Abstract

An ultra-thin nanostructured plasmonic light absorber with an insulator-metal-insulator-metal (IMIM) architecture is designed and numerically studied. The IMIM structure is capable to absorb up to about 82.5% of visible light in a broad wavelength range of 300-750 nm. The absorption by the bottom metal is only 6% of that of the top metal. The results show that the IMIM architecture has weak dependence of the angle of the incident light. Interestingly, by varying the top insulator material the optical absorption spectrum can be shifted more than 180 nm as compared to the conventional air-metal-insulator-metal structure. The IMIM structure can be applied for different plasmonic devices with improved performance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures

Wonkyu Kim, Blake S. Simpkins, James P. Long, Boyang Zhang, Joshua Hendrickson, and Junpeng Guo
J. Opt. Soc. Am. B 32(8) 1686-1692 (2015)

Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber

Peng Feng, Wen-Di Li, and Weihua Zhang
Opt. Express 23(3) 2328-2338 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
    [Crossref]
  2. D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
    [Crossref]
  3. K.-Q. Peng, X. Wang, L. Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
    [Crossref] [PubMed]
  4. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [Crossref] [PubMed]
  5. F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett. 35(1), 40–42 (2010).
    [Crossref] [PubMed]
  6. J. Li, H. Yu, and Y. Li, “Aligned Si nanowire-based solar cells,” Nanoscale 3(12), 4888–4900 (2011).
    [Crossref]
  7. L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
    [Crossref]
  8. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
    [Crossref] [PubMed]
  9. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  10. J. Li, H. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett. 98(2), 021905 (2011).
    [Crossref]
  11. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  12. S. Pillai, K. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  13. V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
    [Crossref] [PubMed]
  14. Q. Liang, W. Yu, W. Zhao, T. Wang, J. Zhao, H. Zhang, and S. Tao, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express 3(8), 1187–1196 (2013).
  15. M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22(10), 12678–12690 (2014).
    [PubMed]
  16. M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
    [Crossref]
  17. Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
    [Crossref] [PubMed]
  18. A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
    [Crossref] [PubMed]
  19. F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
    [Crossref] [PubMed]
  20. S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
    [Crossref] [PubMed]
  21. T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
    [Crossref] [PubMed]
  22. H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
    [Crossref] [PubMed]
  23. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  24. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  25. A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
    [Crossref]
  26. K. Yasui, K. Nishio, H. Nunokawa, and H. Masuda, “Ideally ordered anodic porous alumina with sub-50 nm hole intervals based on imprinting using metal molds,” J. Vac. Sci. Technol. B 23(4), L9–L12 (2005).
    [Crossref]
  27. S. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc. 153(9), B384–B391 (2006).
    [Crossref]
  28. G. Ghosh, Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).
  29. Y.-H. Ye and J.-Y. Zhang, “Enhanced light transmission through cascaded metal films perforated with periodic hole arrays,” Opt. Lett. 30(12), 1521–1523 (2005).
    [Crossref] [PubMed]
  30. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
    [Crossref] [PubMed]
  31. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
    [Crossref] [PubMed]
  32. B. Huttner, “Optical properties of polyvalent metals in the solid and liquid state: aluminum,” J. Phys. Condens. Matter 6(13), 2459–2474 (1994).
    [Crossref]
  33. Lumerical FDTD Solutions, https://www.lumerical.com/tcad-products/fdtd/ .

2015 (1)

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

2014 (5)

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, “Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption,” Opt. Express 22(10), 12678–12690 (2014).
[PubMed]

2013 (1)

2012 (4)

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
[Crossref] [PubMed]

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
[Crossref]

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

2011 (6)

J. Li, H. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett. 98(2), 021905 (2011).
[Crossref]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

J. Li, H. Yu, and Y. Li, “Aligned Si nanowire-based solar cells,” Nanoscale 3(12), 4888–4900 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

2010 (5)

K.-Q. Peng, X. Wang, L. Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2008 (1)

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[Crossref]

2007 (2)

S. Pillai, K. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

2006 (1)

S. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc. 153(9), B384–B391 (2006).
[Crossref]

2005 (2)

Y.-H. Ye and J.-Y. Zhang, “Enhanced light transmission through cascaded metal films perforated with periodic hole arrays,” Opt. Lett. 30(12), 1521–1523 (2005).
[Crossref] [PubMed]

K. Yasui, K. Nishio, H. Nunokawa, and H. Masuda, “Ideally ordered anodic porous alumina with sub-50 nm hole intervals based on imprinting using metal molds,” J. Vac. Sci. Technol. B 23(4), L9–L12 (2005).
[Crossref]

1998 (2)

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[Crossref]

A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

1994 (1)

B. Huttner, “Optical properties of polyvalent metals in the solid and liquid state: aluminum,” J. Phys. Condens. Matter 6(13), 2459–2474 (1994).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Bhargava, R.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Birner, A.

A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

Bouhafs, D.

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[Crossref]

Braun, P. V.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Catchpole, K.

S. Pillai, K. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Chalabi, H.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Chhajed, S.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[Crossref]

Chikouche, A.

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[Crossref]

Chu, S.

S. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc. 153(9), B384–B391 (2006).
[Crossref]

Cobley, C. M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Deparis, O.

Elbahri, M.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
[Crossref]

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Fang, N. X.

Faupel, F.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[Crossref] [PubMed]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Fung, K. H.

Garnett, E. C.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Gong, T.

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

Gosele, U.

A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

Green, M.

S. Pillai, K. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

He, S.

Hedayati, M. K.

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
[Crossref]

Henrard, L.

Huttner, B.

B. Huttner, “Optical properties of polyvalent metals in the solid and liquid state: aluminum,” J. Phys. Condens. Matter 6(13), 2459–2474 (1994).
[Crossref]

Inoue, S.

S. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc. 153(9), B384–B391 (2006).
[Crossref]

Isogai, M.

S. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc. 153(9), B384–B391 (2006).
[Crossref]

Jeong, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Katsuta, Y.

S. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc. 153(9), B384–B391 (2006).
[Crossref]

Kim, J. K.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[Crossref]

Korevaar, B.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Kulkarni, V.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Lard, M.

Lee, J.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Lee, S.-T.

K.-Q. Peng, X. Wang, L. Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

Lee, W.-R.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Li, A.

A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

Li, H. B.

Li, J.

J. Li, H. Yu, and Y. Li, “Aligned Si nanowire-based solar cells,” Nanoscale 3(12), 4888–4900 (2011).
[Crossref]

J. Li, H. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett. 98(2), 021905 (2011).
[Crossref]

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

Li, L.

K.-Q. Peng, X. Wang, L. Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Li, Y.

J. Li, H. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett. 98(2), 021905 (2011).
[Crossref]

J. Li, H. Yu, and Y. Li, “Aligned Si nanowire-based solar cells,” Nanoscale 3(12), 4888–4900 (2011).
[Crossref]

Liang, Q.

Liu, J. G.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Lobet, M.

Lui, E.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Manjavacas, A.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Masuda, H.

K. Yasui, K. Nishio, H. Nunokawa, and H. Masuda, “Ideally ordered anodic porous alumina with sub-50 nm hole intervals based on imprinting using metal molds,” J. Vac. Sci. Technol. B 23(4), L9–L12 (2005).
[Crossref]

McGehee, M. D.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Melosh, N. A.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

Mihi, A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Moran, C. H.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Moskovits, M.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Moussi, A.

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[Crossref]

Mubeen, S.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Muller, F.

A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

Munday, J. N.

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

Nielsch, K.

A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

Nishio, K.

K. Yasui, K. Nishio, H. Nunokawa, and H. Masuda, “Ideally ordered anodic porous alumina with sub-50 nm hole intervals based on imprinting using metal molds,” J. Vac. Sci. Technol. B 23(4), L9–L12 (2005).
[Crossref]

Nordlander, P.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Nunokawa, H.

K. Yasui, K. Nishio, H. Nunokawa, and H. Masuda, “Ideally ordered anodic porous alumina with sub-50 nm hole intervals based on imprinting using metal molds,” J. Vac. Sci. Technol. B 23(4), L9–L12 (2005).
[Crossref]

Peng, K.-Q.

K.-Q. Peng, X. Wang, L. Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

Pillai, S.

S. Pillai, K. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Polman, A.

Qin, D.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Rogers, J. A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Ruiz, J.

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[Crossref]

Rycenga, M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Sarrazin, M.

Schoen, D.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

Schropp, R. E.

Schubert, E. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[Crossref]

Schubert, M. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[Crossref]

Schulmerich, M.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Singh, N.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Stucky, G. D.

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Sun, X.

Tao, S.

Truong, T.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Trupke, T.

S. Pillai, K. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Verhagen, E.

Verschuuren, M. A.

Wada, K.

S. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc. 153(9), B384–B391 (2006).
[Crossref]

Walters, R. J.

Wang, F.

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

J. Li, H. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett. 98(2), 021905 (2011).
[Crossref]

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Wang, T.

Wang, X.

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

K.-Q. Peng, X. Wang, L. Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

Wong, S. M.

J. Li, H. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett. 98(2), 021905 (2011).
[Crossref]

Wu, X.-L.

K.-Q. Peng, X. Wang, L. Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

Xia, Y.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Xu, J.

Yang, M.

J. Li, H. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett. 98(2), 021905 (2011).
[Crossref]

Yasui, K.

K. Yasui, K. Nishio, H. Nunokawa, and H. Masuda, “Ideally ordered anodic porous alumina with sub-50 nm hole intervals based on imprinting using metal molds,” J. Vac. Sci. Technol. B 23(4), L9–L12 (2005).
[Crossref]

Yasumori, A.

S. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc. 153(9), B384–B391 (2006).
[Crossref]

Ye, Y.-H.

Yu, H.

J. Li, H. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett. 98(2), 021905 (2011).
[Crossref]

J. Li, H. Yu, and Y. Li, “Aligned Si nanowire-based solar cells,” Nanoscale 3(12), 4888–4900 (2011).
[Crossref]

F. Wang, H. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett. 35(1), 40–42 (2010).
[Crossref] [PubMed]

Yu, W.

Yu, Z.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Zeng, J.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Zhang, H.

Zhang, J.-Y.

Zhang, Q.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Zhao, J.

Zhao, W.

Zheng, H.

ACS Nano (2)

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

S. Mubeen, J. Lee, W.-R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the plasmonic photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

L. Tsakalakos, J. Balch, J. Fronheiser, B. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[Crossref]

J. Li, H. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Appl. Phys. Lett. 98(2), 021905 (2011).
[Crossref]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. K. Hedayati, F. Faupel, and M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012).
[Crossref]

Chem. Rev. (1)

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

K.-Q. Peng, X. Wang, L. Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132(20), 6872–6873 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (2)

S. Pillai, K. Catchpole, T. Trupke, and M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84(11), 6023–6026 (1998).
[Crossref]

J. Electrochem. Soc. (1)

S. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc. 153(9), B384–B391 (2006).
[Crossref]

J. Phys. Condens. Matter (1)

B. Huttner, “Optical properties of polyvalent metals in the solid and liquid state: aluminum,” J. Phys. Condens. Matter 6(13), 2459–2474 (1994).
[Crossref]

J. Vac. Sci. Technol. B (1)

K. Yasui, K. Nishio, H. Nunokawa, and H. Masuda, “Ideally ordered anodic porous alumina with sub-50 nm hole intervals based on imprinting using metal molds,” J. Vac. Sci. Technol. B 23(4), L9–L12 (2005).
[Crossref]

Nano Lett. (7)

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15(1), 147–152 (2015).
[Crossref] [PubMed]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett. 11(12), 5426–5430 (2011).
[Crossref] [PubMed]

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[Crossref] [PubMed]

Nanoscale (1)

J. Li, H. Yu, and Y. Li, “Aligned Si nanowire-based solar cells,” Nanoscale 3(12), 4888–4900 (2011).
[Crossref]

Nat. Commun. (2)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (1)

Sol. Energy Mater. Sol. Cells (1)

D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52(1-2), 79–93 (1998).
[Crossref]

Other (2)

Lumerical FDTD Solutions, https://www.lumerical.com/tcad-products/fdtd/ .

G. Ghosh, Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram (top) and cross-section of simulation unit cell (bottom) of IMIM structure. In the figure a, r, w, h1, (h2 + w), h3 and h4 are interpore distance, pore radius, pore depth, bottom metal thickness, bottom insulator thickness, top metal thickness and top insulator thickness respectively. (b) Fabrication of IMIM structure on a glass substrate. (i) Deposition of Al on glass followed by atomic layer deposition (ALD) of Al2O3 with thickness of h2; (ii) Formation of SiO2 mesa with thickness of w using HSQ by lithography and curing; (iii) Deposition of top metal and insulator to form the IMIM structure with thickness of h3 and h4 respectively.

Fig. 2
Fig. 2

The influence of pore depth w (a), pore radius r (b) and interpore distance a (c) variations on the absorption of the Si3N4-Au-Al2O3-Al (IMIM) structure.

Fig. 3
Fig. 3

Thickness and material type dependency on the absorption of the IMIM structure. (a) Dependence of top metal Au thickness. (b) Dependence of top metal material type. (c) Dependence of top insulator Si3N4 thickness. (d) Dependence of different types of top insulator material. (e) Plasmon resonance shift versus refractive index of top insulator. (f) Dependence of different types of bottom insulator material.

Fig. 4
Fig. 4

Absorption and reflection dependency on the planar and hexagonal nanopatterned structures. (a) Absorption and reflection of Au single layer with planar and hexagonal structures. (b) Absorption of air-Au-Al2O3-Al planar and hexagonal structure and the corresponding absorption by the bottom Al layer. (c) Absorption and reflection of Si3N4-Au planar and hexagonal structure. (d) Absorption of planar Si3N4-Au-Al2O3-Al planar and hexagonal structure and the corresponding absorption by the bottom Al layer. For the nanopatterned IMIM structure parameters have r = 75 nm, d = 300 nm, w = 75 nm, h1 = h2 = h3 = h4 = 25 nm, h2 + w = 100 nm and Si3N4-Au-Al2O3-Al layers from top to bottom.

Fig. 5
Fig. 5

Absorption profile of IMIM structure with top (a) air, (b) SiO2 (c), Al2O3 and (d) Si3N4 insulators versus pore radius and wavelength.

Fig. 6
Fig. 6

Distribution of electric field intensity ( | E | 2 / | E 0 | 2 ) and light absorption profile (G/G0) in nanopatterned Si3N4-Au-Al2O3-Al structure at the wavelengths of 350 and 650 nm. (a) Position of cross-section y-z plane (red plane) in above mentioned structure. (b, c) Electric field intensity distribution for 350 and 650 nm along y-z plane respectively. (d, e) Light absorption profile for 350 and 650 nm along y-z plane respectively.

Fig. 7
Fig. 7

Absorption profile of IMIM structure versus indecent light angle for the TE and TM polarizations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ= c ωIm ε m ,

Metrics