Abstract

Electromagnetically induced phase grating is theoretically investigated in the driven two-level quantum dot exciton system at the presence of the exciton-phonon interactions. Due to the phonon-induced coherent population oscillation, the dispersion and absorption spectra are sharply changed and the phase modulation is enhanced via the high refractive index with nearly-vanishing absorption, which could effectively diffract a weak probe light into the first-order direction with the help of a standing-wave control field. Moreover, the diffraction efficiency of the grating can be easily manipulated by controlling the Huang-Rhys factor representing the exciton-phonon coupling, the intensity and detuning of the control field, and the detuning of the probe field. The scheme we present has potential applications in the photon devices for optical-switching and optical-imaging in the micro-nano solid-state system.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Squeezing induced high-efficiency diffraction grating in two-level system

Guang-Ling Cheng and Ai-Xi Chen
Opt. Express 25(4) 4483-4492 (2017)

Electromagnetically induced grating in asymmetric quantum wells via Fano interference

Fengxue Zhou, Yihong Qi, Hui Sun, Dijun Chen, Jie Yang, Yueping Niu, and Shangqing Gong
Opt. Express 21(10) 12249-12259 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, England, 1997).
    [Crossref]
  2. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
    [Crossref]
  3. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
    [Crossref]
  4. Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
    [Crossref]
  5. Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
    [Crossref]
  6. M. Fleischhauer, C. H. Keitel, M. O. Scully, S. Chang, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
    [Crossref] [PubMed]
  7. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
    [Crossref] [PubMed]
  8. G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
    [Crossref]
  9. Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [Crossref]
  10. G. L. Cheng, Y. P. Wang, W. X. Zhong, and A. X. Chen, “Phase and amplitude control of switching from positive to negative dispersion in superconducting quantum circuits,” Ann. Phys. 353, 64–70 (2015).
    [Crossref]
  11. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
    [Crossref]
  12. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005).
    [Crossref] [PubMed]
  13. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
    [Crossref] [PubMed]
  14. J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
    [Crossref]
  15. A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt. 52, 2365–2371 (2005).
    [Crossref]
  16. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1990).
    [Crossref]
  17. G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
    [Crossref]
  18. B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level ladder-type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B 39, 1145 (2006).
    [Crossref]
  19. Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B 43, 161004 (2010).
    [Crossref]
  20. L. E. E. de Araujo, “Electromagnetically induced phase grating,” Opt. Lett. 35, 977–979 (2010).
    [Crossref] [PubMed]
  21. R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A 83, 033824 (2011).
    [Crossref]
  22. F. X. Zhou, Y. H. Qi, H. Sun, D. J Chen, J. Yang, Y. P. Niu, and S. Q. Gong, “Electromagnetically induced grating in asymmetric quantum wells via Fano interference,” Opt. Express 21, 12249–12259 (2013).
    [Crossref] [PubMed]
  23. Y. H. Qi, Y. P. Niu, Y. Xiang, H. L. Wang, and S. Q. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
    [Crossref]
  24. Z. H. Xiao, L. Zheng, and H. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express 20, 1219–1229 (2012).
    [Crossref] [PubMed]
  25. S. Q. Kuang, C. S. Jin, and C. Li, “Gain-phase grating based on spatial modulation of active Raman gain in cold atoms,” Phys. Rev. A 84, 033831 (2011).
    [Crossref]
  26. L. Wang, F. X. Zhou, P. D. Hu, Y. P. Niu, and S. Q. Gong, “Two-dimensional electromagnetically induced cross-grating in a four-level tripodtype atomic system,” J. Phys. B 47, 225501 (2014).
    [Crossref]
  27. R. Bratschitsch and A. Leitenstorfer, “Quantum dots: artificial atoms for quantum optics,” Nat. Mater. 5, 855–856 (2006).
    [Crossref] [PubMed]
  28. X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
    [Crossref] [PubMed]
  29. P. KaerNielsen, H. Thyrrestrup, J. Mørk, and B. Tromborg, “Numerical investigation of electromagnetically induced transparency in a quantum dot structure,” Opt. Express 15, 6396–6408 (2007).
    [Crossref]
  30. Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuan, and M. Yao, “Electromagnetically induced transparency in quantum dot systems,” J. Phys. B 39, 2621–2632 (2006).
    [Crossref]
  31. X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
    [Crossref]
  32. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
    [Crossref]
  33. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
    [Crossref] [PubMed]
  34. S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
    [Crossref]
  35. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
    [Crossref]
  36. L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
    [Crossref]
  37. T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355–R4358 (1997).
    [Crossref]
  38. I. Wilson-Rae and A. Imamoğlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002).
    [Crossref]
  39. Y. Wu and X. X. Yang, “Strong-coupling theory of periodically driven two-level systems,” Phys. Rev. Lett. 98, 013601 (2007).
    [Crossref] [PubMed]
  40. Y. Wu and X. X. Yang, “Carrier-envelope phase-dependent atomic coherence and quantum beats,” Phys Rev. A 76, 013832 (2007).
    [Crossref]
  41. B. I. Greene, J. F. Muller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61, 325–328 (1988).
    [Crossref] [PubMed]
  42. G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
    [Crossref] [PubMed]
  43. K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. Lond. A 204, 406–423 (1950).
    [Crossref]
  44. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992).
  45. J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. 16, S3727 (2004).
  46. S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crépin, J.-M. Ortega, and J.-M. Gérard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
    [Crossref]
  47. R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
    [Crossref]
  48. E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab, “Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator,” Phys. Rev. B 72, 195410 (2005).
    [Crossref]

2015 (1)

G. L. Cheng, Y. P. Wang, W. X. Zhong, and A. X. Chen, “Phase and amplitude control of switching from positive to negative dispersion in superconducting quantum circuits,” Ann. Phys. 353, 64–70 (2015).
[Crossref]

2014 (1)

L. Wang, F. X. Zhou, P. D. Hu, Y. P. Niu, and S. Q. Gong, “Two-dimensional electromagnetically induced cross-grating in a four-level tripodtype atomic system,” J. Phys. B 47, 225501 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (4)

S. Q. Kuang, C. S. Jin, and C. Li, “Gain-phase grating based on spatial modulation of active Raman gain in cold atoms,” Phys. Rev. A 84, 033831 (2011).
[Crossref]

Y. H. Qi, Y. P. Niu, Y. Xiang, H. L. Wang, and S. Q. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[Crossref]

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A 83, 033824 (2011).
[Crossref]

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

2010 (2)

Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B 43, 161004 (2010).
[Crossref]

L. E. E. de Araujo, “Electromagnetically induced phase grating,” Opt. Lett. 35, 977–979 (2010).
[Crossref] [PubMed]

2008 (1)

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[Crossref]

2007 (4)

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[Crossref] [PubMed]

P. KaerNielsen, H. Thyrrestrup, J. Mørk, and B. Tromborg, “Numerical investigation of electromagnetically induced transparency in a quantum dot structure,” Opt. Express 15, 6396–6408 (2007).
[Crossref]

Y. Wu and X. X. Yang, “Strong-coupling theory of periodically driven two-level systems,” Phys. Rev. Lett. 98, 013601 (2007).
[Crossref] [PubMed]

Y. Wu and X. X. Yang, “Carrier-envelope phase-dependent atomic coherence and quantum beats,” Phys Rev. A 76, 013832 (2007).
[Crossref]

2006 (4)

Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuan, and M. Yao, “Electromagnetically induced transparency in quantum dot systems,” J. Phys. B 39, 2621–2632 (2006).
[Crossref]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level ladder-type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B 39, 1145 (2006).
[Crossref]

R. Bratschitsch and A. Leitenstorfer, “Quantum dots: artificial atoms for quantum optics,” Nat. Mater. 5, 855–856 (2006).
[Crossref] [PubMed]

2005 (4)

A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt. 52, 2365–2371 (2005).
[Crossref]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005).
[Crossref] [PubMed]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[Crossref]

E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab, “Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator,” Phys. Rev. B 72, 195410 (2005).
[Crossref]

2004 (3)

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. 16, S3727 (2004).

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[Crossref] [PubMed]

Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

2003 (2)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[Crossref] [PubMed]

Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
[Crossref]

2002 (4)

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crépin, J.-M. Ortega, and J.-M. Gérard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[Crossref]

I. Wilson-Rae and A. Imamoğlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002).
[Crossref]

2001 (2)

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[Crossref]

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[Crossref]

1999 (2)

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
[Crossref]

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[Crossref]

1998 (1)

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

1997 (3)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355–R4358 (1997).
[Crossref]

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[Crossref]

1996 (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[Crossref]

1995 (1)

G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
[Crossref] [PubMed]

1992 (1)

M. Fleischhauer, C. H. Keitel, M. O. Scully, S. Chang, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[Crossref] [PubMed]

1990 (1)

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1990).
[Crossref]

1988 (1)

B. I. Greene, J. F. Muller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61, 325–328 (1988).
[Crossref] [PubMed]

1950 (1)

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. Lond. A 204, 406–423 (1950).
[Crossref]

Abstreiter, G.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Agarwal, G. S.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[Crossref]

G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
[Crossref] [PubMed]

Alferov, Z. I.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[Crossref]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[Crossref]

Bajcsy, M.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[Crossref] [PubMed]

Bastard, G.

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
[Crossref]

Beham, E.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Berman, P. R.

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[Crossref]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[Crossref] [PubMed]

Besombes, L.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[Crossref]

Bichler, M.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Bimberg, D.

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[Crossref]

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[Crossref]

Boucaud, P.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crépin, J.-M. Ortega, and J.-M. Gérard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992).

Bracker, A. S.

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[Crossref]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[Crossref] [PubMed]

Bratschitsch, R.

R. Bratschitsch and A. Leitenstorfer, “Quantum dots: artificial atoms for quantum optics,” Nat. Mater. 5, 855–856 (2006).
[Crossref] [PubMed]

Broquier, M.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crépin, J.-M. Ortega, and J.-M. Gérard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[Crossref]

Brown, A. W.

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005).
[Crossref] [PubMed]

A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt. 52, 2365–2371 (2005).
[Crossref]

Brunhes, T.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crépin, J.-M. Ortega, and J.-M. Gérard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[Crossref]

Cardoso, G. C.

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

Chang, S.

M. Fleischhauer, C. H. Keitel, M. O. Scully, S. Chang, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. 16, S3727 (2004).

Chen, A. X.

G. L. Cheng, Y. P. Wang, W. X. Zhong, and A. X. Chen, “Phase and amplitude control of switching from positive to negative dispersion in superconducting quantum circuits,” Ann. Phys. 353, 64–70 (2015).
[Crossref]

Chen, D. J

Chen, H. Y.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

Cheng, G. L.

G. L. Cheng, Y. P. Wang, W. X. Zhong, and A. X. Chen, “Phase and amplitude control of switching from positive to negative dispersion in superconducting quantum circuits,” Ann. Phys. 353, 64–70 (2015).
[Crossref]

Chuang, S. L.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. 16, S3727 (2004).

Crépin, C.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crépin, J.-M. Ortega, and J.-M. Gérard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[Crossref]

de Araujo, L. E. E.

Deng, L.

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[Crossref] [PubMed]

Dey, T. N.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[Crossref]

Du, S. W.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

Dutta, B. K.

B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level ladder-type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B 39, 1145 (2006).
[Crossref]

Ferreira, R.

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
[Crossref]

Findeis, F.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, C. H. Keitel, M. O. Scully, S. Chang, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[Crossref] [PubMed]

Gammon, D.

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[Crossref]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[Crossref] [PubMed]

Gao, J. Y.

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A 83, 033824 (2011).
[Crossref]

Gea-Banacloche, J.

E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab, “Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator,” Phys. Rev. B 72, 195410 (2005).
[Crossref]

Gérard, J. M.

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
[Crossref]

Gérard, J.-M.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crépin, J.-M. Ortega, and J.-M. Gérard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[Crossref]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Gong, S. Q.

L. Wang, F. X. Zhou, P. D. Hu, Y. P. Niu, and S. Q. Gong, “Two-dimensional electromagnetically induced cross-grating in a four-level tripodtype atomic system,” J. Phys. B 47, 225501 (2014).
[Crossref]

F. X. Zhou, Y. H. Qi, H. Sun, D. J Chen, J. Yang, Y. P. Niu, and S. Q. Gong, “Electromagnetically induced grating in asymmetric quantum wells via Fano interference,” Opt. Express 21, 12249–12259 (2013).
[Crossref] [PubMed]

Y. H. Qi, Y. P. Niu, Y. Xiang, H. L. Wang, and S. Q. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[Crossref]

Greene, B. I.

B. I. Greene, J. F. Muller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61, 325–328 (1988).
[Crossref] [PubMed]

Guldner, Y.

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
[Crossref]

Hameau, S.

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
[Crossref]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

Heitz, R.

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[Crossref]

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[Crossref]

Hoffmann, A.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[Crossref]

Hu, P. D.

L. Wang, F. X. Zhou, P. D. Hu, Y. P. Niu, and S. Q. Gong, “Two-dimensional electromagnetically induced cross-grating in a four-level tripodtype atomic system,” J. Phys. B 47, 225501 (2014).
[Crossref]

Huang, K.

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. Lond. A 204, 406–423 (1950).
[Crossref]

Imamoglu, A.

I. Wilson-Rae and A. Imamoğlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002).
[Crossref]

Imoto, N.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1990).
[Crossref]

Inoshita, T.

T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355–R4358 (1997).
[Crossref]

Irish, E. K.

E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab, “Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator,” Phys. Rev. B 72, 195410 (2005).
[Crossref]

Jiang, L.

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A 83, 033824 (2011).
[Crossref]

Jiang, Y.

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A 83, 033824 (2011).
[Crossref]

Jiang, Y. W.

Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuan, and M. Yao, “Electromagnetically induced transparency in quantum dot systems,” J. Phys. B 39, 2621–2632 (2006).
[Crossref]

Jin, C. S.

S. Q. Kuang, C. S. Jin, and C. Li, “Gain-phase grating based on spatial modulation of active Raman gain in cold atoms,” Phys. Rev. A 84, 033831 (2011).
[Crossref]

KaerNielsen, P.

Keitel, C. H.

M. Fleischhauer, C. H. Keitel, M. O. Scully, S. Chang, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[Crossref] [PubMed]

Kheng, K.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[Crossref]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Kim, J.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. 16, S3727 (2004).

Kim, K.

Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B 43, 161004 (2010).
[Crossref]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Kop’ev, P. S.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[Crossref]

Kou, J.

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A 83, 033824 (2011).
[Crossref]

Ku, P. C.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. 16, S3727 (2004).

Kuang, S. Q.

S. Q. Kuang, C. S. Jin, and C. Li, “Gain-phase grating based on spatial modulation of active Raman gain in cold atoms,” Phys. Rev. A 84, 033831 (2011).
[Crossref]

Ledentsov, N. N.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[Crossref]

Leitenstorfer, A.

R. Bratschitsch and A. Leitenstorfer, “Quantum dots: artificial atoms for quantum optics,” Nat. Mater. 5, 855–856 (2006).
[Crossref] [PubMed]

Lemaître, A.

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
[Crossref]

Li, C.

S. Q. Kuang, C. S. Jin, and C. Li, “Gain-phase grating based on spatial modulation of active Raman gain in cold atoms,” Phys. Rev. A 84, 033831 (2011).
[Crossref]

Li, Y. Q.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

Lin, H.

Ling, H. Y.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

Lukin, M. D.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[Crossref] [PubMed]

Madhukar, A.

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[Crossref]

Mahapatra, P. K.

B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level ladder-type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B 39, 1145 (2006).
[Crossref]

Mariette, H.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[Crossref]

Marsal, L.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[Crossref]

Martin, I.

E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab, “Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator,” Phys. Rev. B 72, 195410 (2005).
[Crossref]

Menon, S.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[Crossref]

Mitsunaga, M.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1990).
[Crossref]

Mørk, J.

Mukhametzhanov, I.

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[Crossref]

Muller, J. F.

B. I. Greene, J. F. Muller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61, 325–328 (1988).
[Crossref] [PubMed]

Niu, Y. P.

L. Wang, F. X. Zhou, P. D. Hu, Y. P. Niu, and S. Q. Gong, “Two-dimensional electromagnetically induced cross-grating in a four-level tripodtype atomic system,” J. Phys. B 47, 225501 (2014).
[Crossref]

F. X. Zhou, Y. H. Qi, H. Sun, D. J Chen, J. Yang, Y. P. Niu, and S. Q. Gong, “Electromagnetically induced grating in asymmetric quantum wells via Fano interference,” Opt. Express 21, 12249–12259 (2013).
[Crossref] [PubMed]

Y. H. Qi, Y. P. Niu, Y. Xiang, H. L. Wang, and S. Q. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[Crossref]

Orenstein, J.

B. I. Greene, J. F. Muller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61, 325–328 (1988).
[Crossref] [PubMed]

Ortega, J.-M.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crépin, J.-M. Ortega, and J.-M. Gérard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[Crossref]

Qi, Y. H.

F. X. Zhou, Y. H. Qi, H. Sun, D. J Chen, J. Yang, Y. P. Niu, and S. Q. Gong, “Electromagnetically induced grating in asymmetric quantum wells via Fano interference,” Opt. Express 21, 12249–12259 (2013).
[Crossref] [PubMed]

Y. H. Qi, Y. P. Niu, Y. Xiang, H. L. Wang, and S. Q. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[Crossref]

Rapkine, D. H.

B. I. Greene, J. F. Muller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61, 325–328 (1988).
[Crossref] [PubMed]

Rhys, A.

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. Lond. A 204, 406–423 (1950).
[Crossref]

Sakaki, H.

T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355–R4358 (1997).
[Crossref]

Saldana, J.

Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
[Crossref]

Sauvage, S.

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crépin, J.-M. Ortega, and J.-M. Gérard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[Crossref]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Schmitt-Rink, S.

B. I. Greene, J. F. Muller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61, 325–328 (1988).
[Crossref] [PubMed]

Schwab, K. C.

E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab, “Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator,” Phys. Rev. B 72, 195410 (2005).
[Crossref]

Scully, M. O.

M. Fleischhauer, C. H. Keitel, M. O. Scully, S. Chang, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[Crossref] [PubMed]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, England, 1997).
[Crossref]

Sham, L. J.

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[Crossref]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[Crossref] [PubMed]

Shin, S. G.

Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B 43, 161004 (2010).
[Crossref]

Steel, D. G.

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[Crossref]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[Crossref] [PubMed]

Stier, O.

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[Crossref]

Stufler, S.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Sun, B.

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[Crossref]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[Crossref] [PubMed]

Sun, H.

Tabosa, J. W. R.

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

Thakur, M.

B. I. Greene, J. F. Muller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61, 325–328 (1988).
[Crossref] [PubMed]

Thyrrestrup, H.

Tromborg, B.

Ulrich, B. T.

M. Fleischhauer, C. H. Keitel, M. O. Scully, S. Chang, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[Crossref] [PubMed]

Ustinov, V. M.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[Crossref]

Veit, M.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[Crossref]

Verzelen, O.

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
[Crossref]

Wan, R. G.

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A 83, 033824 (2011).
[Crossref]

Wang, H. L.

Y. H. Qi, Y. P. Niu, Y. Xiang, H. L. Wang, and S. Q. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[Crossref]

Wang, L.

L. Wang, F. X. Zhou, P. D. Hu, Y. P. Niu, and S. Q. Gong, “Two-dimensional electromagnetically induced cross-grating in a four-level tripodtype atomic system,” J. Phys. B 47, 225501 (2014).
[Crossref]

Wang, Y. P.

G. L. Cheng, Y. P. Wang, W. X. Zhong, and A. X. Chen, “Phase and amplitude control of switching from positive to negative dispersion in superconducting quantum circuits,” Ann. Phys. 353, 64–70 (2015).
[Crossref]

Wen, J. M.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

Wilson-Rae, I.

I. Wilson-Rae and A. Imamoğlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002).
[Crossref]

Wu, Y.

Y. Wu and X. X. Yang, “Carrier-envelope phase-dependent atomic coherence and quantum beats,” Phys Rev. A 76, 013832 (2007).
[Crossref]

Y. Wu and X. X. Yang, “Strong-coupling theory of periodically driven two-level systems,” Phys. Rev. Lett. 98, 013601 (2007).
[Crossref] [PubMed]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[Crossref]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[Crossref] [PubMed]

Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
[Crossref]

Wu, Z. J.

Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuan, and M. Yao, “Electromagnetically induced transparency in quantum dot systems,” J. Phys. B 39, 2621–2632 (2006).
[Crossref]

Xiang, Y.

Y. H. Qi, Y. P. Niu, Y. Xiang, H. L. Wang, and S. Q. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[Crossref]

Xiao, M.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt. 52, 2365–2371 (2005).
[Crossref]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005).
[Crossref] [PubMed]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

Xiao, Z. H.

Z. H. Xiao, L. Zheng, and H. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express 20, 1219–1229 (2012).
[Crossref] [PubMed]

Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B 43, 161004 (2010).
[Crossref]

Xu, X. D.

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[Crossref]

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[Crossref] [PubMed]

Yang, J.

Yang, X. X.

Y. Wu and X. X. Yang, “Strong-coupling theory of periodically driven two-level systems,” Phys. Rev. Lett. 98, 013601 (2007).
[Crossref] [PubMed]

Y. Wu and X. X. Yang, “Carrier-envelope phase-dependent atomic coherence and quantum beats,” Phys Rev. A 76, 013832 (2007).
[Crossref]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[Crossref]

Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

Yao, M.

Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuan, and M. Yao, “Electromagnetically induced transparency in quantum dot systems,” J. Phys. B 39, 2621–2632 (2006).
[Crossref]

Yuan, X. Z.

Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuan, and M. Yao, “Electromagnetically induced transparency in quantum dot systems,” J. Phys. B 39, 2621–2632 (2006).
[Crossref]

Zeman, J.

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
[Crossref]

Zheng, L.

Zhong, W. X.

G. L. Cheng, Y. P. Wang, W. X. Zhong, and A. X. Chen, “Phase and amplitude control of switching from positive to negative dispersion in superconducting quantum circuits,” Ann. Phys. 353, 64–70 (2015).
[Crossref]

Zhou, F. X.

L. Wang, F. X. Zhou, P. D. Hu, Y. P. Niu, and S. Q. Gong, “Two-dimensional electromagnetically induced cross-grating in a four-level tripodtype atomic system,” J. Phys. B 47, 225501 (2014).
[Crossref]

F. X. Zhou, Y. H. Qi, H. Sun, D. J Chen, J. Yang, Y. P. Niu, and S. Q. Gong, “Electromagnetically induced grating in asymmetric quantum wells via Fano interference,” Opt. Express 21, 12249–12259 (2013).
[Crossref] [PubMed]

Zhu, K. D.

Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuan, and M. Yao, “Electromagnetically induced transparency in quantum dot systems,” J. Phys. B 39, 2621–2632 (2006).
[Crossref]

Zhu, S. Y.

M. Fleischhauer, C. H. Keitel, M. O. Scully, S. Chang, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[Crossref] [PubMed]

Zhu, Y. F.

Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
[Crossref]

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[Crossref] [PubMed]

Zrenner, A.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, England, 1997).
[Crossref]

Ann. Phys. (1)

G. L. Cheng, Y. P. Wang, W. X. Zhong, and A. X. Chen, “Phase and amplitude control of switching from positive to negative dispersion in superconducting quantum circuits,” Ann. Phys. 353, 64–70 (2015).
[Crossref]

Appl. Phys. Lett. (1)

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

J. Mod. Opt. (1)

A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt. 52, 2365–2371 (2005).
[Crossref]

J. Phys. (1)

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. 16, S3727 (2004).

J. Phys. B (4)

L. Wang, F. X. Zhou, P. D. Hu, Y. P. Niu, and S. Q. Gong, “Two-dimensional electromagnetically induced cross-grating in a four-level tripodtype atomic system,” J. Phys. B 47, 225501 (2014).
[Crossref]

B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level ladder-type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B 39, 1145 (2006).
[Crossref]

Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B 43, 161004 (2010).
[Crossref]

Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuan, and M. Yao, “Electromagnetically induced transparency in quantum dot systems,” J. Phys. B 39, 2621–2632 (2006).
[Crossref]

Nat. Mater. (1)

R. Bratschitsch and A. Leitenstorfer, “Quantum dots: artificial atoms for quantum optics,” Nat. Mater. 5, 855–856 (2006).
[Crossref] [PubMed]

Nat. Phys. (2)

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[Crossref]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[Crossref]

Nature (2)

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612–614 (2002).
[Crossref] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. H. Qi, Y. P. Niu, Y. Xiang, H. L. Wang, and S. Q. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys Rev. A (1)

Y. Wu and X. X. Yang, “Carrier-envelope phase-dependent atomic coherence and quantum beats,” Phys Rev. A 76, 013832 (2007).
[Crossref]

Phys. Rev. A (11)

G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
[Crossref] [PubMed]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1990).
[Crossref]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[Crossref]

Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
[Crossref]

M. Fleischhauer, C. H. Keitel, M. O. Scully, S. Chang, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A 46, 1468–1487 (1992).
[Crossref] [PubMed]

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[Crossref]

Y. Wu and X. X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[Crossref]

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A 83, 033824 (2011).
[Crossref]

S. Q. Kuang, C. S. Jin, and C. Li, “Gain-phase grating based on spatial modulation of active Raman gain in cold atoms,” Phys. Rev. A 84, 033831 (2011).
[Crossref]

Phys. Rev. B (6)

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[Crossref]

T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355–R4358 (1997).
[Crossref]

I. Wilson-Rae and A. Imamoğlu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002).
[Crossref]

S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crépin, J.-M. Ortega, and J.-M. Gérard, “Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 153312 (2002).
[Crossref]

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Z. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[Crossref]

E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab, “Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator,” Phys. Rev. B 72, 195410 (2005).
[Crossref]

Phys. Rev. Lett. (5)

B. I. Greene, J. F. Muller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink, and M. Thakur, “Phonon-mediated optical nonlinearity in polydiacetylene,” Phys. Rev. Lett. 61, 325–328 (1988).
[Crossref] [PubMed]

Y. Wu and X. X. Yang, “Strong-coupling theory of periodically driven two-level systems,” Phys. Rev. Lett. 98, 013601 (2007).
[Crossref] [PubMed]

S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaître, and J. M. Gérard, “Strong electron-phonon coupling regime in quantum dots: evidence for everlasting resonant polarons,” Phys. Rev. Lett. 83, 4152–4155 (1999).
[Crossref]

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[Crossref]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

Proc. R. Soc. Lond. A (1)

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. Lond. A 204, 406–423 (1950).
[Crossref]

Prog. Opt. (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[Crossref]

Science (1)

X. D. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[Crossref] [PubMed]

Other (2)

R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, England, 1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The sketch consisting of many longitudinal optical phonons with small momenta and a single two-level quantum dot driven by a control field and probed by a weak field. (b) The schematic plot of the control and probe fields propagating through the medium.
Fig. 2
Fig. 2 The dispersion (Blue solid line) and absorption (Red dash line) spectra vs the probe detuning Δp0. The corresponding parameters are given by T2 = 2T1, ω0 = 15, γ0 = 0.01, Δ0 = 0, and λ0 = 0, Ω0 = 0.2 (a), λ0 = 0, Ω0 = 0.5 (b), λ0 = 0, Ω0 = 2 (c), λ0 = 0.01, Ω0 = 0.2 (d), λ0 = 0.01, Ω0 = 0.5 (e), λ0 = 0.01, Ω0 = 2 (f).
Fig. 3
Fig. 3 The Fraunhofer diffractions of phase modulation exp(iΦ) (Φ = Re[χ]L/z0) (a), absorption modulation |T (x)|(|T (x)| = exp(−Im[χ]L/z0)) (b), and the diffraction intensity Ip (θ) (c) as functions of sinθ. The parameters are chosen as Ω0 = 0.5, Δp0 = −14.97, L = 40z0, M = 5, Λxp = 4, λ0 = 0 (Red dash line) and λ0 = 0.01 (Blue solid line). The other parameters are as same as those in Fig. 2.
Fig. 4
Fig. 4 The first-order diffraction intensity Ip (θ1) as a function of Rabi frequency Ω0 (a), interaction length L (b), and coupling constant λ0 (c). Other parameters are the same as in Fig. 3.
Fig. 5
Fig. 5 (a) The dressed states of the exciton at the presence of phonon. (b) The transition process with respect to the emission of a photon for the three-photon resonance. (c) The case for the stimulated Rayleigh resonance. (d) The corresponding transition for the absorption resonance as modified by the ac Stark effect.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

H = h ¯ ω p h q b q b q + h ¯ q λ q ( b q + b q ) S z + h ¯ Δ c S z h ¯ Ω c ( x ) ( S + + S ) h ¯ Ω p ( S + e i δ t + S e i δ t ) ,
d S d t = ( 1 T 2 + i ( Δ c + N ) ) S 2 i ( Ω c ( x ) + Ω p e i δ t ) S z ,
d S z d t = 1 T 1 ( S z + 1 2 ) + i ( Ω c ( x ) + Ω p e i δ t ) S + i ( Ω c * ( x ) + Ω p * e i δ t ) S ,
d 2 N d t 2 + γ n d N d t + ω p h 2 N = 2 ω p h 3 λ 0 S z ,
S ( t ) = S 0 + S + 1 e i δ t + S 1 e i δ t ,
S z ( t ) = S 0 z + S + 1 z e i δ t + S 1 z e i δ t ,
N ( t ) = N 0 + N + 1 e i δ t + N 1 e i δ t .
S + 1 = T 2 Ω p 8 λ 0 ω 0 η T 1 / T 2 Ω 0 2 α k 0 2 Π ( 1 + i Δ 0 4 i λ 0 ω 0 k 0 ) + 2 i T 1 / T 2 Ω 0 2 α k 0 Π + i k 0 1 + i Δ 0 4 i λ 0 ω 0 k 0 i δ 0
( k 0 + 1 ) [ ( Δ 0 4 λ 0 ω 0 k 0 ) 2 + 1 ] + 4 T 1 / T 2 Ω 0 2 k 0 = 0.
χ e f f ( ω p ) = N q | μ e g | 2 h ¯ ε 0 S + 1 Ω p = N q T 2 | μ e g | 2 h ¯ ε 0 X ( ω p )
χ ( ω p ) = 8 λ 0 ω 0 η T 1 / T 2 Ω 0 2 α k 0 2 Π ( 1 + i Δ 0 4 i λ 0 ω 0 k 0 ) + 2 i T 1 / T 2 Ω 0 2 α k 0 Π + i k 0 1 + i Δ 0 4 i λ 0 ω 0 k 0 i δ 0 .
E p ( x , z , t ) z + 1 c E p ( x , z , t ) t = i π χ e f f ( ω p ) λ p E p ( x , z , t ) ,
E p z = i χ E p ,
T ( x ) = e i χ L / z 0 = e I m [ χ ] L / z 0 e i R e [ χ ] L / z 0 .
I p ( θ ) = | F ( θ ) | 2 sin 2 ( M π Λ x sin θ / λ p ) M 2 sin 2 ( π Λ x sin θ / λ p ) ,
I p ( θ 1 ) = | F ( θ 1 ) | 2 = | 0 1 T ( x ) exp ( i 2 π x ) d x | 2 .
H d p = h ¯ ω e g S z + h ¯ ω p h b q + h ¯ λ q ( b q + b q ) S z .
| ± , N ± = | ± e ( λ q / ω p h ) ( b q + b q ) | N q ,

Metrics