Abstract

We report on an experimental and theoretical investigation of an integrated Bragg-like grating coupler for near-vertical scattering of light from photonic crystal waveguides with an ultra-small footprint of a few lattice constants only. Using frequency-resolved measurements, we find the directional properties of the scattered radiation and prove that the coupler shows a good performance over the complete photonic bandgap. The results compare well to analytical considerations regarding 1d-scattering phenomena as well as to FDTD simulations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Grating-assisted coupling of optical fibers and photonic crystal waveguides

Wan Kuang, Cheolwoo Kim, Andrew Stapleton, and John D. O’Brien
Opt. Lett. 27(18) 1604-1606 (2002)

Directional free-space coupling from photonic crystal waveguides

Cheng-Chia Tsai, Jacob Mower, and Dirk Englund
Opt. Express 19(21) 20586-20596 (2011)

Electrically controlled modulation in a photonic crystal nanocavity

Dirk Englund, Bryan Ellis, Elizabeth Edwards, Tomas Sarmiento, James S. Harris, David A. B. Miller, and Jelena Vučković
Opt. Express 17(18) 15409-15419 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, S. Fan, P. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [Crossref]
  2. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  3. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [Crossref]
  4. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
    [Crossref]
  5. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref] [PubMed]
  6. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [Crossref]
  7. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162 (2001).
    [Crossref]
  8. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [Crossref] [PubMed]
  9. J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
    [Crossref]
  10. J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
    [Crossref]
  11. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
    [Crossref]
  12. A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
    [Crossref]
  13. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
    [Crossref] [PubMed]
  14. J. Wolters, N. Nikolay, M. Schoengen, A. W. Schell, J. Probst, B. Löchel, and O. Benson, “Thermo-optical response of photonic crystal cavities operating in the visible spectral range,” Nanotechnol. 24, 315204 (2013).
    [Crossref]
  15. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
    [Crossref]
  16. G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
    [Crossref] [PubMed]
  17. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45, 6071–6077 (2006).
    [Crossref]
  18. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–73 (2010).
    [Crossref] [PubMed]
  19. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
    [Crossref] [PubMed]
  20. M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
    [Crossref]
  21. C. Toninelli, K. Early, J. Bremi, A. Renn, S. Götzinger, and V. Sandoghdar, “Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature,” Opt. Express 18, 6577 (2010).
    [Crossref] [PubMed]
  22. L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
    [Crossref]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  24. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  25. S. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
    [Crossref]
  26. J. Wolters, J. Kabuss, A. Knorr, and O. Benson, “Deterministic and robust entanglement of nitrogen-vacancy centers using low-Q photonic-crystal cavities,” Phys. Rev. A 89, 060303 (2014).
    [Crossref]

2014 (2)

J. Wolters, J. Kabuss, A. Knorr, and O. Benson, “Deterministic and robust entanglement of nitrogen-vacancy centers using low-Q photonic-crystal cavities,” Phys. Rev. A 89, 060303 (2014).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

2013 (1)

J. Wolters, N. Nikolay, M. Schoengen, A. W. Schell, J. Probst, B. Löchel, and O. Benson, “Thermo-optical response of photonic crystal cavities operating in the visible spectral range,” Nanotechnol. 24, 315204 (2013).
[Crossref]

2012 (1)

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

2011 (1)

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

2010 (6)

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

C. Toninelli, K. Early, J. Bremi, A. Renn, S. Götzinger, and V. Sandoghdar, “Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature,” Opt. Express 18, 6577 (2010).
[Crossref] [PubMed]

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–73 (2010).
[Crossref] [PubMed]

2009 (1)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

2008 (1)

2006 (3)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45, 6071–6077 (2006).
[Crossref]

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

2005 (3)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

S. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
[Crossref]

2004 (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

1999 (1)

S. G. Johnson, S. Fan, P. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

1954 (1)

L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
[Crossref]

Aichele, T.

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Andreani, L. C.

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Asakawa, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Asano, T.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Awazu, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45, 6071–6077 (2006).
[Crossref]

Baets, R.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45, 6071–6077 (2006).
[Crossref]

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Bajcsy, M.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

Barrett, S.

S. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
[Crossref]

Barth, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Benson, O.

J. Wolters, J. Kabuss, A. Knorr, and O. Benson, “Deterministic and robust entanglement of nitrogen-vacancy centers using low-Q photonic-crystal cavities,” Phys. Rev. A 89, 060303 (2014).
[Crossref]

J. Wolters, N. Nikolay, M. Schoengen, A. W. Schell, J. Probst, B. Löchel, and O. Benson, “Thermo-optical response of photonic crystal cavities operating in the visible spectral range,” Nanotechnol. 24, 315204 (2013).
[Crossref]

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45, 6071–6077 (2006).
[Crossref]

Bogaerts, W.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45, 6071–6077 (2006).
[Crossref]

Borel, P. I.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Bratschitsch, R.

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

Bremi, J.

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Doescher, H.

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Dumon, P.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

Early, K.

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Englund, D.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Fan, S.

S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162 (2001).
[Crossref]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

S. G. Johnson, S. Fan, P. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Faraon, A.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[Crossref] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Fushman, I.

Galli, M.

Gerace, D.

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Götzinger, S.

Hanke, T.

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

Hannappel, T.

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Hansen, S. L.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Haus, H. A.

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ikeda, N.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Inoue, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Ishikawa, H.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162 (2001).
[Crossref]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

S. G. Johnson, S. Fan, P. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162 (2001).
[Crossref]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

S. G. Johnson, S. Fan, P. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Kabuss, J.

J. Wolters, J. Kabuss, A. Knorr, and O. Benson, “Deterministic and robust entanglement of nitrogen-vacancy centers using low-Q photonic-crystal cavities,” Phys. Rev. A 89, 060303 (2014).
[Crossref]

Kewes, G.

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Kim, E.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

Kitagawa, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Knorr, A.

J. Wolters, J. Kabuss, A. Knorr, and O. Benson, “Deterministic and robust entanglement of nitrogen-vacancy centers using low-Q photonic-crystal cavities,” Phys. Rev. A 89, 060303 (2014).
[Crossref]

Kok, P.

S. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
[Crossref]

Kolodziejski, L.

S. G. Johnson, S. Fan, P. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Krauss, T. F.

Kristensen, M.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Lee, E. H.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Leitenstorfer, A.

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Löchel, B.

J. Wolters, N. Nikolay, M. Schoengen, A. W. Schell, J. Probst, B. Löchel, and O. Benson, “Thermo-optical response of photonic crystal cavities operating in the visible spectral range,” Nanotechnol. 24, 315204 (2013).
[Crossref]

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

Lodahl, P.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Loechel, B.

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Mahmoodian, S.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Majumdar, A.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Manolatou, C.

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Mizutani, A.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Nakamura, S.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Nikolay, N.

J. Wolters, N. Nikolay, M. Schoengen, A. W. Schell, J. Probst, B. Löchel, and O. Benson, “Thermo-optical response of photonic crystal cavities operating in the visible spectral range,” Nanotechnol. 24, 315204 (2013).
[Crossref]

Noda, S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Nuesse, N.

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Nüsse, N.

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

O’Faolain, L.

Ohkouchi, S.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Ozaki, N.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Parratt, L. G.

L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
[Crossref]

Petroff, P.

Portalupi, S. L.

Probst, J.

J. Wolters, N. Nikolay, M. Schoengen, A. W. Schell, J. Probst, B. Löchel, and O. Benson, “Thermo-optical response of photonic crystal cavities operating in the visible spectral range,” Nanotechnol. 24, 315204 (2013).
[Crossref]

Reardon, C.

Renn, A.

Roelkens, G.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Sandoghdar, V.

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Scheerlinck, S.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

Schell, A. W.

J. Wolters, N. Nikolay, M. Schoengen, A. W. Schell, J. Probst, B. Löchel, and O. Benson, “Thermo-optical response of photonic crystal cavities operating in the visible spectral range,” Nanotechnol. 24, 315204 (2013).
[Crossref]

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Schoengen, M.

J. Wolters, N. Nikolay, M. Schoengen, A. W. Schell, J. Probst, B. Löchel, and O. Benson, “Thermo-optical response of photonic crystal cavities operating in the visible spectral range,” Nanotechnol. 24, 315204 (2013).
[Crossref]

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Selvaraja, S.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Sigmund, O.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Song, J. D.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Stobbe, S. r.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Stoltz, N.

Sugimoto, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Taillaert, D.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45, 6071–6077 (2006).
[Crossref]

Takata, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Toninelli, C.

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

Van Laere, F.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45, 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45, 6071–6077 (2006).
[Crossref]

Vermeulen, D.

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

Villeneuve, P.

S. G. Johnson, S. Fan, P. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

Vuckovic, J.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008).
[Crossref] [PubMed]

Vuckovicc, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Wang, X.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Watanabe, A.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

Watanabe, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

Wolters, J.

J. Wolters, J. Kabuss, A. Knorr, and O. Benson, “Deterministic and robust entanglement of nitrogen-vacancy centers using low-Q photonic-crystal cavities,” Phys. Rev. A 89, 060303 (2014).
[Crossref]

J. Wolters, N. Nikolay, M. Schoengen, A. W. Schell, J. Probst, B. Löchel, and O. Benson, “Thermo-optical response of photonic crystal cavities operating in the visible spectral range,” Nanotechnol. 24, 315204 (2013).
[Crossref]

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nuesse, M. Schoengen, H. Doescher, T. Hannappel, B. Loechel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

J. Nanosci. Nanotechnol. (1)

G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures,” J. Nanosci. Nanotechnol. 10, 1551–1562 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45, 6071–6077 (2006).
[Crossref]

Nanotechnol. (1)

J. Wolters, N. Nikolay, M. Schoengen, A. W. Schell, J. Probst, B. Löchel, and O. Benson, “Thermo-optical response of photonic crystal cavities operating in the visible spectral range,” Nanotechnol. 24, 315204 (2013).
[Crossref]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Nat. Photonics (2)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200 (2004).
[Crossref] [PubMed]

New J. Phys. (2)

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[Crossref]

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13, 055025 (2011).
[Crossref]

Opt. Express (3)

Phys. Rev. (1)

L. G. Parratt, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
[Crossref]

Phys. Rev. A (2)

S. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
[Crossref]

J. Wolters, J. Kabuss, A. Knorr, and O. Benson, “Deterministic and robust entanglement of nitrogen-vacancy centers using low-Q photonic-crystal cavities,” Phys. Rev. A 89, 060303 (2014).
[Crossref]

Phys. Rev. B (2)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[Crossref]

S. G. Johnson, S. Fan, P. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Phys. Rev. Lett. (3)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučkovićc, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref] [PubMed]

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. r. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Phys. Status Solidi (1)

J. Wolters, G. Kewes, A. W. Schell, N. Nüsse, M. Schoengen, B. Löchel, T. Hanke, R. Bratschitsch, A. Leitenstorfer, T. Aichele, and O. Benson, “Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities,” Phys. Status Solidi 249, 918–924 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a, Geometry of the grating coupler design consisting of a double-ring grating (ring width w, ring separation v, inner circle diameter r0) which terminates a PhC waveguide (SiN in gray). Supports are necessary for mechanical stability. b, Sketch of the input-output principle when using the coupler. For a z-symmetric coupler the unidirectional efficiency is limited to 50 %.

Fig. 2
Fig. 2

a, View of dielectric incoupling waveguide and a single PhC waveguide and grating coupler. The dielectric waveguide is tapered in two steps from 10 μm to 300 nm and a 90°-curve is used to avoid scattering light (PhC and coupler not to scale). b, Scanning electron micrograph of a channel with coupler.

Fig. 3
Fig. 3

X-ray reflectivity data (black dots) and fit (red line) to the data using the SiN thicknesses of 230 nm for the reference sample (top) and 212 nm for the BHF etched sample (bottom). The inset shows the sample with the scattering geometry of incident x-ray wave vector, specularly reflected x-ray wavevector, and the wavevector transfer qz.

Fig. 4
Fig. 4

a, Experimental setup for transmission and back focal plane (BFP) measurements, for which a supercontinuum source is used to illuminate the samples. The signal can either be analyzed using a CCD-camera or a fiber-coupled spectrometer. An aperture is used to clip the image if necessary. Using a 4f -alignment, the BFP of the detection objective can be projected to the CCD-chip to study the angular distribution of the scattered light. b, CCD images of a channel without (left) and a channel with coupler (right). A bright spot appears at the coupler position, which is completely missing in the image without coupler.

Fig. 5
Fig. 5

a, Frequency-resolved results of the BFP measurements, for which a tunable supercontinuum source was used. The coupler shows a good directionality for wavelengths near the estimated target wavelength of about 630 nm (color depicts the measured intensity, individually normalized for each image). b, Sketch of the Bragg-condition, taking into account momentum and energy conservation. c, Explanation of how the different regions occurring in the BFP images are translated to scattering directions of the coupler (arbitrarily shaped example regions).

Fig. 6
Fig. 6

(Top) Spectra of three different coupler samples, as measured using the fiber coupled spectrometer shown in Fig. 4(a). The couplers show higher intensities inside the photonic bandgap and lower intensities in the range of the index-guided waveguide modes (from ∼670 nm). (Bottom) Numerical results for the absolute transmission of the W1-waveguide (green curve plus shading) and the grating coupler (dots), as obtained by FDTD simulations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w = λ tune / 2 , v = λ tune / ( 2 n ) .
Λ = w + v = λ / ( 2 n air ) + λ / ( 2 n SiN ) = λ / ( n avg . )

Metrics