Abstract

Nonlinear photothermal microscopy is applied in the imaging of biological tissues stained with chlorophyll and hematoxylin. Experimental results show that this type of organic molecules, which absorb light but transform dominant part of the absorbed energy into heat, may be ideal probes for photothermal imaging without photochemical toxicity. Picosecond pump and probe pulses, with central wavelengths of 488 and 632 nm, respectively, are spectrally filtered from a compact supercontinuum fiber laser source. Based on the light source, a compact and sensitive super-resolution imaging system is constructed. Further more, the imaging system is much less affected by thermal blurring than photothermal microscopes with continuous-wave light sources. The spatial resolution of nonlinear photothermal microscopy is ~ 188 nm. It is ~ 23% higher than commonly utilized linear photothermal microscopy experimentally and ~43% than conventional optical microscopy theoretically. The nonlinear photothermal imaging technology can be used in the evaluation of biological tissues with high-resolution and contrast.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free imaging of melanoma with nonlinear photothermal microscopy

Jinping He, Jun Miyazaki, Nan Wang, Hiromichi Tsurui, and Takayoshi Kobayashi
Opt. Lett. 40(7) 1141-1144 (2015)

Simultaneous dual-wavelength imaging of nonfluorescent tissues with 3D subdiffraction photothermal microscopy

Jun Miyazaki, Hiromichi Tsurui, Koshi Kawasumi, and Takayoshi Kobayashi
Opt. Express 23(3) 3647-3656 (2015)

Reduction of distortion in photothermal microscopy and its application to the high-resolution three-dimensional imaging of nonfluorescent tissues

Jun Miyazaki, Hiromichi Tsurui, and Takayoshi Kobayashi
Biomed. Opt. Express 6(9) 3217-3224 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amount of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73(9), 2112–2116 (2001).
    [Crossref] [PubMed]
  2. D. Boyer, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
    [Crossref] [PubMed]
  3. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluores-cent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
    [Crossref]
  4. D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
    [Crossref] [PubMed]
  5. X. Huang, I. EI-Sayed, W. Qian, and M. EI-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  6. B. Chithrani, A. Ghazani, and W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano. Lett. 6(4), 662–668 (2006).
    [Crossref] [PubMed]
  7. N. Lewinski, V. Colvin, and R. Drezek, “Cytotoxicity of nanoparticles,” Small 4(1), 26–49 (2008).
    [Crossref] [PubMed]
  8. Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
    [Crossref] [PubMed]
  9. C. Goodman, C. McCusker, T. Yilmaz, and V. Rotello, “Toxicity of gold nanoparticles functionalized with cationic and anionic side chains,” Bioconjugate Chem. 15(4), 897–900 (2004).
    [Crossref]
  10. I. Meglinski and S. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Phys. Meas. 23(4), 741–753 (2002).
    [Crossref]
  11. K. Maxwell and G. Johnson, “Chlorophyll fluorescence — a practical guide,” J. Exp. Bot. 51(345), 659–668 (2000).
    [Crossref] [PubMed]
  12. J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, “Optimal detection angle in sub-diffraction resolution photothermal microscopy: application for high sensitivity imaging of biological tissues,” Opt. Express 22(16), 18833–18842 (2014).
    [Crossref] [PubMed]
  13. J. Miyazaki, H. Tsurui, A. Hayashi-Takagi, H. Kasai, and T. Kobayashi, “Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes,” Opt. Express 22(8), 9024–9032 (2014).
    [Crossref] [PubMed]
  14. S. Braslavsky and G. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Re. 92(6), 1381–1410 (1992).
    [Crossref]
  15. D. Lapotko, T. Romanovskaya, A. Shnip, and V. Zharov, “Photothermal time-resolved imaging of living cells,” Lasers in Surgery and Medicine 31(1), 53–63 (2002).
    [Crossref] [PubMed]
  16. D. Nedosekin, E. Galanzha, E. Dervishi, A. Biris, and V. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
    [Crossref]
  17. S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions,” Phtochem. Photobiol. 53(6), 825–835 (1991).
    [Crossref]
  18. J. Cross, Pigments in Vegetables: Chlorophylls and Carotenoids (SpringerUS, 1991), Chap. 2.
  19. T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  20. C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
    [Crossref]
  21. K. Shi, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004).
    [Crossref] [PubMed]
  22. D. Wildanger, E. Rittweger, L. Kastrup, and S. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
    [Crossref] [PubMed]
  23. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  24. J. Clowes, “Next generation of light sources for biomedical applications,” Optik & Photonic. 3(1), 36–38 (2008).
    [Crossref]
  25. Y. N. Rajakarunanayake and H. K. Wickramasinghe, “Nonlinear photothermal imaging,” Appl. Phys. Lett. 48(3), 218–220 (1986).
    [Crossref]
  26. J. He, J. Miyazaki, N. Wang, H. Tsurui, and T. Kobayashi, “Label-free imaging of melanoma with nonlinear photothermal microscopy,” Opt. Lett. 40(7), 1141–1144 (2015).
    [Crossref]
  27. S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
    [Crossref]
  28. J. Valvano, J. Cochran, and K. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Therm. 6(3), 301–311 (1985).
    [Crossref]
  29. V. Gusev, A. mandelis, and R. Bleiss, “Theory of second harmonic thermal-wave generation: one-dimensional geometry,” Int. J. Thermophys. 14(2), 321–337 (1993).
    [Crossref]
  30. A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
    [Crossref]
  31. V. Kotaidis, C. Dahmen, G. Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
    [Crossref] [PubMed]
  32. J. Power, “Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: A theory,” Appl. Opt. 29(1), 52–63 (1990).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2008 (4)

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

N. Lewinski, V. Colvin, and R. Drezek, “Cytotoxicity of nanoparticles,” Small 4(1), 26–49 (2008).
[Crossref] [PubMed]

D. Wildanger, E. Rittweger, L. Kastrup, and S. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[Crossref] [PubMed]

J. Clowes, “Next generation of light sources for biomedical applications,” Optik & Photonic. 3(1), 36–38 (2008).
[Crossref]

2007 (1)

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

2006 (6)

D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[Crossref] [PubMed]

X. Huang, I. EI-Sayed, W. Qian, and M. EI-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

B. Chithrani, A. Ghazani, and W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano. Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

V. Kotaidis, C. Dahmen, G. Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

2004 (3)

C. Goodman, C. McCusker, T. Yilmaz, and V. Rotello, “Toxicity of gold nanoparticles functionalized with cationic and anionic side chains,” Bioconjugate Chem. 15(4), 897–900 (2004).
[Crossref]

K. Shi, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004).
[Crossref] [PubMed]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluores-cent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[Crossref]

2002 (4)

D. Lapotko, T. Romanovskaya, A. Shnip, and V. Zharov, “Photothermal time-resolved imaging of living cells,” Lasers in Surgery and Medicine 31(1), 53–63 (2002).
[Crossref] [PubMed]

I. Meglinski and S. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Phys. Meas. 23(4), 741–753 (2002).
[Crossref]

D. Boyer, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

2001 (1)

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amount of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73(9), 2112–2116 (2001).
[Crossref] [PubMed]

2000 (1)

K. Maxwell and G. Johnson, “Chlorophyll fluorescence — a practical guide,” J. Exp. Bot. 51(345), 659–668 (2000).
[Crossref] [PubMed]

1999 (1)

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

1993 (1)

V. Gusev, A. mandelis, and R. Bleiss, “Theory of second harmonic thermal-wave generation: one-dimensional geometry,” Int. J. Thermophys. 14(2), 321–337 (1993).
[Crossref]

1992 (1)

S. Braslavsky and G. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Re. 92(6), 1381–1410 (1992).
[Crossref]

1991 (1)

S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions,” Phtochem. Photobiol. 53(6), 825–835 (1991).
[Crossref]

1990 (1)

1986 (1)

Y. N. Rajakarunanayake and H. K. Wickramasinghe, “Nonlinear photothermal imaging,” Appl. Phys. Lett. 48(3), 218–220 (1986).
[Crossref]

1985 (1)

J. Valvano, J. Cochran, and K. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Therm. 6(3), 301–311 (1985).
[Crossref]

Berciaud, S.

D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[Crossref] [PubMed]

S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluores-cent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[Crossref]

Biris, A.

D. Nedosekin, E. Galanzha, E. Dervishi, A. Biris, and V. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref]

Blab, G.

S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Blab, G. A.

D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[Crossref] [PubMed]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluores-cent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[Crossref]

Bleiss, R.

V. Gusev, A. mandelis, and R. Bleiss, “Theory of second harmonic thermal-wave generation: one-dimensional geometry,” Int. J. Thermophys. 14(2), 321–337 (1993).
[Crossref]

Boyer, D.

D. Boyer, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Brandau, W.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Braslavsky, S.

S. Braslavsky and G. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Re. 92(6), 1381–1410 (1992).
[Crossref]

Chan, W.

B. Chithrani, A. Ghazani, and W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano. Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Chithrani, B.

B. Chithrani, A. Ghazani, and W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano. Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Choquet, D.

D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[Crossref] [PubMed]

Clowes, J.

J. Clowes, “Next generation of light sources for biomedical applications,” Optik & Photonic. 3(1), 36–38 (2008).
[Crossref]

Cochran, J.

J. Valvano, J. Cochran, and K. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Therm. 6(3), 301–311 (1985).
[Crossref]

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cognet, L.

S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[Crossref] [PubMed]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluores-cent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[Crossref]

Colvin, V.

N. Lewinski, V. Colvin, and R. Drezek, “Cytotoxicity of nanoparticles,” Small 4(1), 26–49 (2008).
[Crossref] [PubMed]

Cross, J.

J. Cross, Pigments in Vegetables: Chlorophylls and Carotenoids (SpringerUS, 1991), Chap. 2.

Dahmen, C.

V. Kotaidis, C. Dahmen, G. Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Dechent, W.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Dervishi, E.

D. Nedosekin, E. Galanzha, E. Dervishi, A. Biris, and V. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref]

Diller, K.

J. Valvano, J. Cochran, and K. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Therm. 6(3), 301–311 (1985).
[Crossref]

Drezek, R.

N. Lewinski, V. Colvin, and R. Drezek, “Cytotoxicity of nanoparticles,” Small 4(1), 26–49 (2008).
[Crossref] [PubMed]

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

EI-Sayed, I.

X. Huang, I. EI-Sayed, W. Qian, and M. EI-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

EI-Sayed, M.

X. Huang, I. EI-Sayed, W. Qian, and M. EI-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Elder, A.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Fischler, M.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Frank, J.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Galanzha, E.

D. Nedosekin, E. Galanzha, E. Dervishi, A. Biris, and V. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref]

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghazani, A.

B. Chithrani, A. Ghazani, and W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano. Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Goodman, C.

C. Goodman, C. McCusker, T. Yilmaz, and V. Rotello, “Toxicity of gold nanoparticles functionalized with cationic and anionic side chains,” Bioconjugate Chem. 15(4), 897–900 (2004).
[Crossref]

Groc, L.

D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[Crossref] [PubMed]

Gusev, V.

V. Gusev, A. mandelis, and R. Bleiss, “Theory of second harmonic thermal-wave generation: one-dimensional geometry,” Int. J. Thermophys. 14(2), 321–337 (1993).
[Crossref]

Hänsch, T.

T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hayashi-Takagi, A.

He, J.

Heibel, G.

S. Braslavsky and G. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Re. 92(6), 1381–1410 (1992).
[Crossref]

Heine, M

D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[Crossref] [PubMed]

Hell, S.

Hibara, A.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amount of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73(9), 2112–2116 (2001).
[Crossref] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Huang, X.

X. Huang, I. EI-Sayed, W. Qian, and M. EI-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Hult, J.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Johnson, G.

K. Maxwell and G. Johnson, “Chlorophyll fluorescence — a practical guide,” J. Exp. Bot. 51(345), 659–668 (2000).
[Crossref] [PubMed]

Kaminski, C.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Kasai, H.

Kastrup, L.

Kawasumi, K.

Kitamori, T.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amount of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73(9), 2112–2116 (2001).
[Crossref] [PubMed]

Kobayashi, T.

Kotaidis, V.

V. Kotaidis, C. Dahmen, G. Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Lapotko, D.

D. Lapotko, T. Romanovskaya, A. Shnip, and V. Zharov, “Photothermal time-resolved imaging of living cells,” Lasers in Surgery and Medicine 31(1), 53–63 (2002).
[Crossref] [PubMed]

Lasne, D.

S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[Crossref] [PubMed]

Leifert, A.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Lewinski, N.

N. Lewinski, V. Colvin, and R. Drezek, “Cytotoxicity of nanoparticles,” Small 4(1), 26–49 (2008).
[Crossref] [PubMed]

Liu, Z.

Lounis, B.

S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[Crossref] [PubMed]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluores-cent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[Crossref]

D. Boyer, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Maali, A.

D. Boyer, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Mandelis, A.

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

V. Gusev, A. mandelis, and R. Bleiss, “Theory of second harmonic thermal-wave generation: one-dimensional geometry,” Int. J. Thermophys. 14(2), 321–337 (1993).
[Crossref]

Matcher, S.

I. Meglinski and S. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Phys. Meas. 23(4), 741–753 (2002).
[Crossref]

Maxwell, K.

K. Maxwell and G. Johnson, “Chlorophyll fluorescence — a practical guide,” J. Exp. Bot. 51(345), 659–668 (2000).
[Crossref] [PubMed]

McCusker, C.

C. Goodman, C. McCusker, T. Yilmaz, and V. Rotello, “Toxicity of gold nanoparticles functionalized with cationic and anionic side chains,” Bioconjugate Chem. 15(4), 897–900 (2004).
[Crossref]

Meglinski, I.

I. Meglinski and S. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Phys. Meas. 23(4), 741–753 (2002).
[Crossref]

Miyazaki, J.

Nedosekin, D.

D. Nedosekin, E. Galanzha, E. Dervishi, A. Biris, and V. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref]

Neuss, S.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Opsal, J.

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

Orrit, M.

D. Boyer, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Pan, Y.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Plech, A.

V. Kotaidis, C. Dahmen, G. Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Plessen, G.

V. Kotaidis, C. Dahmen, G. Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Power, J.

Qian, W.

X. Huang, I. EI-Sayed, W. Qian, and M. EI-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Rajakarunanayake, Y. N.

Y. N. Rajakarunanayake and H. K. Wickramasinghe, “Nonlinear photothermal imaging,” Appl. Phys. Lett. 48(3), 218–220 (1986).
[Crossref]

Rittweger, E.

Romanovskaya, T.

D. Lapotko, T. Romanovskaya, A. Shnip, and V. Zharov, “Photothermal time-resolved imaging of living cells,” Lasers in Surgery and Medicine 31(1), 53–63 (2002).
[Crossref] [PubMed]

Rosencwaig, A.

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

Rotello, V.

C. Goodman, C. McCusker, T. Yilmaz, and V. Rotello, “Toxicity of gold nanoparticles functionalized with cationic and anionic side chains,” Bioconjugate Chem. 15(4), 897–900 (2004).
[Crossref]

Salnick, A.

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

Sawada, T.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amount of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73(9), 2112–2116 (2001).
[Crossref] [PubMed]

Schmid, G.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Shi, K.

Shnip, A.

D. Lapotko, T. Romanovskaya, A. Shnip, and V. Zharov, “Photothermal time-resolved imaging of living cells,” Lasers in Surgery and Medicine 31(1), 53–63 (2002).
[Crossref] [PubMed]

Simon, U.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Springer, F.

V. Kotaidis, C. Dahmen, G. Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Thomsen, S.

S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions,” Phtochem. Photobiol. 53(6), 825–835 (1991).
[Crossref]

Tokeshi, M.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amount of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73(9), 2112–2116 (2001).
[Crossref] [PubMed]

Tsurui, H.

Uchida, M.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amount of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73(9), 2112–2116 (2001).
[Crossref] [PubMed]

Udem, T.

T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Valvano, J.

J. Valvano, J. Cochran, and K. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Therm. 6(3), 301–311 (1985).
[Crossref]

Wang, N.

Watt, R.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Wen, F.

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

Wickramasinghe, H. K.

Y. N. Rajakarunanayake and H. K. Wickramasinghe, “Nonlinear photothermal imaging,” Appl. Phys. Lett. 48(3), 218–220 (1986).
[Crossref]

Wildanger, D.

Yilmaz, T.

C. Goodman, C. McCusker, T. Yilmaz, and V. Rotello, “Toxicity of gold nanoparticles functionalized with cationic and anionic side chains,” Bioconjugate Chem. 15(4), 897–900 (2004).
[Crossref]

Yin, S.

Zharov, V.

D. Nedosekin, E. Galanzha, E. Dervishi, A. Biris, and V. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref]

D. Lapotko, T. Romanovskaya, A. Shnip, and V. Zharov, “Photothermal time-resolved imaging of living cells,” Lasers in Surgery and Medicine 31(1), 53–63 (2002).
[Crossref] [PubMed]

Anal. Chem. (1)

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amount of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem. 73(9), 2112–2116 (2001).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008).
[Crossref]

Appl. Phys. Lett. (1)

Y. N. Rajakarunanayake and H. K. Wickramasinghe, “Nonlinear photothermal imaging,” Appl. Phys. Lett. 48(3), 218–220 (1986).
[Crossref]

Bioconjugate Chem. (1)

C. Goodman, C. McCusker, T. Yilmaz, and V. Rotello, “Toxicity of gold nanoparticles functionalized with cationic and anionic side chains,” Bioconjugate Chem. 15(4), 897–900 (2004).
[Crossref]

Biophys. J. (1)

D. Lasne, G. A. Blab, S. Berciaud, M Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[Crossref] [PubMed]

Chem. Re. (1)

S. Braslavsky and G. Heibel, “Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution,” Chem. Re. 92(6), 1381–1410 (1992).
[Crossref]

Int. J. Therm. (1)

J. Valvano, J. Cochran, and K. Diller, “Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors,” Int. J. Therm. 6(3), 301–311 (1985).
[Crossref]

Int. J. Thermophys. (1)

V. Gusev, A. mandelis, and R. Bleiss, “Theory of second harmonic thermal-wave generation: one-dimensional geometry,” Int. J. Thermophys. 14(2), 321–337 (1993).
[Crossref]

J. Am. Chem. Soc. (1)

X. Huang, I. EI-Sayed, W. Qian, and M. EI-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (1)

A. Mandelis, A. Salnick, J. Opsal, and A. Rosencwaig, “Nonlinear fundamental photothermal response in three-dimensional geometry: theoretical model,” J. Appl. Phys. 85(3), 1811–1821 (1999).
[Crossref]

J. Chem. Phys. (1)

V. Kotaidis, C. Dahmen, G. Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

J. Exp. Bot. (1)

K. Maxwell and G. Johnson, “Chlorophyll fluorescence — a practical guide,” J. Exp. Bot. 51(345), 659–668 (2000).
[Crossref] [PubMed]

Lasers in Surgery and Medicine (1)

D. Lapotko, T. Romanovskaya, A. Shnip, and V. Zharov, “Photothermal time-resolved imaging of living cells,” Lasers in Surgery and Medicine 31(1), 53–63 (2002).
[Crossref] [PubMed]

Nano. Lett. (1)

B. Chithrani, A. Ghazani, and W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano. Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Nature (1)

T. Udem, R. Holzwarth, and T. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Optik & Photonic. (1)

J. Clowes, “Next generation of light sources for biomedical applications,” Optik & Photonic. 3(1), 36–38 (2008).
[Crossref]

Phtochem. Photobiol. (1)

S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions,” Phtochem. Photobiol. 53(6), 825–835 (1991).
[Crossref]

Phys. Meas. (1)

I. Meglinski and S. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Phys. Meas. 23(4), 741–753 (2002).
[Crossref]

Phys. Rev. B (1)

S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Phys. Rev. Lett. (1)

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluores-cent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[Crossref]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

D. Boyer, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Small (3)

N. Lewinski, V. Colvin, and R. Drezek, “Cytotoxicity of nanoparticles,” Small 4(1), 26–49 (2008).
[Crossref] [PubMed]

Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Dechent, “Size-dependent cytotoxicity of gold nanoparticles,” Small 3(11), 1941–1949 (2007).
[Crossref] [PubMed]

D. Nedosekin, E. Galanzha, E. Dervishi, A. Biris, and V. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref]

Other (1)

J. Cross, Pigments in Vegetables: Chlorophylls and Carotenoids (SpringerUS, 1991), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the NLPT imaging system. DM1, 2: dichroic mirrors; PBS: polarization beamsplitter; BP1, 2, 3: bandpass filters; HWP1, 2: half-wave plates; P1, 2: polarizers; EOM: electro-optic modulator; BS: beamsplitter; MMF: multimode fiber; OB: objective lens; PS: piezo stage; SA: samples; CL: condenser lens; BD: auto-balanced detector; LIA1, 2: lock-in amplifiers.
Fig. 2
Fig. 2 LPT imaging of mouse kidney with modulation frequency of pump beam at 30 kHz (a) and 60 kHz (b), with the whole range of 10 μm × 10 μm and pixels of 300 × 300. The line profiles in (c) show the cross section of the position indicated by red lines in (a) and (b). (d) shows the absorption imaging of mouse kidney performed simultaneously with (a).
Fig. 3
Fig. 3 LPT and NLPT imaging of cross section of mouse spinal cord. (a) LPT imaging of spinal cord with the whole range of 100 μm × 100 μm and pixels of 200 × 200. Anterior horn and axon bundle are located left and right, respectively. Strong magnification images of the range marked in the red box in are obtained with LPT (b) and NLPT (c) imaging, with the whole range of 20 μm × 20 μm and pixels of 300 × 300. The red arrows denote some organelles in the spinal cord, such as mitochondria and vesicles. The line profiles in (d) show the cross section of the position marked with red lines in (b) and (c), 245 and 188 nm for the LPT and NLPT imaging, respectively.
Fig. 4
Fig. 4 LPT and NLPT imaging of mouse kidney. (a) LPT imaging of mouse kidney in the range of 100 μm × 100 μm. The green round small bulbs are nuclei of kidney tubules. (b) and (c) are LPT and NLPT images of kidney within 20 μm × 20 μm with whole pixels of 300 × 300 μm. The structure of the small green spots in nuclei, as denoted in the red cycle in (c), is due to the heterogeneity of chromatin. (d) The line profiles of the cross-sections of the nuclei indicated by the red lines in (b) and (c).
Fig. 5
Fig. 5 LPT and NLPT imaging of medulla of mouse small intestine. (a) LPT imaging of mouse mouse small intestine in the range of 100 μm × 100 μm. The black holes denoted by the red arrows are intestinal microvilli. (b) and (c) are LPT and NLPT images of small intestine 20 μm × 20 μm with whole pixels of 300 × 300 μm. The structures denoted in the red cycle in (c) are nuclei of eptithelia in villi. (d) The line profiles of the cross-sections of the nuclei indicated by the red lines in (b) and (c).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ T ( r , t ) = k E a b s π K ( ( ω 0 ) 2 + 4 k t ) e r 2 / ( ω 0 2 + 4 k t ) ,

Metrics