Abstract

Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogenization, we calculate the resonant eigenmodes of the finite-width cladding layers, and find agreement with the resonant features in the dispersion of the cladded waveguides. We show that at the resonant widths, the propagating modes of the waveguides are coupled to the cladding eigenmodes and hence, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic waveguides cladded by hyperbolic metamaterials

Satoshi Ishii, Mikhail Y. Shalaginov, Viktoriia E. Babicheva, Alexandra Boltasseva, and Alexander V. Kildishev
Opt. Lett. 39(16) 4663-4666 (2014)

Long-range plasmonic waveguides with hyperbolic cladding

Viktoriia E. Babicheva, Mikhail Y. Shalaginov, Satoshi Ishii, Alexandra Boltasseva, and Alexander V. Kildishev
Opt. Express 23(24) 31109-31119 (2015)

Geometries and materials for subwavelength surface plasmon modes

Rashid Zia, Mark D. Selker, Peter B. Catrysse, and Mark L. Brongersma
J. Opt. Soc. Am. A 21(12) 2442-2446 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012).
    [Crossref]
  2. V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
    [Crossref]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  5. M. L. Brongersma and V. M. Shalaev, “Applied Physics. the case for plasmonics,” Science 328(5977), 440–441 (2010).
    [Crossref] [PubMed]
  6. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  7. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [Crossref] [PubMed]
  8. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  9. M. Noginov, M. Lapine, V. Podolskiy, and Y. Kivshar, “Focus issue: hyperbolic metamaterials,” Opt. Express 21(12), 14895–14897 (2013).
    [Crossref] [PubMed]
  10. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett. 36(13), 2530–2532 (2011).
    [Crossref] [PubMed]
  11. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [Crossref] [PubMed]
  12. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  14. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  15. D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
    [Crossref] [PubMed]
  16. M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
    [Crossref]
  17. V. Babicheva, I. Iorsh, A. Orlov, P. A. Belov, A. Lavrinenko, A. Andryieuski, and S. Zhukovsky, “Multi-periodic photonic hyper-crystals: volume plasmon polaritons and the Purcell effect,” in Proceedings of CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FTu2C.3.
  18. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref] [PubMed]
  19. A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
    [Crossref]
  20. I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Phys. Lett. A 376(3), 185–187 (2012).
    [Crossref]
  21. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
    [Crossref] [PubMed]
  22. Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
    [Crossref]
  23. P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111(3), 036804 (2013).
    [Crossref] [PubMed]
  24. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
    [Crossref]
  25. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011).
    [Crossref] [PubMed]
  26. A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry,” Opt. Express 22(9), 10987–10994 (2014).
    [Crossref] [PubMed]
  27. S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photon. Rev. 7(2), 265–271 (2013).
    [Crossref]
  28. S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).
    [PubMed]
  29. V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: new physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
    [Crossref] [PubMed]
  30. E. E. Narimanov, “Photonic Hypercrystals,” Phys. Rev. X 4, 041014 (2014).
  31. S. V. Zhukovsky, A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. Sipe, “Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
    [Crossref]
  32. A. A. Orlov, A. K. Krylova, S. V. Zhukovsky, V. E. Babicheva, and P. A. Belov, “Multiperiodicity in plasmonic multilayers: general description and diversity of topologies,” Phys. Rev. A 90(1), 013812 (2014).
    [Crossref]
  33. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
    [Crossref]
  34. Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
    [Crossref] [PubMed]
  35. L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
    [Crossref] [PubMed]
  36. L. Alekseyev, Z. Jacob, and E. Narimanov, “Optical hyperspace: negative refractive index and subwavelength imaging,” in Tutorials on Complex Photonic Media, M. A. Noginov, M. W. McCall, G. Dewar, and N. I. Zheludev, eds. (SPIE, 2009) pp. 33–55.
  37. S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
    [Crossref] [PubMed]
  38. S. Jahani and Z. Jacob, “Transparent subdiffraction optics: nanoscale light confinement without metal,” Optica 1(2), 96–100 (2014).
    [Crossref]
  39. S. Jahani and Z. Jacob, http://arxiv.org/abs/1410.2319
  40. X. Ni, Z. Liu, and A. V. Kildishev, nanoHUB: Photonics DB, Optical Constants, 2010.
  41. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  42. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006).
    [Crossref] [PubMed]
  43. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  44. A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
    [Crossref]
  45. P. Yeh, Optical Waves in Layered Media (Wiley Online Library, 1988, vol. 95).
  46. C. S. T. Microwave Studio, http://www.cst.com/
  47. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
    [Crossref] [PubMed]
  48. V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
    [Crossref] [PubMed]
  49. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [Crossref] [PubMed]

2015 (1)

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

2014 (7)

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “Transparent subdiffraction optics: nanoscale light confinement without metal,” Optica 1(2), 96–100 (2014).
[Crossref]

A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry,” Opt. Express 22(9), 10987–10994 (2014).
[Crossref] [PubMed]

E. E. Narimanov, “Photonic Hypercrystals,” Phys. Rev. X 4, 041014 (2014).

S. V. Zhukovsky, A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. Sipe, “Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

A. A. Orlov, A. K. Krylova, S. V. Zhukovsky, V. E. Babicheva, and P. A. Belov, “Multiperiodicity in plasmonic multilayers: general description and diversity of topologies,” Phys. Rev. A 90(1), 013812 (2014).
[Crossref]

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

2013 (9)

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[Crossref]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111(3), 036804 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

M. Noginov, M. Lapine, V. Podolskiy, and Y. Kivshar, “Focus issue: hyperbolic metamaterials,” Opt. Express 21(12), 14895–14897 (2013).
[Crossref] [PubMed]

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photon. Rev. 7(2), 265–271 (2013).
[Crossref]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).
[PubMed]

V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: new physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
[Crossref] [PubMed]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (8)

Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
[Crossref] [PubMed]

J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012).
[Crossref]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Phys. Lett. A 376(3), 185–187 (2012).
[Crossref]

2011 (2)

2010 (5)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

M. L. Brongersma and V. M. Shalaev, “Applied Physics. the case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[Crossref]

2009 (1)

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Alekseyev, L. V.

Atwater, H. A.

J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012).
[Crossref]

Avrutsky, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Babicheva, V. E.

S. V. Zhukovsky, A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. Sipe, “Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

A. A. Orlov, A. K. Krylova, S. V. Zhukovsky, V. E. Babicheva, and P. A. Belov, “Multiperiodicity in plasmonic multilayers: general description and diversity of topologies,” Phys. Rev. A 90(1), 013812 (2014).
[Crossref]

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

Barnakov, Y. A.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Phys. Lett. A 376(3), 185–187 (2012).
[Crossref]

Belov, P. A.

A. A. Orlov, A. K. Krylova, S. V. Zhukovsky, V. E. Babicheva, and P. A. Belov, “Multiperiodicity in plasmonic multilayers: general description and diversity of topologies,” Phys. Rev. A 90(1), 013812 (2014).
[Crossref]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111(3), 036804 (2013).
[Crossref] [PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

Berini, P.

Boltasseva, A.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[Crossref]

Bonner, C. E.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “Applied Physics. the case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[Crossref] [PubMed]

Christy, R.

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cortes, C. L.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Dionne, J. A.

J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012).
[Crossref]

Drachev, V. P.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photon. Rev. 7(2), 265–271 (2013).
[Crossref]

V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: new physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
[Crossref] [PubMed]

Dryden, D.

Elser, J.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Ferrera, M.

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Fullerton, E. E.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Ginzburg, P.

A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry,” Opt. Express 22(9), 10987–10994 (2014).
[Crossref] [PubMed]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111(3), 036804 (2013).
[Crossref] [PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Guo, Y.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Han, S.

He, S.

He, Y.

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Huang, X. G.

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Phys. Lett. A 376(3), 185–187 (2012).
[Crossref]

Irudayaraj, J.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[Crossref]

Ishii, S.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[Crossref]

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photon. Rev. 7(2), 265–271 (2013).
[Crossref]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011).
[Crossref] [PubMed]

Jacob, Z.

S. Jahani and Z. Jacob, “Transparent subdiffraction optics: nanoscale light confinement without metal,” Optica 1(2), 96–100 (2014).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Jahani, S.

Johnson, P. B.

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kan, J. J.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Kéna-Cohen, S.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Kidwai, O.

Kildishev, A. V.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: new physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
[Crossref] [PubMed]

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photon. Rev. 7(2), 265–271 (2013).
[Crossref]

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011).
[Crossref] [PubMed]

Kim, J.-Y.

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[Crossref]

Kinsey, N.

Kivshar, Y.

M. Noginov, M. Lapine, V. Podolskiy, and Y. Kivshar, “Focus issue: hyperbolic metamaterials,” Opt. Express 21(12), 14895–14897 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Phys. Lett. A 376(3), 185–187 (2012).
[Crossref]

Kivshar, Y. S.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111(3), 036804 (2013).
[Crossref] [PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

Kossoy, A.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Krasavin, A. V.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111(3), 036804 (2013).
[Crossref] [PubMed]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krylova, A. K.

A. A. Orlov, A. K. Krylova, S. V. Zhukovsky, V. E. Babicheva, and P. A. Belov, “Multiperiodicity in plasmonic multilayers: general description and diversity of topologies,” Phys. Rev. A 90(1), 013812 (2014).
[Crossref]

Lagutchev, A.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[Crossref]

Lapine, M.

Lavrinenko, A. V.

S. V. Zhukovsky, A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. Sipe, “Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lee, S.

Leosson, K.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Li, H.

Lin, X. S.

Liu, J.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[Crossref]

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Liu, Z.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lu, D.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Ma, R.-M.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Maier, S. A.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Mayy, M.

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Merk, V.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Molesky, S.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[Crossref]

Narimanov, E.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photon. Rev. 7(2), 265–271 (2013).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
[Crossref] [PubMed]

Narimanov, E. E.

E. E. Narimanov, “Photonic Hypercrystals,” Phys. Rev. X 4, 041014 (2014).

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[Crossref]

M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
[Crossref] [PubMed]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Nataraj, G.

Neira, A. D.

Ni, X.

Noginov, M.

Noginov, M. A.

Orlov, A.

S. V. Zhukovsky, A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. Sipe, “Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Phys. Lett. A 376(3), 185–187 (2012).
[Crossref]

Orlov, A. A.

A. A. Orlov, A. K. Krylova, S. V. Zhukovsky, V. E. Babicheva, and P. A. Belov, “Multiperiodicity in plasmonic multilayers: general description and diversity of topologies,” Phys. Rev. A 90(1), 013812 (2014).
[Crossref]

Oulton, R. F.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Phys. Lett. A 376(3), 185–187 (2012).
[Crossref]

Poddubny, A. N.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111(3), 036804 (2013).
[Crossref] [PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

Podolskiy, V.

M. Noginov, M. Lapine, V. Podolskiy, and Y. Kivshar, “Focus issue: hyperbolic metamaterials,” Opt. Express 21(12), 14895–14897 (2013).
[Crossref] [PubMed]

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Podolskiy, V. A.

V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: new physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
[Crossref] [PubMed]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Salakhutdinov, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Shalaev, V. M.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[Crossref]

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photon. Rev. 7(2), 265–271 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied Physics. the case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[Crossref]

Shalaginov, M. Y.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[Crossref]

Simakov, D.

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Sipe, J.

S. V. Zhukovsky, A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. Sipe, “Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

Sipe, J. E.

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Sorger, V. J.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Thoreson, M. D.

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[Crossref] [PubMed]

Wurtz, G. A.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Yang, X.

Zayats, A. V.

A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry,” Opt. Express 22(9), 10987–10994 (2014).
[Crossref] [PubMed]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111(3), 036804 (2013).
[Crossref] [PubMed]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Zhang, X.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhu, G.

Zhukovsky, S. V.

S. V. Zhukovsky, A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. Sipe, “Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

A. A. Orlov, A. K. Krylova, S. V. Zhukovsky, V. E. Babicheva, and P. A. Belov, “Multiperiodicity in plasmonic multilayers: general description and diversity of topologies,” Phys. Rev. A 90(1), 013812 (2014).
[Crossref]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).
[PubMed]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett. 36(13), 2530–2532 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. 3(1), 71–77 (2015).
[Crossref]

Appl. Phys. B (1)

Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[Crossref]

Appl. Phys. Lett. (2)

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, and V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[Crossref]

Laser Photon. Rev. (1)

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photon. Rev. 7(2), 265–271 (2013).
[Crossref]

MRS Bull. (2)

J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull. 37(08), 717–724 (2012).
[Crossref]

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37(08), 728–738 (2012).
[Crossref]

Nano Lett. (1)

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[Crossref] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Opt. Express (9)

M. Noginov, M. Lapine, V. Podolskiy, and Y. Kivshar, “Focus issue: hyperbolic metamaterials,” Opt. Express 21(12), 14895–14897 (2013).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).
[PubMed]

V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic metamaterials: new physics behind a classical problem,” Opt. Express 21(12), 15048–15064 (2013).
[Crossref] [PubMed]

X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express 19(25), 25242–25254 (2011).
[Crossref] [PubMed]

A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry,” Opt. Express 22(9), 10987–10994 (2014).
[Crossref] [PubMed]

L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
[Crossref] [PubMed]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (1)

Phys. Lett. A (1)

I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Phys. Lett. A 376(3), 185–187 (2012).
[Crossref]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Phys. Rev. A (2)

S. V. Zhukovsky, A. Orlov, V. E. Babicheva, A. V. Lavrinenko, and J. Sipe, “Photonic band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials,” Phys. Rev. A 90(1), 013801 (2014).
[Crossref]

A. A. Orlov, A. K. Krylova, S. V. Zhukovsky, V. E. Babicheva, and P. A. Belov, “Multiperiodicity in plasmonic multilayers: general description and diversity of topologies,” Phys. Rev. A 90(1), 013812 (2014).
[Crossref]

Phys. Rev. B (3)

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007).
[Crossref]

A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S. Kivshar, “Microscopic model of Purcell enhancement in hyperbolic metamaterials,” Phys. Rev. B 86(3), 035148 (2012).
[Crossref]

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111(3), 036804 (2013).
[Crossref] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Phys. Rev. X (1)

E. E. Narimanov, “Photonic Hypercrystals,” Phys. Rev. X 4, 041014 (2014).

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Science (3)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied Physics. the case for plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Other (6)

V. Babicheva, I. Iorsh, A. Orlov, P. A. Belov, A. Lavrinenko, A. Andryieuski, and S. Zhukovsky, “Multi-periodic photonic hyper-crystals: volume plasmon polaritons and the Purcell effect,” in Proceedings of CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FTu2C.3.

L. Alekseyev, Z. Jacob, and E. Narimanov, “Optical hyperspace: negative refractive index and subwavelength imaging,” in Tutorials on Complex Photonic Media, M. A. Noginov, M. W. McCall, G. Dewar, and N. I. Zheludev, eds. (SPIE, 2009) pp. 33–55.

S. Jahani and Z. Jacob, http://arxiv.org/abs/1410.2319

X. Ni, Z. Liu, and A. V. Kildishev, nanoHUB: Photonics DB, Optical Constants, 2010.

P. Yeh, Optical Waves in Layered Media (Wiley Online Library, 1988, vol. 95).

C. S. T. Microwave Studio, http://www.cst.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic views of the three geometries: (a) single HIH waveguide (geometry A), εm and εd are the permittivities of metal and dielectric, respectively, εc stands for the permittivity of the waveguide core (b) periodic arrangement of HIH waveguides (geometry B); (c) waveguide with semi-infinite anisotropic effective medium claddings (εx, εy) that correspond to the lamellar structure (geometry C); (d) finite-width HIH waveguide.
Fig. 2
Fig. 2 (a) HIH waveguide FoM for various filling fractions of metal r ( r= d m /( d m + d d )= = 0.2 and 0.16) and d in comparison to FoM of IMI waveguide. (b) HIH waveguide FoM for various r in comparison to FoM of MIM waveguide, in all cases d = 50 nm. HMM is considered as an effective medium (geometry C in Fig. 1).
Fig. 3
Fig. 3 Dependencies of (a) propagation length and (b) effective index vs. wavelength for the considered waveguide geometries A, B and C, which are shown in Fig. 1. The layer thicknesses are 10 nm each, the core thickness is d = 200 nm, and the number of periods in the cladding for the geometries A and B is ten.
Fig. 4
Fig. 4 Comparison of propagation length (a) and effective index (b) dependences vs. wavelength for the geometry A with different number of periods (one, two, five, and ten), as well as for the geometry C, EMT approximation. The other parameters are the same as in Fig. 3.
Fig. 5
Fig. 5 Ey-component field distribution of the modes at λt = 1.55 μm for (a) w = 1.25 μm, (b) 0.875 μm, (c) 1.775 μm, and (d) 0.59 μm.
Fig. 6
Fig. 6 (a) Propagation length L and (b) propagation constant β vs. waveguide width at λt = 1.55 μm. Inset: the case when silica substrate is included (blue line). Position of the feature shifts by 12 nm with respect to the case without substrate (red line).
Fig. 7
Fig. 7 Ey-component field distribution in the multilayer cladding consisting of ten periods, each layer is 10-nm-thick, w = 1.5 μm at λt = 1.55 μm. (a) Corresponds to the mode noted as “1”, (b) “2”, (c) “3”, and (d) “4” in Fig. 6(b).
Fig. 8
Fig. 8 The number of periods in transverse direction kxw/2π vs. waveguide width at λt = 1.55 μm. Red triangles correspond to the spikes in Fig. 6(b) and well agree with the condition kxw = 2π, 4π, and 6π for the modes 3, 5, and 7, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k x 2 + k z 2 ε y + k y 2 ε x = k 0 2 ,
k q w (2π) n q /2 ,q={x,y}

Metrics