Abstract

We experimentally demonstrate a broadband one-way transmission by merging the operating bands of two types of one-way edge modes that are associated with Bragg scattering and magnetic surface plasmon (MSP) resonance, respectively. By tuning the configuration of gyromagnetic photonic crystals and applied bias magnetic field, the fused bandwidth of unidirectional propagation is up to 2 GHz in microwave frequency range, much larger than either of the individual one-way bandwidth associated with Bragg scattering or MSP resonance. Our scheme for broadband one-way transmission paves the way for the practical applications of one-way transmission.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Realization of self-guided unidirectional waveguides by a chain of gyromagnetic rods

Zhen Li, Rui-xin Wu, Qing-bo Li, and Yin Poo
Appl. Opt. 54(6) 1267-1272 (2015)

One-way edge mode in a gyromagnetic photonic crystal slab

Kexin Liu, Linfang Shen, and Sailing He
Opt. Lett. 37(19) 4110-4112 (2012)

Impact of photonic crystal boundary shape on the existence of one-way edge mode

Jie Lu, Linfang Shen, Xiaohua Deng, Xiaoer Li, and Xiaodong Zheng
Appl. Opt. 52(21) 5216-5220 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Y. Ao, Z. F. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
    [Crossref]
  2. J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, “Low temperature cathodoluminecence and electron beam induced current studies of single GaN nanowires,” Appl. Phys. Lett. 100(15), 153110 (2012).
    [Crossref]
  3. Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
    [Crossref]
  4. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
    [Crossref] [PubMed]
  5. J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97(4), 041112 (2010).
    [Crossref]
  6. Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States,” Phys. Rev. Lett. 106(9), 093903 (2011).
    [Crossref] [PubMed]
  7. F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
    [Crossref] [PubMed]
  8. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
    [Crossref]
  9. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
    [Crossref] [PubMed]
  10. Z. Li, R. X. Wu, Y. Poo, Z. F. Lin, and Q. B. Li, “Fusing electromagnetic one-way edge states to achieve broadband unidirectional wave transmission,” J. Opt. 16(12), 125004 (2014).
    [Crossref]
  11. C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express 19(27), 26948–26955 (2011).
    [Crossref] [PubMed]
  12. S. A. Skirlo, L. Lu, and M. Soljačić, “Multimode One-Way Waveguides of Large Chern Numbers,” Phys. Rev. Lett. 113(11), 113904 (2014).
    [Crossref]
  13. L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
    [Crossref]
  14. M. Onoda and T. Ochiai, “Designing Spinning Bloch States in 2D Photonic Crystals for Stirring Nanoparticles,” Phys. Rev. Lett. 103(3), 033903 (2009).
    [Crossref] [PubMed]
  15. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett. 49(6), 405–408 (1982).
    [Crossref]
  16. Y. Hatsugai, “Chern Number and Edge States in the Integer Quantum Hall Effect,” Phys. Rev. Lett. 71(22), 3697–3700 (1993).
    [Crossref] [PubMed]
  17. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
    [Crossref] [PubMed]
  18. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
    [Crossref] [PubMed]
  19. Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
    [Crossref]
  20. J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
    [Crossref]
  21. S. Y. Liu, J. J. Du, Z. F. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
    [Crossref]
  22. S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
    [Crossref]
  23. S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84(4), 045425 (2011).
    [Crossref]
  24. S. T. Chui and Z. F. Lin, “Spin plasmonics in magnetism,” Chin. Phys. B. 23(11), 117802 (2014).
    [Crossref]
  25. T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).
    [Crossref]
  26. K. M. Leung and Y. Qiu, “Multiple-scattering calculation of the two-dimensional photonic band structure,” Phys. Rev. B Condens. Matter 48(11), 7767–7771 (1993).
    [Crossref] [PubMed]
  27. P. Chen, R. X. Wu, J. Xu, A. M. Jiang, and X. Y. Ji, “Effects of magnetic anisotropy on the stop band of ferromagnetic electromagnetic band gap materials,” J. Phys. Condens. Matter 19(10), 106205 (2007).
    [Crossref]

2014 (5)

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

S. A. Skirlo, L. Lu, and M. Soljačić, “Multimode One-Way Waveguides of Large Chern Numbers,” Phys. Rev. Lett. 113(11), 113904 (2014).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

Z. Li, R. X. Wu, Y. Poo, Z. F. Lin, and Q. B. Li, “Fusing electromagnetic one-way edge states to achieve broadband unidirectional wave transmission,” J. Opt. 16(12), 125004 (2014).
[Crossref]

S. T. Chui and Z. F. Lin, “Spin plasmonics in magnetism,” Chin. Phys. B. 23(11), 117802 (2014).
[Crossref]

2012 (3)

Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, “Low temperature cathodoluminecence and electron beam induced current studies of single GaN nanowires,” Appl. Phys. Lett. 100(15), 153110 (2012).
[Crossref]

2011 (3)

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express 19(27), 26948–26955 (2011).
[Crossref] [PubMed]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84(4), 045425 (2011).
[Crossref]

2010 (2)

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97(4), 041112 (2010).
[Crossref]

2009 (4)

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

X. Y. Ao, Z. F. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

M. Onoda and T. Ochiai, “Designing Spinning Bloch States in 2D Photonic Crystals for Stirring Nanoparticles,” Phys. Rev. Lett. 103(3), 033903 (2009).
[Crossref] [PubMed]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).
[Crossref]

2008 (5)

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

S. Y. Liu, J. J. Du, Z. F. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

2007 (1)

P. Chen, R. X. Wu, J. Xu, A. M. Jiang, and X. Y. Ji, “Effects of magnetic anisotropy on the stop band of ferromagnetic electromagnetic band gap materials,” J. Phys. Condens. Matter 19(10), 106205 (2007).
[Crossref]

2005 (1)

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

1993 (2)

Y. Hatsugai, “Chern Number and Edge States in the Integer Quantum Hall Effect,” Phys. Rev. Lett. 71(22), 3697–3700 (1993).
[Crossref] [PubMed]

K. M. Leung and Y. Qiu, “Multiple-scattering calculation of the two-dimensional photonic band structure,” Phys. Rev. B Condens. Matter 48(11), 7767–7771 (1993).
[Crossref] [PubMed]

1982 (1)

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett. 49(6), 405–408 (1982).
[Crossref]

Ao, X. Y.

X. Y. Ao, Z. F. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

Chan, C. T.

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

X. Y. Ao, Z. F. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

Chen, H. Y.

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

Chen, P.

P. Chen, R. X. Wu, J. Xu, A. M. Jiang, and X. Y. Ji, “Effects of magnetic anisotropy on the stop band of ferromagnetic electromagnetic band gap materials,” J. Phys. Condens. Matter 19(10), 106205 (2007).
[Crossref]

Chong, Y.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Chui, S. T.

S. T. Chui and Z. F. Lin, “Spin plasmonics in magnetism,” Chin. Phys. B. 23(11), 117802 (2014).
[Crossref]

Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84(4), 045425 (2011).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

S. Y. Liu, J. J. Du, Z. F. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

den Nijs, M.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett. 49(6), 405–408 (1982).
[Crossref]

Du, J. J.

S. Y. Liu, J. J. Du, Z. F. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

Fan, S.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Fan, X.

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Fu, J. X.

J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97(4), 041112 (2010).
[Crossref]

Fu, Y. Y.

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

Haldane, F. D. M.

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

Hang, Z. H.

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

Hatsugai, Y.

Y. Hatsugai, “Chern Number and Edge States in the Integer Quantum Hall Effect,” Phys. Rev. Lett. 71(22), 3697–3700 (1993).
[Crossref] [PubMed]

Ji, X. Y.

P. Chen, R. X. Wu, J. Xu, A. M. Jiang, and X. Y. Ji, “Effects of magnetic anisotropy on the stop band of ferromagnetic electromagnetic band gap materials,” J. Phys. Condens. Matter 19(10), 106205 (2007).
[Crossref]

Jiang, A. M.

P. Chen, R. X. Wu, J. Xu, A. M. Jiang, and X. Y. Ji, “Effects of magnetic anisotropy on the stop band of ferromagnetic electromagnetic band gap materials,” J. Phys. Condens. Matter 19(10), 106205 (2007).
[Crossref]

Joannopoulos, J. D.

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

John, Q.

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Kim, H. W.

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, “Low temperature cathodoluminecence and electron beam induced current studies of single GaN nanowires,” Appl. Phys. Lett. 100(15), 153110 (2012).
[Crossref]

Kim, P.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Kim, Y. Y.

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, “Low temperature cathodoluminecence and electron beam induced current studies of single GaN nanowires,” Appl. Phys. Lett. 100(15), 153110 (2012).
[Crossref]

Kohmoto, M.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett. 49(6), 405–408 (1982).
[Crossref]

Kou, X. M.

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Leung, K. M.

K. M. Leung and Y. Qiu, “Multiple-scattering calculation of the two-dimensional photonic band structure,” Phys. Rev. B Condens. Matter 48(11), 7767–7771 (1993).
[Crossref] [PubMed]

Li, Q. B.

Z. Li, R. X. Wu, Y. Poo, Z. F. Lin, and Q. B. Li, “Fusing electromagnetic one-way edge states to achieve broadband unidirectional wave transmission,” J. Opt. 16(12), 125004 (2014).
[Crossref]

Li, Z.

Z. Li, R. X. Wu, Y. Poo, Z. F. Lin, and Q. B. Li, “Fusing electromagnetic one-way edge states to achieve broadband unidirectional wave transmission,” J. Opt. 16(12), 125004 (2014).
[Crossref]

Li, Z. Y.

C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express 19(27), 26948–26955 (2011).
[Crossref] [PubMed]

J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97(4), 041112 (2010).
[Crossref]

Lin, Z.

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

Lin, Z. F.

Z. Li, R. X. Wu, Y. Poo, Z. F. Lin, and Q. B. Li, “Fusing electromagnetic one-way edge states to achieve broadband unidirectional wave transmission,” J. Opt. 16(12), 125004 (2014).
[Crossref]

S. T. Chui and Z. F. Lin, “Spin plasmonics in magnetism,” Chin. Phys. B. 23(11), 117802 (2014).
[Crossref]

Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84(4), 045425 (2011).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

X. Y. Ao, Z. F. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

S. Y. Liu, J. J. Du, Z. F. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

Liu, R. J.

J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97(4), 041112 (2010).
[Crossref]

Liu, S. Y.

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84(4), 045425 (2011).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

S. Y. Liu, J. J. Du, Z. F. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

Lu, L.

S. A. Skirlo, L. Lu, and M. Soljačić, “Multimode One-Way Waveguides of Large Chern Numbers,” Phys. Rev. Lett. 113(11), 113904 (2014).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

Lu, Q.

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Lu, W. L.

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84(4), 045425 (2011).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

Ma, P. S.

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, “Low temperature cathodoluminecence and electron beam induced current studies of single GaN nanowires,” Appl. Phys. Lett. 100(15), 153110 (2012).
[Crossref]

Nightingale, M. P.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett. 49(6), 405–408 (1982).
[Crossref]

Ochiai, T.

M. Onoda and T. Ochiai, “Designing Spinning Bloch States in 2D Photonic Crystals for Stirring Nanoparticles,” Phys. Rev. Lett. 103(3), 033903 (2009).
[Crossref] [PubMed]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).
[Crossref]

Oh, J. H.

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, “Low temperature cathodoluminecence and electron beam induced current studies of single GaN nanowires,” Appl. Phys. Lett. 100(15), 153110 (2012).
[Crossref]

Onoda, M.

M. Onoda and T. Ochiai, “Designing Spinning Bloch States in 2D Photonic Crystals for Stirring Nanoparticles,” Phys. Rev. Lett. 103(3), 033903 (2009).
[Crossref] [PubMed]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).
[Crossref]

Poo, Y.

Z. Li, R. X. Wu, Y. Poo, Z. F. Lin, and Q. B. Li, “Fusing electromagnetic one-way edge states to achieve broadband unidirectional wave transmission,” J. Opt. 16(12), 125004 (2014).
[Crossref]

Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

Qiu, Y.

K. M. Leung and Y. Qiu, “Multiple-scattering calculation of the two-dimensional photonic band structure,” Phys. Rev. B Condens. Matter 48(11), 7767–7771 (1993).
[Crossref] [PubMed]

Raghu, S.

F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

Seung, H. M.

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, “Low temperature cathodoluminecence and electron beam induced current studies of single GaN nanowires,” Appl. Phys. Lett. 100(15), 153110 (2012).
[Crossref]

Shen, J.

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Skirlo, S. A.

S. A. Skirlo, L. Lu, and M. Soljačić, “Multimode One-Way Waveguides of Large Chern Numbers,” Phys. Rev. Lett. 113(11), 113904 (2014).
[Crossref]

Soljacic, M.

S. A. Skirlo, L. Lu, and M. Soljačić, “Multimode One-Way Waveguides of Large Chern Numbers,” Phys. Rev. Lett. 113(11), 113904 (2014).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Stormer, H. L.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Tan, Y. W.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Thouless, D. J.

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett. 49(6), 405–408 (1982).
[Crossref]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Wang, C.

Wang, Z.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Wu, R. X.

Z. Li, R. X. Wu, Y. Poo, Z. F. Lin, and Q. B. Li, “Fusing electromagnetic one-way edge states to achieve broadband unidirectional wave transmission,” J. Opt. 16(12), 125004 (2014).
[Crossref]

Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

S. Y. Liu, J. J. Du, Z. F. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

P. Chen, R. X. Wu, J. Xu, A. M. Jiang, and X. Y. Ji, “Effects of magnetic anisotropy on the stop band of ferromagnetic electromagnetic band gap materials,” J. Phys. Condens. Matter 19(10), 106205 (2007).
[Crossref]

Xu, J.

P. Chen, R. X. Wu, J. Xu, A. M. Jiang, and X. Y. Ji, “Effects of magnetic anisotropy on the stop band of ferromagnetic electromagnetic band gap materials,” J. Phys. Condens. Matter 19(10), 106205 (2007).
[Crossref]

Xu, L.

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

Yang, Y.

Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Zhang, H. W.

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Zhou, C. Z.

Appl. Phys. Lett. (5)

J. H. Oh, H. W. Kim, P. S. Ma, H. M. Seung, and Y. Y. Kim, “Low temperature cathodoluminecence and electron beam induced current studies of single GaN nanowires,” Appl. Phys. Lett. 100(15), 153110 (2012).
[Crossref]

Y. Y. Fu, L. Xu, Z. H. Hang, and H. Y. Chen, “Unidirectional transmission using array of zero-refractive-index metamaterials,” Appl. Phys. Lett. 104(19), 193509 (2014).
[Crossref]

J. X. Fu, R. J. Liu, and Z. Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett. 97(4), 041112 (2010).
[Crossref]

Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, and S. T. Chui, “Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance,” Appl. Phys. Lett. 101(8), 081912 (2012).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97(20), 201113 (2010).
[Crossref]

Chin. Phys. B. (1)

S. T. Chui and Z. F. Lin, “Spin plasmonics in magnetism,” Chin. Phys. B. 23(11), 117802 (2014).
[Crossref]

J. Opt. (1)

Z. Li, R. X. Wu, Y. Poo, Z. F. Lin, and Q. B. Li, “Fusing electromagnetic one-way edge states to achieve broadband unidirectional wave transmission,” J. Opt. 16(12), 125004 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

P. Chen, R. X. Wu, J. Xu, A. M. Jiang, and X. Y. Ji, “Effects of magnetic anisotropy on the stop band of ferromagnetic electromagnetic band gap materials,” J. Phys. Condens. Matter 19(10), 106205 (2007).
[Crossref]

Nat. Photonics (1)

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8(11), 821–829 (2014).
[Crossref]

Nature (2)

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. A (1)

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).
[Crossref]

Phys. Rev. B (4)

X. Y. Ao, Z. F. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B 80(3), 033105 (2009).
[Crossref]

S. Y. Liu, J. J. Du, Z. F. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78(15), 155101 (2008).
[Crossref]

S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84(4), 045425 (2011).
[Crossref]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

K. M. Leung and Y. Qiu, “Multiple-scattering calculation of the two-dimensional photonic band structure,” Phys. Rev. B Condens. Matter 48(11), 7767–7771 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (8)

S. A. Skirlo, L. Lu, and M. Soljačić, “Multimode One-Way Waveguides of Large Chern Numbers,” Phys. Rev. Lett. 113(11), 113904 (2014).
[Crossref]

Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States,” Phys. Rev. Lett. 106(9), 093903 (2011).
[Crossref] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

M. Onoda and T. Ochiai, “Designing Spinning Bloch States in 2D Photonic Crystals for Stirring Nanoparticles,” Phys. Rev. Lett. 103(3), 033903 (2009).
[Crossref] [PubMed]

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett. 49(6), 405–408 (1982).
[Crossref]

Y. Hatsugai, “Chern Number and Edge States in the Integer Quantum Hall Effect,” Phys. Rev. Lett. 71(22), 3697–3700 (1993).
[Crossref] [PubMed]

Plasmonics (1)

J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, and Q. John, “Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration,” Plasmonics 7(2), 287–291 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Scheme of honeycomb magnetic photonic crystal slab. (b) Image of experimental setup. (c) Typical band diagram of a honeycomb magnetic photonic crystal slab. (d) Influence of magnetic field on one-way edge modes frequencies, calculated at R = 0.28 and a = 10 mm.
Fig. 2
Fig. 2 Simulated transmission results of MPC slab in honeycomb lattice with YIG rods in radius r = 3mm. (a) R = 0.18 and (b) R = 0.22. Red lines are for forward transmissions and black ones for reverse ones. H0 is the internal magnetic field of the ferrite rod.
Fig. 3
Fig. 3 Measured results of MPC slab in honeycomb lattice with YIG rods in radius r = 3mm. (a)-(b) R = 0.18. (c)-(d) R = 0.22. Red lines represent forward transmissions and the black ones for reverse transmission. The frequency range in yellow is of OWT frequencies associated with MSP and that of in cyan is OWT frequencies originated from Bragg scattering.
Fig. 4
Fig. 4 Measured results of MPC slab in honeycomb lattice with YIG rods in radius r = 3mm and R = 0.27. (a) Ha = 2600 Oe, structure not modified. (b) Ha = 2900 Oe, structure not modified. (c) Ha = 2600 Oe, structure modified. (d) Ha = 2900 Oe, structure modified. Red lines are forward transmissions, black lines are reverse transmission.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ =[ μ r i μ κ 0 -i μ κ μ r 0 0 0 1 ]

Metrics