Abstract

Yb:CaYAlO4 has been investigated spectroscopically and compared to better known Yb:CaGdAlO4. It turns out that both materials show very similar spectroscopic parameters relevant to ultrafast lasers design. Employing single-mode fiber-coupled 400-mW laser diode at 976 nm we measured pulses as short as 43 fs, and broad tunability of 40 nm with a simple single-prism setup.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diode-pumped high-power sub-100 fs Kerr-lens mode-locked Yb:CaYAlO4 laser with 1.85 MW peak power

Wenlong Tian, Chen Yu, Jiangfeng Zhu, Dacheng Zhang, Zhiyi Wei, Xiaodong Xu, and Jun Xu
Opt. Express 27(15) 21448-21454 (2019)

40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode

Antonio Agnesi, Alessandro Greborio, Federico Pirzio, Giancarlo Reali, Juerg Aus der Au, and Annalisa Guandalini
Opt. Express 20(9) 10077-10082 (2012)

Generation of 33  fs pulses directly from a Kerr-lens mode-locked Yb:CaYAlO4 laser

Ziye Gao, Jiangfeng Zhu, Junli Wang, Zhiyi Wei, Xiaodong Xu, Lihe Zheng, Liangbi Su, and Jun Xu
Photon. Res. 3(6) 335-338 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
    [Crossref] [PubMed]
  2. F. Druon, F. Balembois, and P. Georges, “New Materials for Short-Pulse Amplifiers,” IEEE Photonics Journal 3(2), 268–273 (2011).
    [Crossref]
  3. P. Loiko, F. Druon, P. Georges, B. Viana, and K. Yumashev, “Thermo-optic characterization of Yb:CaGdAlO4 laser crystal,” Opt. Mater. Express 4(11), 2241–2249 (2014).
    [Crossref]
  4. P. Sévillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CaGdAlO₄ oscillator optically pumped by a bright fiber laser,” Opt. Lett. 39(20), 6001–6004 (2014).
    [Crossref] [PubMed]
  5. A. Agnesi, A. Greborio, F. Pirzio, G. Reali, J. Aus der Au, and A. Guandalini, “40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode,” Opt. Express 20(9), 10077–10082 (2012).
    [Crossref] [PubMed]
  6. E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, J. Aus der Au, and A. Agnesi, “28-W, 217 fs solid-state Yb:CAlGdO4 regenerative amplifiers,” Opt. Lett. 38(20), 4131–4133 (2013).
    [Crossref] [PubMed]
  7. A. L. Calendron, “Dual-crystal Yb:CALGO high power laser and regenerative amplifier,” Opt. Express 21(22), 26174–26181 (2013).
    [Crossref] [PubMed]
  8. J. Pouysegur, M. Delaigue, Y. Zaouter, C. Hönninger, E. Mottay, A. Jaffrès, P. Loiseau, B. Viana, P. Georges, and F. Druon, “Sub-100-fs Yb:CALGO nonlinear regenerative amplifier,” Opt. Lett. 38(23), 5180–5183 (2013).
    [Crossref] [PubMed]
  9. D. Li, X. Xu, H. Zhu, X. Chen, W. De Tan, J. Zhang, D. Tang, J. Ma, F. Wu, C. Xia, and J. Xu, “Characterization of laser crystal Yb:CaYAlO4,” J. Opt. Soc. Am. B 28, 1650–1654 (2011).
  10. W. D. Tan, D. Y. Tang, X. D. Xu, D. Z. Li, J. Zhang, C. W. Xu, and J. Xu, “Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+:CaYAlO4 laser,” Opt. Lett. 36(2), 259–261 (2011).
    [PubMed]
  11. S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun. 285(3), 315–321 (2012).
    [Crossref]
  12. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [Crossref] [PubMed]
  13. Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
    [Crossref] [PubMed]
  14. B. F. Aull and H. P. Jenssen, “Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  15. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  16. A. Agnesi, A. Greborio, F. Pirzio, E. Ugolotti, G. Reali, A. Guandalini, and J. Aus der Au, “Diode-pumped passively mode-locked tunable Yb:CALGO solid-state laser,” J. Opt. Soc. Am. B 30, 1513–1516 (2013).
  17. D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35(6), 912–915 (1996).
    [Crossref] [PubMed]
  18. A. Guandalini, A. Greborio, and J. Aus-der-Au, “Sub-100-fs pulses with 12.5 W from Yb:CALGO based oscillators,” Solid State Lasers XXI: Technology and Devices, in SPIE Photonics West 2012, Paper 8235–31.

2014 (2)

2013 (4)

2012 (2)

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun. 285(3), 315–321 (2012).
[Crossref]

A. Agnesi, A. Greborio, F. Pirzio, G. Reali, J. Aus der Au, and A. Guandalini, “40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode,” Opt. Express 20(9), 10077–10082 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

2007 (1)

2006 (1)

1996 (1)

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Agnesi, A.

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Aus der Au, J.

Balembois, F.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Calendron, A. L.

Caracciolo, E.

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chen, X.

Cormier, E.

De Tan, W.

Delaigue, M.

Descamps, D.

Didierjean, J.

Druon, F.

Fredrich-Thornton, S. T.

Georges, P.

Goldner, P.

Greborio, A.

Guandalini, A.

Hoffmann, H. D.

Hönninger, C.

Jaffrès, A.

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Keller, U.

Kemnitzer, M.

Kopf, D.

Kränkel, C.

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kühn, H.

Li, D.

Li, D. Z.

Loiko, P.

Loiseau, P.

Lucas Leclin, G.

Ma, J.

Mans, T.

Mottay, E.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Petermann, K.

Peters, R.

Petit, J.

Pirzio, F.

Poprawe, R.

Pouysegur, J.

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Reali, G.

Russbueldt, P.

Sévillano, P.

Spühler, G. J.

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Tan, W. D.

Tang, D.

Tang, D. Y.

Tonelli, M.

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun. 285(3), 315–321 (2012).
[Crossref]

Ugolotti, E.

Veronesi, S.

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun. 285(3), 315–321 (2012).
[Crossref]

Viana, B.

Weingarten, K. J.

Weitenberg, J.

Wu, F.

Xia, C.

Xu, C. W.

Xu, J.

Xu, X.

Xu, X. D.

Yumashev, K.

Zaouter, Y.

Zhang, J.

Zhang, Y. Z.

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun. 285(3), 315–321 (2012).
[Crossref]

Zhu, H.

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

B. F. Aull and H. P. Jenssen, “Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

IEEE Photonics Journal (1)

F. Druon, F. Balembois, and P. Georges, “New Materials for Short-Pulse Amplifiers,” IEEE Photonics Journal 3(2), 268–273 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun. 285(3), 315–321 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

J. Pouysegur, M. Delaigue, Y. Zaouter, C. Hönninger, E. Mottay, A. Jaffrès, P. Loiseau, B. Viana, P. Georges, and F. Druon, “Sub-100-fs Yb:CALGO nonlinear regenerative amplifier,” Opt. Lett. 38(23), 5180–5183 (2013).
[Crossref] [PubMed]

P. Sévillano, P. Georges, F. Druon, D. Descamps, and E. Cormier, “32-fs Kerr-lens mode-locked Yb:CaGdAlO₄ oscillator optically pumped by a bright fiber laser,” Opt. Lett. 39(20), 6001–6004 (2014).
[Crossref] [PubMed]

E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, J. Aus der Au, and A. Agnesi, “28-W, 217 fs solid-state Yb:CAlGdO4 regenerative amplifiers,” Opt. Lett. 38(20), 4131–4133 (2013).
[Crossref] [PubMed]

Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
[Crossref] [PubMed]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[Crossref] [PubMed]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[Crossref] [PubMed]

W. D. Tan, D. Y. Tang, X. D. Xu, D. Z. Li, J. Zhang, C. W. Xu, and J. Xu, “Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+:CaYAlO4 laser,” Opt. Lett. 36(2), 259–261 (2011).
[PubMed]

Opt. Mater. Express (1)

Other (1)

A. Guandalini, A. Greborio, and J. Aus-der-Au, “Sub-100-fs pulses with 12.5 W from Yb:CALGO based oscillators,” Solid State Lasers XXI: Technology and Devices, in SPIE Photonics West 2012, Paper 8235–31.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Room temperature absorption cross sections for Yb:CALGO and Yb:CALYO samples.
Fig. 2
Fig. 2 Room temperature emission cross sections for Yb:CALGO and Yb:CALYO samples. Insets: Lifetime measurements obtained with the pinhole method. The error value (in brackets) corresponds to the standard deviation of the fit result.
Fig. 3
Fig. 3 Resonator layout: FC-LD: Single-mode fiber-coupled laser diode; L1: Aspherical lens (f = 15.3 mm, NA 0.16); HWP: Half-wave plate AR coated at 976 nm; L2: Spherical lens (50 mm focal); M1: Concave mirror, R = 50 mm, high reflectivity (HR) at 1000–1100 nm, high transmissivity at 940–980 nm; M2: Concave mirror, 100 mm radius of curvature; HR: Flat mirror HR between 1000 and 1100 nm; OC: Output coupler, 30’ wedge; SF10 and FS: Dispersive prisms; SESAM: Semiconductor saturable absorber mirror.
Fig. 4
Fig. 4 CW performance with different OCs. Inset: slope efficiency as function of output coupler mirror reflectivity is shown.
Fig. 5
Fig. 5 a) Autocorrelation trace and optical spectrum (inset) of the shortest pulses obtained with the T = 0.4% OC; b) Autocorrelation trace of the shortest pulses obtained with the single-prism setup. In the inset, the tuning range of the output spectrum is shown; the highlighted spectrum (bold black line) corresponds to the autocorrelation shown in the main graph.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η= η 0 λ p λ l ln( R OC ) δln( R OC )

Metrics