Abstract

A multi-target tracking system using a self-starting optical phase conjugator was developed in this study. This system generates phase conjugate light (PCL) in a Nd:YAG resonator. Accurate tracking capability with a beam wander of 120 μrad and constant PCL generation were confirmed over a field of view greater than 20°. This field of view was expanded by means of collector optics positioned in front of the phase conjugator. The developed scheme enables automatic and simultaneous optical energy transfer to multiple distant targets by utilizing the unique properties of optical phase conjugation of automatic target tracking and pointing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Focusing on moving targets through scattering samples

Edward Haojiang Zhou, Haowen Ruan, Changhuei Yang, and Benjamin Judkewitz
Optica 1(4) 227-232 (2014)

Real-time compensation of phase distortions by digital phase conjugation using CCD and liquid crystal panel

Kotomi Kawakami, Shigeaki Uchida, and Hideki Okamura
Appl. Opt. 53(17) 3663-3667 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).
  2. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
    [Crossref]
  3. C. R. Phipps, “L׳ADROIT – A spaceborne ultraviolet laser system for space debris clearing,” Acta Astronaut. 104(1), 243–255 (2014).
    [Crossref]
  4. S. Uchida, O. G. Kotyaev, H. Yoshida, and H. Sawada, “Characterization of Brillouin-enhanced four-wave mixing for an application to space debris removal,” Proc. SPIE 3760, 68–75 (1999).
    [Crossref]
  5. C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
    [Crossref]
  6. S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
    [Crossref]
  7. T. L. Tidwell, J. T. Gregory, C. H. Chalfant III, F. J. Orlando, and M. Leftwich, “Rapid acquisition, pointing and tracking optical system for free space optical communications,” US Patent 8,160,452 B1, (Apr. 17, 2012).
  8. C. L. Hayes, “High energy laser pointing and tracking system utilizing beam angle/focus dither method of operation,” US patent 4,063,819, (Dec. 20, 1977)
  9. R. A. Meyer, “Optical Beam Steering Using a Multichannel Lithium Tantalate Crystal,” Appl. Opt. 11(3), 613–616 (1972).
    [Crossref] [PubMed]
  10. M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
    [Crossref]
  11. A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent VCSEL arrays,” Electron. Lett. 43(22), 1202–1203 (2007).
    [Crossref]
  12. D. F. Siriani and K. D. Choquette, “Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays,” IEEE Photon. Technol. Lett. 23(3), 167–169 (2011).
    [Crossref]
  13. T. Chiba, “Spot Dancing of the Laser Beam Propagated Through the Turbulent Atmosphere,” Appl. Opt. 10(11), 2456–2461 (1971).
    [Crossref] [PubMed]
  14. K. Kawakami, S. Uchida, and H. Okamura, “Real-time compensation of phase distortions by digital phase conjugation using CCD and liquid crystal panel,” Appl. Opt. 53(17), 3663–3667 (2014).
    [Crossref] [PubMed]
  15. C. R. Giuliano, “Applications of optical phase conjugation,” Phys. Today 34(4), 27–35 (1981).
    [Crossref]
  16. A. S. Koujelev and A. E. Dudelzak, “Double phase conjugation in a liquid crystal at 1.5μm for optical beam tracking,” Opt. Eng. 46(2), 024001 (2007).
    [Crossref]
  17. C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
    [Crossref]
  18. Y. I. Kruzhilin, “Self-adjusting laser-target system for laser fusion,” Sov. J. Quantum Electron. 8(3), 359–363 (1978).
    [Crossref]
  19. K. Kawakami, H. Okamura, and K. Komurasaki, “Optical phase conjugation by four-wave mixing in Nd:YAG laser oscillator for optical energy transfer to a remote target,” J. Appl. Phys. 117(8), 083106 (2015).
    [Crossref]
  20. T. Sean Ross, Laser Beam Quality Metrics (SPIE, 2013), Chap. 1, pp. 34.
  21. A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119(1-2), 171–177 (1995).
    [Crossref]

2015 (1)

K. Kawakami, H. Okamura, and K. Komurasaki, “Optical phase conjugation by four-wave mixing in Nd:YAG laser oscillator for optical energy transfer to a remote target,” J. Appl. Phys. 117(8), 083106 (2015).
[Crossref]

2014 (2)

2011 (1)

D. F. Siriani and K. D. Choquette, “Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays,” IEEE Photon. Technol. Lett. 23(3), 167–169 (2011).
[Crossref]

2010 (1)

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

2008 (2)

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

2007 (3)

A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent VCSEL arrays,” Electron. Lett. 43(22), 1202–1203 (2007).
[Crossref]

A. S. Koujelev and A. E. Dudelzak, “Double phase conjugation in a liquid crystal at 1.5μm for optical beam tracking,” Opt. Eng. 46(2), 024001 (2007).
[Crossref]

C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
[Crossref]

2002 (1)

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

2000 (1)

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
[Crossref]

1999 (1)

S. Uchida, O. G. Kotyaev, H. Yoshida, and H. Sawada, “Characterization of Brillouin-enhanced four-wave mixing for an application to space debris removal,” Proc. SPIE 3760, 68–75 (1999).
[Crossref]

1995 (1)

A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119(1-2), 171–177 (1995).
[Crossref]

1981 (1)

C. R. Giuliano, “Applications of optical phase conjugation,” Phys. Today 34(4), 27–35 (1981).
[Crossref]

1978 (1)

Y. I. Kruzhilin, “Self-adjusting laser-target system for laser fusion,” Sov. J. Quantum Electron. 8(3), 359–363 (1978).
[Crossref]

1972 (1)

1971 (1)

Alexander, J. W.

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
[Crossref]

Arai, K.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Birkan, M.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Bohn, W.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Brignon, A.

A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119(1-2), 171–177 (1995).
[Crossref]

Chiba, T.

Choquette, K. D.

D. F. Siriani and K. D. Choquette, “Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays,” IEEE Photon. Technol. Lett. 23(3), 167–169 (2011).
[Crossref]

A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent VCSEL arrays,” Electron. Lett. 43(22), 1202–1203 (2007).
[Crossref]

Dudelzak, A. E.

A. S. Koujelev and A. E. Dudelzak, “Double phase conjugation in a liquid crystal at 1.5μm for optical beam tracking,” Opt. Eng. 46(2), 024001 (2007).
[Crossref]

Eckel, H. A.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Giuliano, C. R.

C. R. Giuliano, “Applications of optical phase conjugation,” Phys. Today 34(4), 27–35 (1981).
[Crossref]

Horisawa, H.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Huignard, J.-P.

A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119(1-2), 171–177 (1995).
[Crossref]

Jarrahi, M.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

Jeganathan, M.

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
[Crossref]

Jono, T.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Kahn, J. M.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

Kawakami, K.

K. Kawakami, H. Okamura, and K. Komurasaki, “Optical phase conjugation by four-wave mixing in Nd:YAG laser oscillator for optical energy transfer to a remote target,” J. Appl. Phys. 117(8), 083106 (2015).
[Crossref]

K. Kawakami, S. Uchida, and H. Okamura, “Real-time compensation of phase distortions by digital phase conjugation using CCD and liquid crystal panel,” Appl. Opt. 53(17), 3663–3667 (2014).
[Crossref] [PubMed]

Kaya, N.

C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
[Crossref]

Kimura, S.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Klaus, W.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Komurasaki, K.

K. Kawakami, H. Okamura, and K. Komurasaki, “Optical phase conjugation by four-wave mixing in Nd:YAG laser oscillator for optical energy transfer to a remote target,” J. Appl. Phys. 117(8), 083106 (2015).
[Crossref]

Kotyaev, O. G.

S. Uchida, O. G. Kotyaev, H. Yoshida, and H. Sawada, “Characterization of Brillouin-enhanced four-wave mixing for an application to space debris removal,” Proc. SPIE 3760, 68–75 (1999).
[Crossref]

Koujelev, A. S.

A. S. Koujelev and A. E. Dudelzak, “Double phase conjugation in a liquid crystal at 1.5μm for optical beam tracking,” Opt. Eng. 46(2), 024001 (2007).
[Crossref]

Kruzhilin, Y. I.

Y. I. Kruzhilin, “Self-adjusting laser-target system for laser fusion,” Sov. J. Quantum Electron. 8(3), 359–363 (1978).
[Crossref]

Kunimori, H.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Kuri, T.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Lee, S.

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
[Crossref]

Lee, T. H.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

Lehman, A. C.

A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent VCSEL arrays,” Electron. Lett. 43(22), 1202–1203 (2007).
[Crossref]

Lippert, T.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Matoba, O.

C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
[Crossref]

Meyer, R. A.

Michaelis, M.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Miller, D. A. B.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

Okamura, H.

K. Kawakami, H. Okamura, and K. Komurasaki, “Optical phase conjugation by four-wave mixing in Nd:YAG laser oscillator for optical energy transfer to a remote target,” J. Appl. Phys. 117(8), 083106 (2015).
[Crossref]

K. Kawakami, S. Uchida, and H. Okamura, “Real-time compensation of phase distortions by digital phase conjugation using CCD and liquid crystal panel,” Appl. Opt. 53(17), 3663–3667 (2014).
[Crossref] [PubMed]

Pease, R. F. W.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

Phipps, C.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Phipps, C. R.

C. R. Phipps, “L׳ADROIT – A spaceborne ultraviolet laser system for space debris clearing,” Acta Astronaut. 104(1), 243–255 (2014).
[Crossref]

Rezunkov, Y.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Sasoh, A.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Sawada, H.

S. Uchida, O. G. Kotyaev, H. Yoshida, and H. Sawada, “Characterization of Brillouin-enhanced four-wave mixing for an application to space debris removal,” Proc. SPIE 3760, 68–75 (1999).
[Crossref]

Schäfer, C. A.

C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
[Crossref]

Schall, W.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Scharring, S.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Sinko, J.

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Siriani, D. F.

D. F. Siriani and K. D. Choquette, “Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays,” IEEE Photon. Technol. Lett. 23(3), 167–169 (2011).
[Crossref]

A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent VCSEL arrays,” Electron. Lett. 43(22), 1202–1203 (2007).
[Crossref]

Suzuki, K.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Takahashi, T.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Takayama, Y.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Takizawa, K.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Toyoda, M.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Toyoshima, M.

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

Uchida, S.

K. Kawakami, S. Uchida, and H. Okamura, “Real-time compensation of phase distortions by digital phase conjugation using CCD and liquid crystal panel,” Appl. Opt. 53(17), 3663–3667 (2014).
[Crossref] [PubMed]

S. Uchida, O. G. Kotyaev, H. Yoshida, and H. Sawada, “Characterization of Brillouin-enhanced four-wave mixing for an application to space debris removal,” Proc. SPIE 3760, 68–75 (1999).
[Crossref]

Yoshida, H.

S. Uchida, O. G. Kotyaev, H. Yoshida, and H. Sawada, “Characterization of Brillouin-enhanced four-wave mixing for an application to space debris removal,” Proc. SPIE 3760, 68–75 (1999).
[Crossref]

Zhu, X.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

Acta Astronaut. (1)

C. R. Phipps, “L׳ADROIT – A spaceborne ultraviolet laser system for space debris clearing,” Acta Astronaut. 104(1), 243–255 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, “Optical switching based on high-speed phased array optical beam steering,” Appl. Phys. Lett. 92(1), 014106 (2008).
[Crossref]

Electron. Lett. (1)

A. C. Lehman, D. F. Siriani, and K. D. Choquette, “Two-dimensional electronic beam-steering with implant-defined coherent VCSEL arrays,” Electron. Lett. 43(22), 1202–1203 (2007).
[Crossref]

IEEE Aerosp, Electron, Syst, Mag, IEEE. (1)

M. Toyoshima, Y. Takayama, T. Takahashi, K. Suzuki, S. Kimura, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, and K. Arai, “Ground-to-satellite laser communication experiments,” IEEE Aerosp, Electron, Syst, Mag, IEEE. 23(8), 10–18 (2008).

IEEE Photon. Technol. Lett. (1)

D. F. Siriani and K. D. Choquette, “Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays,” IEEE Photon. Technol. Lett. 23(3), 167–169 (2011).
[Crossref]

IEEE Trans. Commun. (1)

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

J. Appl. Phys. (1)

K. Kawakami, H. Okamura, and K. Komurasaki, “Optical phase conjugation by four-wave mixing in Nd:YAG laser oscillator for optical energy transfer to a remote target,” J. Appl. Phys. 117(8), 083106 (2015).
[Crossref]

J. Propuls. Power (1)

C. Phipps, M. Birkan, W. Bohn, H. A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-Ablation Propulsion,” J. Propuls. Power 26(4), 609–637 (2010).
[Crossref]

Opt. Commun. (1)

A. Brignon and J.-P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd:YAG amplifiers,” Opt. Commun. 119(1-2), 171–177 (1995).
[Crossref]

Opt. Eng. (1)

A. S. Koujelev and A. E. Dudelzak, “Double phase conjugation in a liquid crystal at 1.5μm for optical beam tracking,” Opt. Eng. 46(2), 024001 (2007).
[Crossref]

Phys. Today (1)

C. R. Giuliano, “Applications of optical phase conjugation,” Phys. Today 34(4), 27–35 (1981).
[Crossref]

Proc. SPIE (3)

C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
[Crossref]

S. Lee, J. W. Alexander, and M. Jeganathan, “Pointing and tracking subsystem design for optical communications link between the International Space Station and ground,” Proc. SPIE 3932, 150–157 (2000).
[Crossref]

S. Uchida, O. G. Kotyaev, H. Yoshida, and H. Sawada, “Characterization of Brillouin-enhanced four-wave mixing for an application to space debris removal,” Proc. SPIE 3760, 68–75 (1999).
[Crossref]

Sov. J. Quantum Electron. (1)

Y. I. Kruzhilin, “Self-adjusting laser-target system for laser fusion,” Sov. J. Quantum Electron. 8(3), 359–363 (1978).
[Crossref]

Other (3)

T. L. Tidwell, J. T. Gregory, C. H. Chalfant III, F. J. Orlando, and M. Leftwich, “Rapid acquisition, pointing and tracking optical system for free space optical communications,” US Patent 8,160,452 B1, (Apr. 17, 2012).

C. L. Hayes, “High energy laser pointing and tracking system utilizing beam angle/focus dither method of operation,” US patent 4,063,819, (Dec. 20, 1977)

T. Sean Ross, Laser Beam Quality Metrics (SPIE, 2013), Chap. 1, pp. 34.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for the two-target experiment. E1, reference light; E2, readout light; E3-1 and 2, object beams; E4-1 and 2, phase-conjugated beams; M0–6, mirrors; BW, Brewster window; A, 2-mm-diameter aperture; OC, optical coupler; BS1–3, beam splitters; ND, neutral density filter; BP, beam profiler.

Fig. 2
Fig. 2

Beam profile of two phase-conjugated beams generated simultaneously.

Fig. 3
Fig. 3

Schematic of the field-of-view experiment. M0–4, mirrors; BW, Brewster window; A1 and 2, apertures; OC, optical coupler; L1 and 2, lenses with f = 100 and 500 mm, respectively; BP, beam profiler.

Fig. 4
Fig. 4

Beam profiles of (a) PCL when no aberrator was used; (b) PCL when a plastic sheet was placed in the object light path as a phase aberrator; and (c) normal light propagated the aberrator. Wavefront distortions caused by the collector lenses and aberrator can be canceled by optical phase conjugation.

Fig. 5
Fig. 5

Phase conjugated-beam centroid position and output energy as functions of target position. The vertical axis for the beam wander is set to be the target size of 8 mrad.

Fig. 6
Fig. 6

Phase conjugate light (PCL) energy and reflectivity as functions of the incoming object light energy, which was varied using a variable ND filter.

Tables (1)

Tables Icon

Table 1 Beam Spot Sizes of the Original Object Beam, the Two Phase-Conjugated Beams in Fig. 3, and Non-Phase Conjugated Light that Propagated the Same Distance as the PCL

Metrics