Computational Electrodynamics: The Finite - Difference Time - Domain Method, Antennas and Propagation Library (Artech House, Inc., 1995).

K. Vahala, Optical Microcavities, Advanced series in applied physics (World Scientific, 2004).

C. F. Bohren and D. R. Huffman, Absorption and Scattering by a Sphere (Wiley-VCH Verlag GmbH, 2007), pp. 82–129.

S. I. Shopova, G. Farca, A. Naweed, and A. T. Rosenberger, “Whispering-gallery-mode microlaser consisting of a HgTe-quantum-dot-coated microsphere,” in Proceedings of Frontiers in Optics (2003), p. TuT4.

A. Schliesser and T. J. Kippenberg, “Chapter 5 - cavity optomechanics with whispering-gallery mode optical micro-resonators,” in “Advances In Atomic, Molecular, and Optical Physics,”, vol. 58 of Advances In Atomic, Molecular, and Optical Physics, E. A. Paul Berman and C. Lin, eds. (Academic Press, 2010), pp. 207–323.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A circular flux collection region, which is offset from a 6 μm diameter microsphere in the x-direction, is placed so that its normal is aligned radially outward along the same axis. In this illustration, the optical modes are excited from a tangentially-oriented electric dipole source.
Fig. 2
Fig. 2 (a) A comparison of the power spectra of 6 μm diameter microspheres for different grid resolutions. (b) The convergence of the position of three central peaks is shown as a function of resolution. Excitation occurs from a tangentially oriented dipole source placed on the surface, with a central wavelength of λ = 0.6 μm. The flux collection time for each simulation is 0.6 ps.
Fig. 3
Fig. 3 (a) A comparison of the power spectra of 6 μm diameter microspheres with a tangential source (λ = 0.6 μm), for different flux collection times. (b) The behavior of the Q-factors of three central peaks is shown as a function of collection time (ps). The output power is normalized to the dipole emission rate in an infinite bulk medium of the same refractive index as the surrounding medium.
Fig. 4
Fig. 4 FDTD simulation of the normalized power spectrum of a polystyrene microsphere, 6 μm in diameter, with a surrounding medium of air. (a) Whispering gallery modes are excited from a tangential or (b) radial electric dipole source with a central wavelength of 0.6 μm. (c) The results for a surrounding medium of water are also shown for a tangential source and (d) a radial source. Vertical lines indicate predictions of the TEm,n (green) and TMm,n (red) modes derived from the Mie scattering analytic model, for azimuthal and radial mode numbers m and n, respectively. The width of the bands indicates the systematic uncertainty in the positions due to the finite grid size of FDTD.
Fig. 5
Fig. 5 A comparison of the Chew model of Eqs. (15) & (16) (dashed purple line) with the Mie scattering analytic model (vertical dashed lines) and the FDTD simulation, with total power collected from a box that surrounds the microsphere (solid blue line). A surrounding medium of water is used for a 6 μm diameter polystyrene sphere. (a) Whispering gallery modes are excited from a tangential or (b) a radial dipole source. The green vertical lines are the fundamental radial TE modes, and the red lines are the corresponding TM modes. The width of the bands accommodates the systematic uncertainty due to the finite grid size of FDTD.
Fig. 6
Fig. 6 Spatial distributions of the flux density over the collection region for several modes, S(r), integrated over a flux collection period of 1.0 ps, and projected onto the circular flux collection region. The modes considered are (a) TE40,1: 0.576 μm, (b) TE39,1: 0.588 μm, (c) TE38,1: 0.601 μm and (d) TE37,1: 0.615 μm. The axes are defined in the same way as in Fig. 1, for x-coordinate: 3.24 μm. Lighter color corresponds to larger magnitudes of S(r) · .
Fig. 7
Fig. 7 A comparison of the power spectra of 6 μm diameter microspheres with a tangential source (λ = 0.6 μm), (a) for flux collection regions at different distances Lflux from the centre of the sphere, and (b) for different flux region diameters Dflux. A resolution of Δx = 22 nm is used.

Tables (2)

Tables Icon

Table 1 Computing resources required for a three-dimensional FDTD simulation of a 6 μm diameter sphere excited by a dipole source with a central wavelength of 0.6 μm. The Tizard machine at eResearchSA (https://www.ersa.edu.au/tizard) is used in these simulations, which uses AMD 6238, 2.6 GHz CPUs. The number of CPUs, the memory (RAM), virtual memory (VM) and wall-time are listed for a variety of FDTD grid resolution values, Δx. The resolution in the frequency domain is quoted after being converted to wavelength, Δλ. The wall-time increases linearly with the flux collection time, which is held fixed at 0.6 ps in this table.

Tables Icon

Table 2 A summary of the Q-factors and wavelength positions, λ(μm), for the four most prominent WGM peaks, for each plot displayed in Fig. 4. The scenarios considered are: a surrounding medium of air or water with a tangential (Ey) or radial (Ex) dipole source. Due to finite collection time, a systematic uncertainty of up to 17% is expected in the Q-factors.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P ( λ ) = S n ^ d A ,
Q = λ 0 δ λ .
× × E 0 ( r ) k 2 n 2 ( r ) E 0 ( r ) = 0 ,
E 0 = S m ( r ) e i m φ k r X lm ( θ ) ,
X lm ( θ ) = i m sin θ P l m ( cos θ ) e ^ θ θ P l m ( cos θ ) e ^ φ ,
d S m ( r ) d r 2 + ( k 2 n 2 ( r ) m ( m + 1 ) r 2 ) S m ( r ) = 0 .
S m ( r ) = { z 1 r j m ( z 1 r ) , r < R A m z 2 r h m ( 1 ) ( z 2 r ) , r > R .
n 1 z 1 R ( m + 1 ) j m ( z 1 R ) z 1 R j m + 1 ( z 1 R ) j m ( z 1 R ) = n 2 z 2 R ( m + 1 ) y m ( z 2 R ) z 2 R y m + 1 ( z 2 R ) y m ( z 2 R ) .
E 0 = e i m φ k 2 n 2 ( r ) [ 1 r T m ( r ) r Y lm ( θ ) + 1 r 2 T m ( r ) Z lm ( θ ) ] ,
Y lm ( θ ) = e ^ r × X lm ( θ ) ,
Z lm ( θ ) = l ( l + 1 ) P l m ( cos θ ) e ^ r ,
d T m ( r ) d r 2 2 n ( r ) d n ( r ) d r d T m ( r ) d r + ( k 2 n 2 ( r ) m ( m + 1 ) r 2 ) T m ( r ) = 0 .
T m ( r ) = { z 1 r j m ( z 1 r ) , r < R B m z 2 r h m ( 1 ) ( z 2 r ) , r > R ,
1 n 1 z 1 R ( m + 1 ) j m ( z 1 R ) z 1 j m + 1 ( z 1 R ) j m ( z 1 R ) = 1 n 2 z 2 R ( m + 1 ) y m ( z 2 R ) z 2 y m + 1 ( z 2 R ) y m ( z 2 R ) .
P E y / P 0 E y = 3 ε 1 3 / 2 n 1 2 z 1 R 2 ( ε 2 μ 2 ) 1 / 2 m = 1 m ( m + 1 ) ( 2 m + 1 ) j m 2 ( z 1 R ) z 1 R 2 | D m | 2 ,
P E x / P 0 E x = 3 ε 1 3 / 2 n 1 4 z 1 R 2 ( ε 2 μ 2 ) 1 / 2 m = 1 ( 2 m + 1 ) [ | [ z 1 R j m ( z 1 R ) ] z 1 R D m | 2 + μ 1 μ 2 ε 1 ε 2 j m 2 ( z 1 R ) | D ˜ m | 2 ] ,
for D m = ε 1 j m ( z 1 R ) [ z 2 R h m ( 1 ) ( z 2 R ) ] ε 2 h m ( 1 ) ( z 2 R ) [ z 1 R j m ( z 1 R ) ] ,
D ˜ m = D m ( ε 1 , 2 μ 1 , 2 ) .

Metrics