Abstract

Liquid crystal (LC) contact lenses are emerging as an exciting technology for vision correction. A homeotropically (vertical) aligned LC lens is reported that offers improved optical quality and simplified construction techniques over previously reported LC contact lens designs. The lens has no polarization dependence in the off state and produces a continuous change in optical power of up to 2.00 ± 0.25 D with a voltage applied. The variation in optical power results from the voltage-induced change in refractive index of the nematic LC layer, from 1.52 to a maximum of 1.72. One device substrate is treated with an alignment layer that is a mixture of planar and homeotropic polyimides, rubbed to induce a preferred director orientation in the switched state. Defects that could occur during switching are thus avoided and the lens exhibits excellent optical quality with a continuous variation in focal power.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. N. Charman, “Restoring accommodation: a dream or an approaching reality?” Ophthalmic Physiol. Opt. 25(1), 1–6 (2005).
    [Crossref] [PubMed]
  2. H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
    [Crossref] [PubMed]
  3. H. E. Milton, H. F. Gleeson, P. B. Morgan, J. W. Goodby, S. Cowling, and J. H. Clamp, “Switchable liquid crystal contact lenses: dynamic vision for the ageing eye,” in SPIE OPTO (International Society for Optics and Photonics, 2014), pp. 90040H.
  4. S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  5. S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(2), L626–L628 (1985).
    [Crossref]
  6. M. Ye, B. Wang, and S. Sato, “Liquid-Crystal Lens with a Focal Length that is Variable in a Wide Range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [Crossref] [PubMed]
  7. A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
    [Crossref] [PubMed]
  8. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
    [Crossref] [PubMed]
  9. T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 235–243 (1999).
    [Crossref]
  10. A. Y. Gvozdarev, G. Nevskaya, and I. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” J. Opt. Tech. 68, 682–686 (2001).
  11. J. S. Patel and K. Rastani, “Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays,” Opt. Lett. 16(7), 532–534 (1991).
    [Crossref] [PubMed]

2014 (1)

2006 (1)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

2005 (1)

W. N. Charman, “Restoring accommodation: a dream or an approaching reality?” Ophthalmic Physiol. Opt. 25(1), 1–6 (2005).
[Crossref] [PubMed]

2004 (1)

2001 (1)

A. Y. Gvozdarev, G. Nevskaya, and I. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” J. Opt. Tech. 68, 682–686 (2001).

1999 (2)

A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
[Crossref] [PubMed]

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 235–243 (1999).
[Crossref]

1991 (1)

1985 (1)

S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(2), L626–L628 (1985).
[Crossref]

1979 (1)

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Ayräs, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Bouvier, M.

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 235–243 (1999).
[Crossref]

Charman, W. N.

W. N. Charman, “Restoring accommodation: a dream or an approaching reality?” Ophthalmic Physiol. Opt. 25(1), 1–6 (2005).
[Crossref] [PubMed]

Clamp, J. H.

Fontannaz, J.

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 235–243 (1999).
[Crossref]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Gleeson, H. F.

Grupp, J.

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 235–243 (1999).
[Crossref]

Gvozdarev, A. Y.

A. Y. Gvozdarev, G. Nevskaya, and I. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” J. Opt. Tech. 68, 682–686 (2001).

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Honkanen, S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Li, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Loktev, M. Y.

Love, G.

Mathine, D. L.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Milton, H. E.

Morgan, P. B.

Naumov, A.

Nevskaya, G.

A. Y. Gvozdarev, G. Nevskaya, and I. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” J. Opt. Tech. 68, 682–686 (2001).

Patel, J. S.

Peyghambarian, N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Rastani, K.

Sato, R.

S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(2), L626–L628 (1985).
[Crossref]

Sato, S.

M. Ye, B. Wang, and S. Sato, “Liquid-Crystal Lens with a Focal Length that is Variable in a Wide Range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(2), L626–L628 (1985).
[Crossref]

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Scharf, T.

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 235–243 (1999).
[Crossref]

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Sugiyama, A.

S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(2), L626–L628 (1985).
[Crossref]

Valley, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Vladimirov, F.

Wang, B.

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Ye, M.

Yudin, I.

A. Y. Gvozdarev, G. Nevskaya, and I. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” J. Opt. Tech. 68, 682–686 (2001).

Appl. Opt. (1)

J. Opt. Tech. (1)

A. Y. Gvozdarev, G. Nevskaya, and I. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” J. Opt. Tech. 68, 682–686 (2001).

Jpn. J. Appl. Phys. (2)

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-Crystal Fresnel Lens,” Jpn. J. Appl. Phys. 24(2), L626–L628 (1985).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 331(1), 235–243 (1999).
[Crossref]

Ophthalmic Physiol. Opt. (1)

W. N. Charman, “Restoring accommodation: a dream or an approaching reality?” Ophthalmic Physiol. Opt. 25(1), 1–6 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Other (1)

H. E. Milton, H. F. Gleeson, P. B. Morgan, J. W. Goodby, S. Cowling, and J. H. Clamp, “Switchable liquid crystal contact lenses: dynamic vision for the ageing eye,” in SPIE OPTO (International Society for Optics and Photonics, 2014), pp. 90040H.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The optical design of the LC contact lens showing the optical power of each of the layers; the combination forms a system that switches between + 0.25 D and –1.75 D. The change in optical power is facilitated by the director reorientation from perpendicular to parallel to the substrates, resulting in a change in refractive index of 1.52 to 1.73.

Fig. 2
Fig. 2

A schematic of the LC contact lens structure. The insert (not to scale) shows the layers that align the LC and allow voltage application across the LC layer. The 3.6μm thick Mylar spacer electrically insulates the two substrates.

Fig. 3
Fig. 3

Polarizing microscopy of the LC lens, illustrating the quality of alignment and switching behavior (100x magnification). The dark state at 0 Vrms indicates excellent homeotropic alignment, with bright when the lens is switched. The rubbing direction at 45° to the crossed polarizing axes (white) can be observed in the middle images.

Fig. 4
Fig. 4

The focal power as a function of applied voltage. Vth is at ~2 Vrms and the focal power from –0.25 D in the off state, tending towards –2.25 D at 7.1 Vrms. The images show the excellent optical quality of the LC lens.

Fig. 5
Fig. 5

MTF curves of the LC contact lens and its component substrates compared with a diffraction limited lens. MTF50 values of 1.39 and 1.00 line pairs/mrad are found for the LC contact lens at 0 V and 5.7 Vrms respectively. MTF50 values of 1.84 and 1.25 line pairs/mrad are measured for the upper and lower substrates respectively and the MTF50 calculated for a diffraction limited system is 3.17 line pairs/mrad. The PSFs of two states are on the right.

Metrics