Abstract

A path within the parameter space of detuning and pump power is demonstrated in order to obtain a single cavity soliton (CS) with certainty in SiN microring resonators in the anomalous dispersion regime. Once the single CS state is reached, it is possible to continue a path to compress it, broadening the corresponding single free spectral range (FSR) Kerr frequency comb. The first step to achieve this goal is to identify the stable regions in the parameter space via numerical simulations of the Lugiato-Lefever equation (LLE). Later, using this identification, we define a path from the stable modulation instability (SMI) region to the stable cavity solitons (SCS) region avoiding the chaotic and unstable regions.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref] [PubMed]
  2. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
    [Crossref]
  3. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  4. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34, 878–880 (2009).
    [Crossref] [PubMed]
  5. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2009).
    [Crossref]
  6. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2009).
    [Crossref]
  7. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
    [Crossref]
  8. P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
    [Crossref]
  9. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
    [Crossref] [PubMed]
  10. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [Crossref] [PubMed]
  11. P.-H. Wang, F. Ferdous, H. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20, 29284–29295 (2012).
    [Crossref]
  12. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
    [Crossref]
  13. L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209 (1987).
    [Crossref] [PubMed]
  14. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
    [Crossref] [PubMed]
  15. Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
    [Crossref]
  16. S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38, 1790–1792 (2013).
    [Crossref] [PubMed]
  17. T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the modulational instability in microresonator frequency combs,” Phys. Rev. A 88, 023819 (2013).
    [Crossref]
  18. C. Godey, I. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: case of normal dispersion,” arXiv preprint arXiv:1308.2539 (2013).
  19. I. Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: case of anomalous dispersion,” arXiv preprint arXiv:1308.2542 (2013).
  20. M. R. Lamont, Y. Okawachi, and A. L. Gaeta, “Route to stabilized ultrabroadband microresonator-based frequency combs,” Opt. Lett. 38, 3478–3481 (2013).
    [Crossref] [PubMed]
  21. A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
    [Crossref]
  22. M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39, 283–286 (2014).
    [Crossref] [PubMed]
  23. P. Parra-Rivas, D. Gomila, M. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A 89, 043813 (2014).
    [Crossref]
  24. A. Coillet and Y. Chembo, “On the robustness of phase locking in Kerr optical frequency combs,” Optics Letters 39, 1529–1532 (2014).
    [Crossref] [PubMed]
  25. T. Hansson, D. Modotto, and S. Wabnitz, “On the numerical simulation of Kerr frequency combs using coupled mode equations,” Opt. Commun. 312, 134–136 (2014).
    [Crossref]
  26. T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
    [Crossref]
  27. P.-H. Wang, Y. Xuan, J. Wang, X. Xue, D. E. Leaird, M. Qi, and A. M. Weiner, “Coherent frequency comb generation in a silicon nitride microresonator with anomalous dispersion,” in “CLEO: Science and Innovations,” (Optical Society of America, 2014), pp. SF2E–3.

2014 (5)

M. Erkintalo and S. Coen, “Coherence properties of Kerr frequency combs,” Opt. Lett. 39, 283–286 (2014).
[Crossref] [PubMed]

P. Parra-Rivas, D. Gomila, M. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A 89, 043813 (2014).
[Crossref]

A. Coillet and Y. Chembo, “On the robustness of phase locking in Kerr optical frequency combs,” Optics Letters 39, 1529–1532 (2014).
[Crossref] [PubMed]

T. Hansson, D. Modotto, and S. Wabnitz, “On the numerical simulation of Kerr frequency combs using coupled mode equations,” Opt. Commun. 312, 134–136 (2014).
[Crossref]

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

2013 (6)

S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett. 38, 37–39 (2013).
[Crossref] [PubMed]

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38, 1790–1792 (2013).
[Crossref] [PubMed]

T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the modulational instability in microresonator frequency combs,” Phys. Rev. A 88, 023819 (2013).
[Crossref]

M. R. Lamont, Y. Okawachi, and A. L. Gaeta, “Route to stabilized ultrabroadband microresonator-based frequency combs,” Opt. Lett. 38, 3478–3481 (2013).
[Crossref] [PubMed]

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
[Crossref]

2012 (1)

2011 (6)

T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
[Crossref] [PubMed]

2010 (1)

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]

2009 (3)

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34, 878–880 (2009).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2009).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2009).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

1987 (1)

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209 (1987).
[Crossref] [PubMed]

Aksyuk, V.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Balakireva, I.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
[Crossref]

I. Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: case of anomalous dispersion,” arXiv preprint arXiv:1308.2542 (2013).

C. Godey, I. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: case of normal dispersion,” arXiv preprint arXiv:1308.2539 (2013).

Brasch, V.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Chembo, Y.

A. Coillet and Y. Chembo, “On the robustness of phase locking in Kerr optical frequency combs,” Optics Letters 39, 1529–1532 (2014).
[Crossref] [PubMed]

Chembo, Y. K.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
[Crossref]

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]

C. Godey, I. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: case of normal dispersion,” arXiv preprint arXiv:1308.2539 (2013).

I. Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: case of anomalous dispersion,” arXiv preprint arXiv:1308.2542 (2013).

Chen, L.

P.-H. Wang, F. Ferdous, H. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20, 29284–29295 (2012).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2009).
[Crossref]

Coen, S.

Coillet, A.

A. Coillet and Y. Chembo, “On the robustness of phase locking in Kerr optical frequency combs,” Optics Letters 39, 1529–1532 (2014).
[Crossref] [PubMed]

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
[Crossref]

I. Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: case of anomalous dispersion,” arXiv preprint arXiv:1308.2542 (2013).

C. Godey, I. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: case of normal dispersion,” arXiv preprint arXiv:1308.2539 (2013).

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Diddams, S.

T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Diddams, S. A.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2009).
[Crossref]

Dudley, J. M.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
[Crossref]

Erkintalo, M.

Ferdous, F.

P.-H. Wang, F. Ferdous, H. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20, 29284–29295 (2012).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2009).
[Crossref]

Foster, M. A.

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2009).
[Crossref]

Gaeta, A. L.

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Gelens, L.

P. Parra-Rivas, D. Gomila, M. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A 89, 043813 (2014).
[Crossref]

Godey, C.

I. Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: case of anomalous dispersion,” arXiv preprint arXiv:1308.2542 (2013).

C. Godey, I. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: case of normal dispersion,” arXiv preprint arXiv:1308.2539 (2013).

Gomila, D.

P. Parra-Rivas, D. Gomila, M. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A 89, 043813 (2014).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2009).
[Crossref]

Gorodetsky, M.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Grudinin, I. S.

Hansson, T.

T. Hansson, D. Modotto, and S. Wabnitz, “On the numerical simulation of Kerr frequency combs using coupled mode equations,” Opt. Commun. 312, 134–136 (2014).
[Crossref]

T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the modulational instability in microresonator frequency combs,” Phys. Rev. A 88, 023819 (2013).
[Crossref]

Henriet, R.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
[Crossref]

Herr, T.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Holzwarth, R.

T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Jost, J.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kippenberg, T.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Kondratiev, N.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kuzucu, O.

Lamont, M. R.

Larger, L.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
[Crossref]

Leaird, D. E.

P.-H. Wang, F. Ferdous, H. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20, 29284–29295 (2012).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

P.-H. Wang, Y. Xuan, J. Wang, X. Xue, D. E. Leaird, M. Qi, and A. M. Weiner, “Coherent frequency comb generation in a silicon nitride microresonator with anomalous dispersion,” in “CLEO: Science and Innovations,” (Optical Society of America, 2014), pp. SF2E–3.

Lefever, R.

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209 (1987).
[Crossref] [PubMed]

Levy, J. S.

Lipson, M.

Little, B.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2009).
[Crossref]

Lugiato, L. A.

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209 (1987).
[Crossref] [PubMed]

Maleki, L.

Matias, M.

P. Parra-Rivas, D. Gomila, M. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A 89, 043813 (2014).
[Crossref]

Menyuk, C. R.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
[Crossref]

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

Miao, H.

P.-H. Wang, F. Ferdous, H. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20, 29284–29295 (2012).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Modotto, D.

T. Hansson, D. Modotto, and S. Wabnitz, “On the numerical simulation of Kerr frequency combs using coupled mode equations,” Opt. Commun. 312, 134–136 (2014).
[Crossref]

T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the modulational instability in microresonator frequency combs,” Phys. Rev. A 88, 023819 (2013).
[Crossref]

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2009).
[Crossref]

Moss, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2009).
[Crossref]

Okawachi, Y.

Papp, S. B.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

Parra-Rivas, P.

P. Parra-Rivas, D. Gomila, M. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A 89, 043813 (2014).
[Crossref]

Qi, M.

P.-H. Wang, Y. Xuan, J. Wang, X. Xue, D. E. Leaird, M. Qi, and A. M. Weiner, “Coherent frequency comb generation in a silicon nitride microresonator with anomalous dispersion,” in “CLEO: Science and Innovations,” (Optical Society of America, 2014), pp. SF2E–3.

Randle, H. G.

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2009).
[Crossref]

Saha, K.

Saleh, K.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Srinivasan, K.

P.-H. Wang, F. Ferdous, H. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20, 29284–29295 (2012).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Sylvestre, T.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2009).
[Crossref]

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Wabnitz, S.

T. Hansson, D. Modotto, and S. Wabnitz, “On the numerical simulation of Kerr frequency combs using coupled mode equations,” Opt. Commun. 312, 134–136 (2014).
[Crossref]

T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the modulational instability in microresonator frequency combs,” Phys. Rev. A 88, 023819 (2013).
[Crossref]

Wang, C.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Wang, J.

P.-H. Wang, F. Ferdous, H. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20, 29284–29295 (2012).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

P.-H. Wang, Y. Xuan, J. Wang, X. Xue, D. E. Leaird, M. Qi, and A. M. Weiner, “Coherent frequency comb generation in a silicon nitride microresonator with anomalous dispersion,” in “CLEO: Science and Innovations,” (Optical Society of America, 2014), pp. SF2E–3.

Wang, P.-H.

P.-H. Wang, F. Ferdous, H. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20, 29284–29295 (2012).
[Crossref]

P.-H. Wang, Y. Xuan, J. Wang, X. Xue, D. E. Leaird, M. Qi, and A. M. Weiner, “Coherent frequency comb generation in a silicon nitride microresonator with anomalous dispersion,” in “CLEO: Science and Innovations,” (Optical Society of America, 2014), pp. SF2E–3.

Weiner, A. M.

P.-H. Wang, F. Ferdous, H. Miao, J. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs,” Opt. Express 20, 29284–29295 (2012).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

P.-H. Wang, Y. Xuan, J. Wang, X. Xue, D. E. Leaird, M. Qi, and A. M. Weiner, “Coherent frequency comb generation in a silicon nitride microresonator with anomalous dispersion,” in “CLEO: Science and Innovations,” (Optical Society of America, 2014), pp. SF2E–3.

Wen, Y. H.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Xuan, Y.

P.-H. Wang, Y. Xuan, J. Wang, X. Xue, D. E. Leaird, M. Qi, and A. M. Weiner, “Coherent frequency comb generation in a silicon nitride microresonator with anomalous dispersion,” in “CLEO: Science and Innovations,” (Optical Society of America, 2014), pp. SF2E–3.

Xue, X.

P.-H. Wang, Y. Xuan, J. Wang, X. Xue, D. E. Leaird, M. Qi, and A. M. Weiner, “Coherent frequency comb generation in a silicon nitride microresonator with anomalous dispersion,” in “CLEO: Science and Innovations,” (Optical Society of America, 2014), pp. SF2E–3.

Yu, N.

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34, 878–880 (2009).
[Crossref] [PubMed]

IEEE Photon. J. (1)

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K. Chembo, “Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators,” IEEE Photon. J. 5, 6100409 (2013).
[Crossref]

Nat. Photonics (4)

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2009).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2009).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Nature (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Commun. (1)

T. Hansson, D. Modotto, and S. Wabnitz, “On the numerical simulation of Kerr frequency combs using coupled mode equations,” Opt. Commun. 312, 134–136 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Optics Letters (1)

A. Coillet and Y. Chembo, “On the robustness of phase locking in Kerr optical frequency combs,” Optics Letters 39, 1529–1532 (2014).
[Crossref] [PubMed]

Phys. Rev. A (5)

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).
[Crossref]

P. Parra-Rivas, D. Gomila, M. Matias, S. Coen, and L. Gelens, “Dynamics of localized and patterned structures in the Lugiato-Lefever equation determine the stability and shape of optical frequency combs,” Phys. Rev. A 89, 043813 (2014).
[Crossref]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the modulational instability in microresonator frequency combs,” Phys. Rev. A 88, 023819 (2013).
[Crossref]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).
[Crossref]

Phys. Rev. Lett. (2)

L. A. Lugiato and R. Lefever, “Spatial dissipative structures in passive optical systems,” Phys. Rev. Lett. 58, 2209 (1987).
[Crossref] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Science (1)

T. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Other (3)

C. Godey, I. Balakireva, A. Coillet, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: case of normal dispersion,” arXiv preprint arXiv:1308.2539 (2013).

I. Balakireva, A. Coillet, C. Godey, and Y. K. Chembo, “Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: case of anomalous dispersion,” arXiv preprint arXiv:1308.2542 (2013).

P.-H. Wang, Y. Xuan, J. Wang, X. Xue, D. E. Leaird, M. Qi, and A. M. Weiner, “Coherent frequency comb generation in a silicon nitride microresonator with anomalous dispersion,” in “CLEO: Science and Innovations,” (Optical Society of America, 2014), pp. SF2E–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The number of peaks as a function of final value of detuning Δf with Δ swept as shown in the insets. The pump power |S|2 is set to a constant value of 18.9 (Pin =180mW). These simulations were done using the same realization of initial noise. (b) Histogram of number of peaks for 1000 simulations with different realizations of initial noise, using the same detuning and pump parameters in the simulation of (a) with Δf = 12.42. (c) Total intracavity energy (blue) and detuning (green) as a function of time for the simulation of (a) with Δf = 12.42.

Fig. 2
Fig. 2

(a) The number of temporal peaks as a function of the final point in (Δ, |S|2) parameter space at low pump power. The red triangle shows the initial point of the simulations. These simulations were done using the same realization of initial noise. The black curves correspond to CATs using Eq. (4) with | S | Offset 2 of −0.42, 0, and 0.42 equivalent to offsets of −4, 0 and 4 mW respectively. (b) Characterized regions according to the features of each region shown in (c) to (f). (c–f) Final intensity (left), spectrum (center) and intracavity energy versus time t (right) for the point (c) (Δf = 0, |Sf|2 = 6.3) in the SMI region, (d) (Δf = 3.9, |Sf|2 = 10.5) in the UMI region, (e) (Δf = 4.8, |Sf|2 = 10.5) in the UCS region, and (f) (Δf = 4.8, |Sf|2 = 6.3) in the SCS region.

Fig. 3
Fig. 3

(a) The number of peaks as a function of final value of detuning Δf with Δ swept as shown in the inset with pump power adjusted through the CAT, Eq. (4), with | S | Offset 2 = 0 using the same realization of initial noise for all simulations. (b) Histogram of number of peaks for 1000 simulations with different realizations of initial noise with the same pump power and detuning parameters of the simulation of (a) with Δf = 7.45. (c–d) Region in which a single CS is generated when a uniform offset | S | Offset 2 is applied to the CAT for different values of final detuning Δf with (c) constant detuning interval of 0.3 μs and (d) constant detuning speed of 25 units of Δ per μs.

Fig. 4
Fig. 4

The number of temporal peaks as a function of the final point in (Δ, |S|2) parameter space at high pump power. The red triangle shows the initial point of the simulations. These simulations were done using the same realization of initial noise. The black curve corresponds to a compression function using Eq. (5). The initial point of this compression function is the final point of the CAT with | S | Offset 2 = 0 in Fig. 2(a). (b) Characterized regions using the same criteria of Fig. 2(b).

Fig. 5
Fig. 5

Generation and compression processes of a single CS through the CAT and compression functions in Eq. (4) and Eq. (5), respectively. From top to bottom: (a) pump power (blue) and detuning (green), (b) temporal intensity, (c) spectrum, (d) total intracavity energy vs. slow time t. (e–g) Intensity (right) and spectrum (left) at (e) t = 1 μs, steady state initial point, (f) t = 1.6 μs, after single CS generation and (g) t = 3.6 μs, after compression.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t R E ( t , τ ) t = [ α i δ 0 + i L k 2 β k k ! ( i τ ) k + i γ L | E | 2 ] E + θ E in
Δ = δ 0 α
S = E in γ L θ α 3
| S | 2 = 4.15 exp ( 3.09 Δ ) + 2.15 exp ( 0.196 Δ ) + | S | Offset 2
| S | 2 = 2.846 exp ( 0.1316 Δ )

Metrics