Abstract

A CW dual-frequency master oscillator power amplifier (MOPA) laser system with dozens of gigahertz (GHz) frequency separation is presented. The MOPA system consists of a monolithic microchip seed laser and a double-end pumped traveling wave power amplifier. The short length of seed laser cavity guarantees the seed signal with a large frequency separation (above 53 GHz) but low output power (below 247.8 mW). By adding a long and low-doped active medium laser amplifier stage, a significant increase in laser power and an improvement in beam quality are obtained. After fine temperature tuning of seed laser cavity for “spectra matching”, a 2.40 W dual-frequency laser signal with 45 GHz frequency separation is achieved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High power fiber MOPA based QCW laser delivering pulses with arbitrary duration on demand at high modulation bandwidth

Rok Petkovšek, Vid Novak, and Vid Agrež
Opt. Express 23(26) 33150-33156 (2015)

183 W TEM00 mode acoustic-optic Q-switched MOPA laser at 850 kHz

Qiang Liu, Xingpeng Yan, Xing Fu, Mali Gong, and Dongsheng Wang
Opt. Express 17(7) 5636-5644 (2009)

High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser

Peter Koch, Juergen Bartschke, and Johannes A. L’huillier
Opt. Express 23(24) 31357-31366 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tan, S. Zhang, and Y. Zhang, “Laser feedback interferometry based on phase difference of orthogonally polarized lights in external birefringence cavity,” Opt. Express 17(16), 13939–13945 (2009).
    [Crossref] [PubMed]
  2. W. Mao, S. Zhang, L. Cui, and Y. Tan, “Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser,” Opt. Express 14(1), 182–189 (2006).
    [Crossref] [PubMed]
  3. G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34(21), 3421–3423 (2009).
    [Crossref] [PubMed]
  4. G. Kervella, J. Maxin, M. Faugeron, P. Berger, H. Lanctuit, G. Pillet, L. Morvan, F. Dijk, and D. Dolfi, “Laser Sources for Microwave to Millimeter-wave Applications,” Photon. Res. 2(4), B70–B79 (2014).
    [Crossref]
  5. A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
    [PubMed]
  6. G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
    [Crossref] [PubMed]
  7. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Valet, J. Huignard, and A. L. Floch, “Dual-Frequency Laser at 1.5 um for Optical Distribution and Generation of High-Purity Microwave Signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
  8. S. De, A. El Amili, G. H. Loas, S. Schwartz, G. Feugnet, J. Pocholle, F. Bretenaker, and M. Alouini, “Intensity Noise Reduction of Dual-Frequency Nd:YAG Lasers,” in International Conference on Fiber Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T3B.2.
    [Crossref]
  9. M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermo optic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
    [Crossref]
  10. A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
    [Crossref]
  11. Y. Qiao, S. Zheng, H. Chi, X. Jin, and X. Zhang, “Electro-optically tunable microwave source based on composite-cavity microchip laser,” Opt. Express 20(27), 29090–29095 (2012).
    [Crossref] [PubMed]
  12. R. Cheng and S. Zhang, “Diode-pumped dual-frequency microchip Nd: YAG laser with tunable frequency difference,” Appl. Phys. (Berl.) 42(15), 155107 (2009).
  13. J. Le Gouët, J. Xi, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. P. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: Beyond the standard limit of tunability,” Opt. Lett. 32(9), 1090–1092 (2007).
  14. M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 µm,” Opt. Lett. 30(18), 2418–2420 (2005).
    [Crossref] [PubMed]
  15. M. Hu, R. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
    [Crossref]
  16. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
    [Crossref] [PubMed]
  17. V. K. Bagdasarov, N. N. Denisov, A. A. Malyutin, and I. A. Chigaev, “Pulse synchronisation in passively Q-switched lasers emitting at 1.053 and 1.064 μm,” Quantum Electron. 39(10), 887–890 (2009).
    [Crossref]
  18. H. P. H. Cheng, P. Tidemand-Lichtenberg, O. B. Jensen, P. E. Andersen, P. M. Petersen, and C. Pedersen, “All passive synchronized Q-switching of a quasi-three-level and a four-level Nd:YAG laser,” Opt. Express 18(23), 23987–23993 (2010).
    [PubMed]
  19. X. Wang, T. Riesbeck, and H. J. Eichler, “Tunable single frequency microchip Nd: YAP MOPA laser operating at 1.08 μm,” Laser Phys. 23(4), 045804 (2013).
    [Crossref]
  20. X. Yan, Q. Liu, X. Jiang, D. Wang, and M. Gong, “The combined guiding effect in MOPA lasers,” Laser Phys. Lett. 10(4), 045003 (2013).
    [Crossref]
  21. Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
    [Crossref] [PubMed]
  22. Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
    [Crossref]
  23. Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam quality management in multi-stage side-pumped Nd: YAG MOPA laser systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1–6 (2015).
  24. T. Yoshino and Y. Kobayashi, “Temperature Characteristics and Stabilization of Orthogonal Polarization Two-Frequency Nd3+:YAG Microchip Lasers,” Appl. Opt. 38(15), 3266–3270 (1999).
    [Crossref] [PubMed]
  25. N. P. Schmitt, P. Peuser, S. Heinemann, and A. Mehnert, “A model describing the single and multiple line spectra of tunable microcrystal lasers,” Opt. Quantum Electron. 25(8), 527–544 (1993).
    [Crossref]
  26. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  27. A. E. Siegman, Lasers (University Science Books, 1986).
  28. Y. Huang, Z. Wei, K. Su, and Y. Chen, “Power scaling in a diode-end-pumped multisegmented Nd:YVO4 laser with double-pass power amplification,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601006 (2015).
  29. A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
    [Crossref]

2015 (2)

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam quality management in multi-stage side-pumped Nd: YAG MOPA laser systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1–6 (2015).

Y. Huang, Z. Wei, K. Su, and Y. Chen, “Power scaling in a diode-end-pumped multisegmented Nd:YVO4 laser with double-pass power amplification,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601006 (2015).

2014 (3)

2013 (3)

M. Hu, R. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

X. Wang, T. Riesbeck, and H. J. Eichler, “Tunable single frequency microchip Nd: YAP MOPA laser operating at 1.08 μm,” Laser Phys. 23(4), 045804 (2013).
[Crossref]

X. Yan, Q. Liu, X. Jiang, D. Wang, and M. Gong, “The combined guiding effect in MOPA lasers,” Laser Phys. Lett. 10(4), 045003 (2013).
[Crossref]

2012 (1)

2011 (3)

2010 (2)

2009 (5)

Y. Tan, S. Zhang, and Y. Zhang, “Laser feedback interferometry based on phase difference of orthogonally polarized lights in external birefringence cavity,” Opt. Express 17(16), 13939–13945 (2009).
[Crossref] [PubMed]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34(21), 3421–3423 (2009).
[Crossref] [PubMed]

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

V. K. Bagdasarov, N. N. Denisov, A. A. Malyutin, and I. A. Chigaev, “Pulse synchronisation in passively Q-switched lasers emitting at 1.053 and 1.064 μm,” Quantum Electron. 39(10), 887–890 (2009).
[Crossref]

R. Cheng and S. Zhang, “Diode-pumped dual-frequency microchip Nd: YAG laser with tunable frequency difference,” Appl. Phys. (Berl.) 42(15), 155107 (2009).

2008 (1)

2007 (1)

2006 (1)

2005 (1)

2004 (1)

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermo optic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[Crossref]

1999 (1)

1993 (1)

N. P. Schmitt, P. Peuser, S. Heinemann, and A. Mehnert, “A model describing the single and multiple line spectra of tunable microcrystal lasers,” Opt. Quantum Electron. 25(8), 527–544 (1993).
[Crossref]

Agnesi, A.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Alouini, M.

Amon, A.

An, R.

M. Hu, R. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Andersen, P. E.

Bagdasarov, V. K.

V. K. Bagdasarov, N. N. Denisov, A. A. Malyutin, and I. A. Chigaev, “Pulse synchronisation in passively Q-switched lasers emitting at 1.053 and 1.064 μm,” Quantum Electron. 39(10), 887–890 (2009).
[Crossref]

Baili, G.

Berger, P.

Blanc, S.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermo optic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[Crossref]

Bondu, F.

Bourderionnet, J.

Bretenaker, F.

Brisset, J.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermo optic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[Crossref]

Brunel, M.

Chen, J.

Chen, Y.

Y. Huang, Z. Wei, K. Su, and Y. Chen, “Power scaling in a diode-end-pumped multisegmented Nd:YVO4 laser with double-pass power amplification,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601006 (2015).

Cheng, H. P. H.

Cheng, R.

R. Cheng and S. Zhang, “Diode-pumped dual-frequency microchip Nd: YAG laser with tunable frequency difference,” Appl. Phys. (Berl.) 42(15), 155107 (2009).

Chi, H.

Chigaev, I. A.

V. K. Bagdasarov, N. N. Denisov, A. A. Malyutin, and I. A. Chigaev, “Pulse synchronisation in passively Q-switched lasers emitting at 1.053 and 1.064 μm,” Quantum Electron. 39(10), 887–890 (2009).
[Crossref]

Crozatier, V.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermo optic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[Crossref]

Cui, L.

Dallocchio, P.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Danion, G.

Dawes, J. M.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

Denisov, N. N.

V. K. Bagdasarov, N. N. Denisov, A. A. Malyutin, and I. A. Chigaev, “Pulse synchronisation in passively Q-switched lasers emitting at 1.053 and 1.064 μm,” Quantum Electron. 39(10), 887–890 (2009).
[Crossref]

Dijk, F.

Ding, Y. J.

Dolfi, D.

Dong, Y.

Eichler, H. J.

X. Wang, T. Riesbeck, and H. J. Eichler, “Tunable single frequency microchip Nd: YAP MOPA laser operating at 1.08 μm,” Laser Phys. 23(4), 045804 (2013).
[Crossref]

Faugeron, M.

Floch, A. L.

Frein, L.

Garnache, A.

Ge, J.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

M. Hu, R. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
[Crossref] [PubMed]

Gong, M.

X. Yan, Q. Liu, X. Jiang, D. Wang, and M. Gong, “The combined guiding effect in MOPA lasers,” Laser Phys. Lett. 10(4), 045003 (2013).
[Crossref]

Hamel, C.

Heinemann, S.

N. P. Schmitt, P. Peuser, S. Heinemann, and A. Mehnert, “A model describing the single and multiple line spectra of tunable microcrystal lasers,” Opt. Quantum Electron. 25(8), 527–544 (1993).
[Crossref]

Hu, M.

M. Hu, R. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Huang, Q.

M. Hu, R. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Huang, Y.

Y. Huang, Z. Wei, K. Su, and Y. Chen, “Power scaling in a diode-end-pumped multisegmented Nd:YVO4 laser with double-pass power amplification,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601006 (2015).

Huignard, J.

Huignard, J. P.

Jensen, O. B.

Jiang, X.

X. Yan, Q. Liu, X. Jiang, D. Wang, and M. Gong, “The combined guiding effect in MOPA lasers,” Laser Phys. Lett. 10(4), 045003 (2013).
[Crossref]

Jin, X.

Kervella, G.

Kobayashi, Y.

Lanctuit, H.

Le Gouët, J.

Li, T.

Liu, C.

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam quality management in multi-stage side-pumped Nd: YAG MOPA laser systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1–6 (2015).

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
[Crossref] [PubMed]

Liu, Q.

X. Yan, Q. Liu, X. Jiang, D. Wang, and M. Gong, “The combined guiding effect in MOPA lasers,” Laser Phys. Lett. 10(4), 045003 (2013).
[Crossref]

Loas, G.

Malyutin, A. A.

V. K. Bagdasarov, N. N. Denisov, A. A. Malyutin, and I. A. Chigaev, “Pulse synchronisation in passively Q-switched lasers emitting at 1.053 and 1.064 μm,” Quantum Electron. 39(10), 887–890 (2009).
[Crossref]

Mao, W.

Maxin, J.

McKay, A.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

Mehnert, A.

N. P. Schmitt, P. Peuser, S. Heinemann, and A. Mehnert, “A model describing the single and multiple line spectra of tunable microcrystal lasers,” Opt. Quantum Electron. 25(8), 527–544 (1993).
[Crossref]

Merlet, T.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermo optic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[Crossref]

Morvan, L.

Pan, S.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
[Crossref] [PubMed]

Pedersen, C.

Petersen, P. M.

Peuser, P.

N. P. Schmitt, P. Peuser, S. Heinemann, and A. Mehnert, “A model describing the single and multiple line spectra of tunable microcrystal lasers,” Opt. Quantum Electron. 25(8), 527–544 (1993).
[Crossref]

Pillet, G.

Pirzio, F.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Poezevara, A.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermo optic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[Crossref]

Qi, Y.

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam quality management in multi-stage side-pumped Nd: YAG MOPA laser systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1–6 (2015).

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Qiao, Y.

Ragam, S.

Reali, G.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Riesbeck, T.

X. Wang, T. Riesbeck, and H. J. Eichler, “Tunable single frequency microchip Nd: YAP MOPA laser operating at 1.08 μm,” Laser Phys. 23(4), 045804 (2013).
[Crossref]

Rolland, A.

Sagnes, I.

Schmitt, N. P.

N. P. Schmitt, P. Peuser, S. Heinemann, and A. Mehnert, “A model describing the single and multiple line spectra of tunable microcrystal lasers,” Opt. Quantum Electron. 25(8), 527–544 (1993).
[Crossref]

Su, K.

Y. Huang, Z. Wei, K. Su, and Y. Chen, “Power scaling in a diode-end-pumped multisegmented Nd:YVO4 laser with double-pass power amplification,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601006 (2015).

Tan, Y.

Tidemand-Lichtenberg, P.

Valet, M.

Vallet, M.

Wang, C.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Wang, D.

Wang, X.

X. Wang, T. Riesbeck, and H. J. Eichler, “Tunable single frequency microchip Nd: YAP MOPA laser operating at 1.08 μm,” Laser Phys. 23(4), 045804 (2013).
[Crossref]

Wei, Z.

Y. Huang, Z. Wei, K. Su, and Y. Chen, “Power scaling in a diode-end-pumped multisegmented Nd:YVO4 laser with double-pass power amplification,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601006 (2015).

Xi, J.

Xiang, Z.

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam quality management in multi-stage side-pumped Nd: YAG MOPA laser systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1–6 (2015).

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
[Crossref] [PubMed]

Yan, X.

X. Yan, Q. Liu, X. Jiang, D. Wang, and M. Gong, “The combined guiding effect in MOPA lasers,” Laser Phys. Lett. 10(4), 045003 (2013).
[Crossref]

Ye, Z.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Yoshino, T.

Zhang, H.

M. Hu, R. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Zhang, S.

Zhang, X.

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Y. Qiao, S. Zheng, H. Chi, X. Jin, and X. Zhang, “Electro-optically tunable microwave source based on composite-cavity microchip laser,” Opt. Express 20(27), 29090–29095 (2012).
[Crossref] [PubMed]

Zhang, Y.

Zhao, P.

Zhao, Z.

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam quality management in multi-stage side-pumped Nd: YAG MOPA laser systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1–6 (2015).

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
[Crossref] [PubMed]

Zheng, S.

Zotova, I. B.

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

R. Cheng and S. Zhang, “Diode-pumped dual-frequency microchip Nd: YAG laser with tunable frequency difference,” Appl. Phys. (Berl.) 42(15), 155107 (2009).

Appl. Phys. B (1)

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Ye, Z. Zhao, S. Pan, X. Zhang, C. Wang, Y. Qi, C. Liu, Z. Xiang, and J. Ge, “Beam profile evolution and beam quality changes inside a diode-end-pumped laser oscillator,” IEEE J. Quantum Electron. 50(2), 62–67 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Qi, Z. Zhao, C. Liu, and Z. Xiang, “Beam quality management in multi-stage side-pumped Nd: YAG MOPA laser systems,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1–6 (2015).

Y. Huang, Z. Wei, K. Su, and Y. Chen, “Power scaling in a diode-end-pumped multisegmented Nd:YVO4 laser with double-pass power amplification,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601006 (2015).

IEEE Photon. Technol. Lett. (2)

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermo optic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[Crossref]

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. (1)

X. Wang, T. Riesbeck, and H. J. Eichler, “Tunable single frequency microchip Nd: YAP MOPA laser operating at 1.08 μm,” Laser Phys. 23(4), 045804 (2013).
[Crossref]

Laser Phys. Lett. (2)

X. Yan, Q. Liu, X. Jiang, D. Wang, and M. Gong, “The combined guiding effect in MOPA lasers,” Laser Phys. Lett. 10(4), 045003 (2013).
[Crossref]

M. Hu, R. An, H. Zhang, Q. Huang, and J. Ge, “Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval,” Laser Phys. Lett. 10(1), 015801 (2013).
[Crossref]

Opt. Express (7)

W. Mao, S. Zhang, L. Cui, and Y. Tan, “Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser,” Opt. Express 14(1), 182–189 (2006).
[Crossref] [PubMed]

Y. Tan, S. Zhang, and Y. Zhang, “Laser feedback interferometry based on phase difference of orthogonally polarized lights in external birefringence cavity,” Opt. Express 17(16), 13939–13945 (2009).
[Crossref] [PubMed]

Y. Qiao, S. Zheng, H. Chi, X. Jin, and X. Zhang, “Electro-optically tunable microwave source based on composite-cavity microchip laser,” Opt. Express 20(27), 29090–29095 (2012).
[Crossref] [PubMed]

G. Danion, C. Hamel, L. Frein, F. Bondu, G. Loas, and M. Alouini, “Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes,” Opt. Express 22(15), 17673–17678 (2014).
[Crossref] [PubMed]

H. P. H. Cheng, P. Tidemand-Lichtenberg, O. B. Jensen, P. E. Andersen, P. M. Petersen, and C. Pedersen, “All passive synchronized Q-switching of a quasi-three-level and a four-level Nd:YAG laser,” Opt. Express 18(23), 23987–23993 (2010).
[PubMed]

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[PubMed]

Z. Xiang, D. Wang, S. Pan, Y. Dong, Z. Zhao, T. Li, J. Ge, C. Liu, and J. Chen, “Beam quality improvement by gain guiding effect in end-pumped Nd:YVO₄ laser amplifiers,” Opt. Express 19(21), 21060–21073 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

N. P. Schmitt, P. Peuser, S. Heinemann, and A. Mehnert, “A model describing the single and multiple line spectra of tunable microcrystal lasers,” Opt. Quantum Electron. 25(8), 527–544 (1993).
[Crossref]

Photon. Res. (1)

Quantum Electron. (1)

V. K. Bagdasarov, N. N. Denisov, A. A. Malyutin, and I. A. Chigaev, “Pulse synchronisation in passively Q-switched lasers emitting at 1.053 and 1.064 μm,” Quantum Electron. 39(10), 887–890 (2009).
[Crossref]

Other (3)

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

A. E. Siegman, Lasers (University Science Books, 1986).

S. De, A. El Amili, G. H. Loas, S. Schwartz, G. Feugnet, J. Pocholle, F. Bretenaker, and M. Alouini, “Intensity Noise Reduction of Dual-Frequency Nd:YAG Lasers,” in International Conference on Fiber Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T3B.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The spectrum of dual modes operates in a monolithic microchip laser. The longitudinal mode spacing Δv = c/2nL is larger than the half and less than the entire gain bandwidth (Δv0>Δv>Δv0/2). Only dual-longitudinal modes (red lines) can exceed the threshold and start to oscillate.
Fig. 2
Fig. 2 Experimental setup of the “U” type dual-frequency MOPA laser system. GRIN: GRIN lens. OM: output mirror. DM: dichroic mirrors. OSA: optical spectrum analyzer.
Fig. 3
Fig. 3 The power of seed laser (PSL) vs. pump power of seed laser (PSLD) and pump current of seed laser (CSLD). The optical efficiency was fitted as a linear function with a slope of 24.34%.
Fig. 4
Fig. 4 The spectra of seed laser (SSLs) vs. PSLD. When PSLD is below 1.70 W, the seed laser remained as single mode output. When PSLD increased from 1.70 W to 2.23 W, dual-mode signals appeared and the wavelengths red-shifted. The “mode hopping” made the wavelengths shift periodically within a certain range.
Fig. 5
Fig. 5 The pump current of amplifier (CALD) in both ends was kept at 40 A; and the PSLD increased from 1.43 W to 2.23 W. (a) power of amplified laser (PAL) vs. PSLD (green solid circle dots). The PAL ranges from 0.71 W to 2.38 W. (b) The amplification factor (A.F.) vs. the PSLD (blue solid rectangles). The A.F. ranges from 9.35 to 10.65.
Fig. 6
Fig. 6 The spectra of dual-frequency laser with 2.23 W PSLD and different cavity temperatures. Gain profiles are in black dash lines. Spectra of the seed laser (SSLs) are in blue lines. Spectra of amplified laser (SALs) are in red lines. (a) Temperature at 45.1°C. (b) Temperature at 53.3°C. (c) Temperature at 61.3°C.
Fig. 7
Fig. 7 Spectra of dual-frequency laser with PSLD at 2.23 W and temperature at 53.3°C. The gain profiles are represented in black lines. (a) SSL is of blue area. (b) SAL is of red area. (c) The beam quality comparison between seed laser and amplified laser.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m=2Δ v 0 nL/c
dλ/dT=λ[ α e +( 1/n )*dn/dT]
δ v SH Δ v H ln2/ g 0 ( v 0 ) L
G AL =P sat /P SL ln{ 1+G 0 [ exp( P SL /P sat ) ] }

Metrics