Abstract

In this paper we report birefringence measurements of an optically pumped (100)-oriented InGaAs/GaAsP multiple quantum well (MQWs) Vertical External Cavity Surface Emitting Laser (VECSEL) in oscillating conditions. The proposed technique relies on the measurement in the microwave domain of the beatnote between the oscillating mode and the amplified spontaneous emission of the cross-polarized non-lasing field lying in the following longitudinal mode. This technique is shown to offer extremely high sensitivity and accuracy enabling to track the amount of residual birefringence according to the laser operation conditions. The experience fits within the broader framework of polarization selection in spin-injected lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-resolved characterization of long-wavelength vertical-cavity surface-emitting laser parameters

P. Pérez, A. Valle, and L. Pesquera
J. Opt. Soc. Am. B 31(11) 2574-2580 (2014)

Polarization noise in elliptically polarized vertical-cavity surface-emitting lasers

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, L. Weegels, and A. Van Geelen
J. Opt. Soc. Am. B 16(5) 832-834 (1999)

References

  • View by:
  • |
  • |
  • |

  1. I. Zutić, R. Oszwaldowski, J. Lee, and C. Gothgen, Handbook of Spin Transport and Magnetism, Chap. 38 , “Semiconductor Spin-Lasers,” p. 731–745 (CRC, 2011).
    [Crossref]
  2. M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D: Appl. Phys. 40, R179 (2007).
    [Crossref]
  3. N. C. Gerhardt and M. R. Hofmann, “Spin-controlled vertical-cavity surface-emitting lasers,” Adv. Opt. Tech, Article ID 268949, doi: (2012).
    [Crossref]
  4. J. Rudolph, D. Hagele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82, 4516 (2003).
    [Crossref]
  5. H. Fujino, S. Koh, S. Iba, T. Fujimoto, and H. Kawaguchi, “Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection,” Appl. Phys. Lett. 94, 131108 (2009).
    [Crossref]
  6. S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, “Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells,” Appl. Phys. Lett. 98, 081113 (2011).
    [Crossref]
  7. H. Hopfner, M. Lindemann, N. C. Gerhardt, and M. R. Hofmann, “Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 104, 022409 (2014).
    [Crossref]
  8. D. Basu, D. Saha, and P. Bhattacharya, “Optical Polarization Modulation and Gain Anisotropy in an electrically injected spin Laser,” Phys. Rev. Lett. 102, 093904 (2009).
    [Crossref] [PubMed]
  9. M. Holub, J. Shin, S. Chakrabarti, and P. Bhattacharya, “Spin-polarized vertical-cavity surface-emitting laser: Epitaxial growth issues and device properties,” Journal of Vacuum Science & Technology B 24, 1510 (2006).
    [Crossref]
  10. M. Oestreich, J. Rudolph, R. Winkler, and D. Hagele, “Design considerations for semiconductor spin lasers,” Superlattices and Microstructures 37, 306–312 (2005).
    [Crossref]
  11. T. Fordos, K. Postava, H. Jaffres, and J. Pistora, “Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers,” J. Opt. 16, 065008 (2014).
    [Crossref]
  12. I. Zutic and P. E. Faria, “Taken for a spin,” Nat. Nanotech. 9, 750–752 (2014).
    [Crossref]
  13. F. Meier and B.P. Zakharchenya, Modern Problems in Condensed Matter Sciences, Vol. 8 (Elsevier Science Ltd, 1984).
  14. J. Lee, S. Bearden, E. Wasner, and I. Zutić, “Spin-lasers: From threshold reduction to large-signal analysis,” Appl. Phys. Lett. 105, 042411 (2014).
    [Crossref]
  15. J. Lee, W. Falls, R. Oszwaldowski, and I. Zutić, “Spin modulation in semiconductor lasers,” Appl. Phys. Lett. 97, 041116 (2010).
    [Crossref]
  16. N.C. Gerhardt, M.Y. Li, H. Jahme, H. Hopfner, T. Ackermann, and M.R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 99, 151107 (2011).
    [Crossref]
  17. H. Ando, T. Sogawa, and H. Gotoh, “Photon-spin controlled lasing oscillation in surface-emitting lasers,” Appl. Phys. Lett. 73, 566 (1998).
    [Crossref]
  18. M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98, 146603 (2007).
    [Crossref] [PubMed]
  19. J. Rudolph, S. Dhrmann, D. Hgele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Appl. Phys. Lett. 87, 241117 (2005).
    [Crossref]
  20. C. Gothgen, R. Oszwaldowski, A. Petrou, and I. Zutić, “Analytical model of spin-polarized semiconductor lasers,” Appl. Phys. Lett. 93, 042513 (2008).
    [Crossref]
  21. H. Dery, Y. Song, P. Li, and I. Zutić, “Silicon spin communication,” Appl. Phys. Lett. 99, 082502 (2011).
    [Crossref]
  22. N. Gerhardt, S. Hovel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electron. Lett. 42, 88–89 (2006).
    [Crossref]
  23. S. Hovel, A. Bischoff, N.C. Gerhardt, M.R. Hofmann, T. Ackermann, A. Kroner, and R. Michalzik, “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 92, 041118 (2008).
    [Crossref]
  24. D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAs GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92, 091119 (2008).
    [Crossref]
  25. P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
    [Crossref]
  26. S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
    [Crossref]
  27. J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
    [Crossref]
  28. M. I. Dyakonov and V. I. Perel, “Spin orientation of electrons associated with the interband absorption of light in semiconductors,” Soviet Journal of Experimental and Theoretical Physics 33, 1053 (1971).
  29. J. -N. Chazalviel, “Spin relaxation of conduction electrons in n-type indium antimonide at low temperature,” Phys. Rev. B 11, 1555 (1975).
    [Crossref]
  30. G. L. Bir, A. G. Aronov, and G. E. Pikus, “Spin relaxation of electrons due to scattering by holes,” Soviet Journal of Experimental and Theoretical Physics 69, 1382 (1975).
  31. G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, and F. Bretenaker, “Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser,” Opt. Lett. 31, P. 62–64 (2006).
    [Crossref] [PubMed]
  32. G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, P. 650–652 (2007).
    [Crossref] [PubMed]
  33. G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
    [Crossref] [PubMed]
  34. K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal of Selected Topics in Quantum Electronics 1, 661–666 (1995).
    [Crossref]
  35. A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041 (1996).
    [Crossref]
  36. A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Tailoring the birefringence in a vertical-cavity semiconductor laser,” Appl. Phys. Lett. 69, 3635 (1996).
    [Crossref]
  37. J. Martin-Regalado, J. L. A. Chilla, and J. J. Rocca, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350 (1997).
    [Crossref]
  38. K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett. 64, 2062 (1994).
    [Crossref]
  39. K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technology Letters 6, 40 (1994).
    [Crossref]
  40. T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 88 vertical-cavity surfaceemitting laser matrix arrays,” Appl. Phys. Lett. 66, 908 (1995).
    [Crossref]
  41. J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, “Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings,” Appl. Phys. Lett. 66, 2769 (1995).
    [Crossref]
  42. M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728 (1995).
    [Crossref] [PubMed]
  43. J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics 33, 765–783 (1997).
    [Crossref]
  44. A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on VCSEL spectra,” Electron. Lett. 30, 1941 (1994).
    [Crossref]
  45. R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599 (1997).
    [Crossref]
  46. M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191 (1998).
    [Crossref]
  47. J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
    [Crossref]
  48. J. Yu, Y. Chen, S. Cheng, and Y. Lai, “Temperature dependence of anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser studied by reflectance difference spectroscopy,” Appl. Opt. 52, 1035–1040 (2013).
    [Crossref] [PubMed]
  49. J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation anisotropic mode splitting induced by electro-optic birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 114, 033511 (2013).
    [Crossref]
  50. J. Zhang, J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence,” Chin. Phys. B 23, 027304 (2014).
    [Crossref]
  51. A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
    [Crossref]
  52. V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
    [Crossref]
  53. G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Light. Technol.,  26, 952–961 (2008).
    [Crossref]

2014 (7)

H. Hopfner, M. Lindemann, N. C. Gerhardt, and M. R. Hofmann, “Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 104, 022409 (2014).
[Crossref]

T. Fordos, K. Postava, H. Jaffres, and J. Pistora, “Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers,” J. Opt. 16, 065008 (2014).
[Crossref]

I. Zutic and P. E. Faria, “Taken for a spin,” Nat. Nanotech. 9, 750–752 (2014).
[Crossref]

J. Lee, S. Bearden, E. Wasner, and I. Zutić, “Spin-lasers: From threshold reduction to large-signal analysis,” Appl. Phys. Lett. 105, 042411 (2014).
[Crossref]

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

J. Zhang, J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence,” Chin. Phys. B 23, 027304 (2014).
[Crossref]

2013 (3)

J. Yu, Y. Chen, S. Cheng, and Y. Lai, “Temperature dependence of anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser studied by reflectance difference spectroscopy,” Appl. Opt. 52, 1035–1040 (2013).
[Crossref] [PubMed]

J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation anisotropic mode splitting induced by electro-optic birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 114, 033511 (2013).
[Crossref]

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
[Crossref]

2012 (1)

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[Crossref]

2011 (3)

H. Dery, Y. Song, P. Li, and I. Zutić, “Silicon spin communication,” Appl. Phys. Lett. 99, 082502 (2011).
[Crossref]

N.C. Gerhardt, M.Y. Li, H. Jahme, H. Hopfner, T. Ackermann, and M.R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 99, 151107 (2011).
[Crossref]

S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, “Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells,” Appl. Phys. Lett. 98, 081113 (2011).
[Crossref]

2010 (3)

J. Lee, W. Falls, R. Oszwaldowski, and I. Zutić, “Spin modulation in semiconductor lasers,” Appl. Phys. Lett. 97, 041116 (2010).
[Crossref]

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
[Crossref]

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

2009 (3)

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[Crossref] [PubMed]

H. Fujino, S. Koh, S. Iba, T. Fujimoto, and H. Kawaguchi, “Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection,” Appl. Phys. Lett. 94, 131108 (2009).
[Crossref]

D. Basu, D. Saha, and P. Bhattacharya, “Optical Polarization Modulation and Gain Anisotropy in an electrically injected spin Laser,” Phys. Rev. Lett. 102, 093904 (2009).
[Crossref] [PubMed]

2008 (4)

S. Hovel, A. Bischoff, N.C. Gerhardt, M.R. Hofmann, T. Ackermann, A. Kroner, and R. Michalzik, “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 92, 041118 (2008).
[Crossref]

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAs GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92, 091119 (2008).
[Crossref]

C. Gothgen, R. Oszwaldowski, A. Petrou, and I. Zutić, “Analytical model of spin-polarized semiconductor lasers,” Appl. Phys. Lett. 93, 042513 (2008).
[Crossref]

G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Light. Technol.,  26, 952–961 (2008).
[Crossref]

2007 (3)

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, P. 650–652 (2007).
[Crossref] [PubMed]

M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D: Appl. Phys. 40, R179 (2007).
[Crossref]

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98, 146603 (2007).
[Crossref] [PubMed]

2006 (3)

M. Holub, J. Shin, S. Chakrabarti, and P. Bhattacharya, “Spin-polarized vertical-cavity surface-emitting laser: Epitaxial growth issues and device properties,” Journal of Vacuum Science & Technology B 24, 1510 (2006).
[Crossref]

N. Gerhardt, S. Hovel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electron. Lett. 42, 88–89 (2006).
[Crossref]

G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, and F. Bretenaker, “Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser,” Opt. Lett. 31, P. 62–64 (2006).
[Crossref] [PubMed]

2005 (2)

M. Oestreich, J. Rudolph, R. Winkler, and D. Hagele, “Design considerations for semiconductor spin lasers,” Superlattices and Microstructures 37, 306–312 (2005).
[Crossref]

J. Rudolph, S. Dhrmann, D. Hgele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Appl. Phys. Lett. 87, 241117 (2005).
[Crossref]

2003 (1)

J. Rudolph, D. Hagele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82, 4516 (2003).
[Crossref]

1998 (2)

H. Ando, T. Sogawa, and H. Gotoh, “Photon-spin controlled lasing oscillation in surface-emitting lasers,” Appl. Phys. Lett. 73, 566 (1998).
[Crossref]

M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191 (1998).
[Crossref]

1997 (3)

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599 (1997).
[Crossref]

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics 33, 765–783 (1997).
[Crossref]

J. Martin-Regalado, J. L. A. Chilla, and J. J. Rocca, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350 (1997).
[Crossref]

1996 (2)

A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041 (1996).
[Crossref]

A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Tailoring the birefringence in a vertical-cavity semiconductor laser,” Appl. Phys. Lett. 69, 3635 (1996).
[Crossref]

1995 (4)

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal of Selected Topics in Quantum Electronics 1, 661–666 (1995).
[Crossref]

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 88 vertical-cavity surfaceemitting laser matrix arrays,” Appl. Phys. Lett. 66, 908 (1995).
[Crossref]

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, “Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings,” Appl. Phys. Lett. 66, 2769 (1995).
[Crossref]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728 (1995).
[Crossref] [PubMed]

1994 (3)

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on VCSEL spectra,” Electron. Lett. 30, 1941 (1994).
[Crossref]

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett. 64, 2062 (1994).
[Crossref]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technology Letters 6, 40 (1994).
[Crossref]

1975 (2)

J. -N. Chazalviel, “Spin relaxation of conduction electrons in n-type indium antimonide at low temperature,” Phys. Rev. B 11, 1555 (1975).
[Crossref]

G. L. Bir, A. G. Aronov, and G. E. Pikus, “Spin relaxation of electrons due to scattering by holes,” Soviet Journal of Experimental and Theoretical Physics 69, 1382 (1975).

1971 (1)

M. I. Dyakonov and V. I. Perel, “Spin orientation of electrons associated with the interband absorption of light in semiconductors,” Soviet Journal of Experimental and Theoretical Physics 33, 1053 (1971).

Abraham, N. B.

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics 33, 765–783 (1997).
[Crossref]

Ackermann, T.

N.C. Gerhardt, M.Y. Li, H. Jahme, H. Hopfner, T. Ackermann, and M.R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 99, 151107 (2011).
[Crossref]

S. Hovel, A. Bischoff, N.C. Gerhardt, M.R. Hofmann, T. Ackermann, A. Kroner, and R. Michalzik, “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 92, 041118 (2008).
[Crossref]

Alouini, M.

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
[Crossref]

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
[Crossref]

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[Crossref] [PubMed]

G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Light. Technol.,  26, 952–961 (2008).
[Crossref]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, P. 650–652 (2007).
[Crossref] [PubMed]

G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, and F. Bretenaker, “Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser,” Opt. Lett. 31, P. 62–64 (2006).
[Crossref] [PubMed]

Amand, T.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

Ando, H.

H. Ando, T. Sogawa, and H. Gotoh, “Photon-spin controlled lasing oscillation in surface-emitting lasers,” Appl. Phys. Lett. 73, 566 (1998).
[Crossref]

Aronov, A. G.

G. L. Bir, A. G. Aronov, and G. E. Pikus, “Spin relaxation of electrons due to scattering by holes,” Soviet Journal of Experimental and Theoretical Physics 69, 1382 (1975).

Baili, G.

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
[Crossref]

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
[Crossref]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[Crossref] [PubMed]

G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Light. Technol.,  26, 952–961 (2008).
[Crossref]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, P. 650–652 (2007).
[Crossref] [PubMed]

G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, and F. Bretenaker, “Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser,” Opt. Lett. 31, P. 62–64 (2006).
[Crossref] [PubMed]

Barate, P.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

Basu, D.

D. Basu, D. Saha, and P. Bhattacharya, “Optical Polarization Modulation and Gain Anisotropy in an electrically injected spin Laser,” Phys. Rev. Lett. 102, 093904 (2009).
[Crossref] [PubMed]

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAs GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92, 091119 (2008).
[Crossref]

Bearden, S.

J. Lee, S. Bearden, E. Wasner, and I. Zutić, “Spin-lasers: From threshold reduction to large-signal analysis,” Appl. Phys. Lett. 105, 042411 (2014).
[Crossref]

Beaudoin, G.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
[Crossref]

Bhattacharya, P.

D. Basu, D. Saha, and P. Bhattacharya, “Optical Polarization Modulation and Gain Anisotropy in an electrically injected spin Laser,” Phys. Rev. Lett. 102, 093904 (2009).
[Crossref] [PubMed]

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAs GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92, 091119 (2008).
[Crossref]

M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D: Appl. Phys. 40, R179 (2007).
[Crossref]

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98, 146603 (2007).
[Crossref] [PubMed]

M. Holub, J. Shin, S. Chakrabarti, and P. Bhattacharya, “Spin-polarized vertical-cavity surface-emitting laser: Epitaxial growth issues and device properties,” Journal of Vacuum Science & Technology B 24, 1510 (2006).
[Crossref]

Bir, G. L.

G. L. Bir, A. G. Aronov, and G. E. Pikus, “Spin relaxation of electrons due to scattering by holes,” Soviet Journal of Experimental and Theoretical Physics 69, 1382 (1975).

Bischoff, A.

S. Hovel, A. Bischoff, N.C. Gerhardt, M.R. Hofmann, T. Ackermann, A. Kroner, and R. Michalzik, “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 92, 041118 (2008).
[Crossref]

Bretenaker, F.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
[Crossref]

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[Crossref] [PubMed]

G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Light. Technol.,  26, 952–961 (2008).
[Crossref]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, P. 650–652 (2007).
[Crossref] [PubMed]

G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, and F. Bretenaker, “Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser,” Opt. Lett. 31, P. 62–64 (2006).
[Crossref] [PubMed]

Chakrabarti, S.

M. Holub, J. Shin, S. Chakrabarti, and P. Bhattacharya, “Spin-polarized vertical-cavity surface-emitting laser: Epitaxial growth issues and device properties,” Journal of Vacuum Science & Technology B 24, 1510 (2006).
[Crossref]

Chazalviel, J. -N.

J. -N. Chazalviel, “Spin relaxation of conduction electrons in n-type indium antimonide at low temperature,” Phys. Rev. B 11, 1555 (1975).
[Crossref]

Chen, Y.

Chen, Y. H.

J. Zhang, J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence,” Chin. Phys. B 23, 027304 (2014).
[Crossref]

J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation anisotropic mode splitting induced by electro-optic birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 114, 033511 (2013).
[Crossref]

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[Crossref]

Cheng, S.

Cheng, S. Y.

J. Zhang, J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence,” Chin. Phys. B 23, 027304 (2014).
[Crossref]

J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation anisotropic mode splitting induced by electro-optic birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 114, 033511 (2013).
[Crossref]

Chilla, J. L. A.

J. Martin-Regalado, J. L. A. Chilla, and J. J. Rocca, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350 (1997).
[Crossref]

Choquette, K. D.

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal of Selected Topics in Quantum Electronics 1, 661–666 (1995).
[Crossref]

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett. 64, 2062 (1994).
[Crossref]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technology Letters 6, 40 (1994).
[Crossref]

Chshiev, M.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Deranlot, C.

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
[Crossref]

Dery, H.

H. Dery, Y. Song, P. Li, and I. Zutić, “Silicon spin communication,” Appl. Phys. Lett. 99, 082502 (2011).
[Crossref]

Devaux, X.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Dhrmann, S.

J. Rudolph, S. Dhrmann, D. Hgele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Appl. Phys. Lett. 87, 241117 (2005).
[Crossref]

Dolfi, D.

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
[Crossref]

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[Crossref] [PubMed]

G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Light. Technol.,  26, 952–961 (2008).
[Crossref]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, P. 650–652 (2007).
[Crossref] [PubMed]

G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, and F. Bretenaker, “Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser,” Opt. Lett. 31, P. 62–64 (2006).
[Crossref] [PubMed]

Dyakonov, M. I.

M. I. Dyakonov and V. I. Perel, “Spin orientation of electrons associated with the interband absorption of light in semiconductors,” Soviet Journal of Experimental and Theoretical Physics 33, 1053 (1971).

El Amili, A.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
[Crossref]

Falls, W.

J. Lee, W. Falls, R. Oszwaldowski, and I. Zutić, “Spin modulation in semiconductor lasers,” Appl. Phys. Lett. 97, 041116 (2010).
[Crossref]

Faria, P. E.

I. Zutic and P. E. Faria, “Taken for a spin,” Nat. Nanotech. 9, 750–752 (2014).
[Crossref]

Feng, Q.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728 (1995).
[Crossref] [PubMed]

Fordos, T.

T. Fordos, K. Postava, H. Jaffres, and J. Pistora, “Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers,” J. Opt. 16, 065008 (2014).
[Crossref]

Frougier, J.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
[Crossref]

Fujimoto, T.

H. Fujino, S. Koh, S. Iba, T. Fujimoto, and H. Kawaguchi, “Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection,” Appl. Phys. Lett. 94, 131108 (2009).
[Crossref]

Fujino, H.

H. Fujino, S. Koh, S. Iba, T. Fujimoto, and H. Kawaguchi, “Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection,” Appl. Phys. Lett. 94, 131108 (2009).
[Crossref]

Garnache, A.

George, J. M.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

George, J.-M.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
[Crossref]

Gerhardt, N.

N. Gerhardt, S. Hovel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electron. Lett. 42, 88–89 (2006).
[Crossref]

Gerhardt, N. C.

H. Hopfner, M. Lindemann, N. C. Gerhardt, and M. R. Hofmann, “Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 104, 022409 (2014).
[Crossref]

N. C. Gerhardt and M. R. Hofmann, “Spin-controlled vertical-cavity surface-emitting lasers,” Adv. Opt. Tech, Article ID 268949, doi: (2012).
[Crossref]

Gerhardt, N.C.

N.C. Gerhardt, M.Y. Li, H. Jahme, H. Hopfner, T. Ackermann, and M.R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 99, 151107 (2011).
[Crossref]

S. Hovel, A. Bischoff, N.C. Gerhardt, M.R. Hofmann, T. Ackermann, A. Kroner, and R. Michalzik, “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 92, 041118 (2008).
[Crossref]

Ghosh, R.

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

Gibbs, H. M.

J. Rudolph, D. Hagele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82, 4516 (2003).
[Crossref]

Goldfarb, F.

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
[Crossref]

Gothgen, C.

C. Gothgen, R. Oszwaldowski, A. Petrou, and I. Zutić, “Analytical model of spin-polarized semiconductor lasers,” Appl. Phys. Lett. 93, 042513 (2008).
[Crossref]

I. Zutić, R. Oszwaldowski, J. Lee, and C. Gothgen, Handbook of Spin Transport and Magnetism, Chap. 38 , “Semiconductor Spin-Lasers,” p. 731–745 (CRC, 2011).
[Crossref]

Gotoh, H.

H. Ando, T. Sogawa, and H. Gotoh, “Photon-spin controlled lasing oscillation in surface-emitting lasers,” Appl. Phys. Lett. 73, 566 (1998).
[Crossref]

Gulden, K. H.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599 (1997).
[Crossref]

Hagele, D.

M. Oestreich, J. Rudolph, R. Winkler, and D. Hagele, “Design considerations for semiconductor spin lasers,” Superlattices and Microstructures 37, 306–312 (2005).
[Crossref]

J. Rudolph, D. Hagele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82, 4516 (2003).
[Crossref]

Hallal, A.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Han, X. F.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

Hehn, M.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Hendriks, R. F. M.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599 (1997).
[Crossref]

Hgele, D.

J. Rudolph, S. Dhrmann, D. Hgele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Appl. Phys. Lett. 87, 241117 (2005).
[Crossref]

Hofmann, M.

N. Gerhardt, S. Hovel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electron. Lett. 42, 88–89 (2006).
[Crossref]

Hofmann, M. R.

H. Hopfner, M. Lindemann, N. C. Gerhardt, and M. R. Hofmann, “Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 104, 022409 (2014).
[Crossref]

N. C. Gerhardt and M. R. Hofmann, “Spin-controlled vertical-cavity surface-emitting lasers,” Adv. Opt. Tech, Article ID 268949, doi: (2012).
[Crossref]

Hofmann, M.R.

N.C. Gerhardt, M.Y. Li, H. Jahme, H. Hopfner, T. Ackermann, and M.R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 99, 151107 (2011).
[Crossref]

S. Hovel, A. Bischoff, N.C. Gerhardt, M.R. Hofmann, T. Ackermann, A. Kroner, and R. Michalzik, “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 92, 041118 (2008).
[Crossref]

Holub, M.

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAs GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92, 091119 (2008).
[Crossref]

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98, 146603 (2007).
[Crossref] [PubMed]

M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D: Appl. Phys. 40, R179 (2007).
[Crossref]

M. Holub, J. Shin, S. Chakrabarti, and P. Bhattacharya, “Spin-polarized vertical-cavity surface-emitting laser: Epitaxial growth issues and device properties,” Journal of Vacuum Science & Technology B 24, 1510 (2006).
[Crossref]

Hopfner, H.

H. Hopfner, M. Lindemann, N. C. Gerhardt, and M. R. Hofmann, “Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 104, 022409 (2014).
[Crossref]

N.C. Gerhardt, M.Y. Li, H. Jahme, H. Hopfner, T. Ackermann, and M.R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 99, 151107 (2011).
[Crossref]

Hovel, S.

S. Hovel, A. Bischoff, N.C. Gerhardt, M.R. Hofmann, T. Ackermann, A. Kroner, and R. Michalzik, “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 92, 041118 (2008).
[Crossref]

N. Gerhardt, S. Hovel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electron. Lett. 42, 88–89 (2006).
[Crossref]

Iba, S.

S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, “Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells,” Appl. Phys. Lett. 98, 081113 (2011).
[Crossref]

H. Fujino, S. Koh, S. Iba, T. Fujimoto, and H. Kawaguchi, “Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection,” Appl. Phys. Lett. 94, 131108 (2009).
[Crossref]

Ikeda, K.

S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, “Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells,” Appl. Phys. Lett. 98, 081113 (2011).
[Crossref]

Jaffres, H.

T. Fordos, K. Postava, H. Jaffres, and J. Pistora, “Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers,” J. Opt. 16, 065008 (2014).
[Crossref]

Jaffrès, H.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
[Crossref]

Jahme, H.

N.C. Gerhardt, M.Y. Li, H. Jahme, H. Hopfner, T. Ackermann, and M.R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 99, 151107 (2011).
[Crossref]

Jansen van Doorn, A. K.

A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041 (1996).
[Crossref]

A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Tailoring the birefringence in a vertical-cavity semiconductor laser,” Appl. Phys. Lett. 69, 3635 (1996).
[Crossref]

Jiang, C. Y.

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[Crossref]

Ju, Y.-G.

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, “Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings,” Appl. Phys. Lett. 66, 2769 (1995).
[Crossref]

Kajita, M.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 88 vertical-cavity surfaceemitting laser matrix arrays,” Appl. Phys. Lett. 66, 908 (1995).
[Crossref]

Kasahara, K.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 88 vertical-cavity surfaceemitting laser matrix arrays,” Appl. Phys. Lett. 66, 908 (1995).
[Crossref]

Kawaguchi, H.

S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, “Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells,” Appl. Phys. Lett. 98, 081113 (2011).
[Crossref]

H. Fujino, S. Koh, S. Iba, T. Fujimoto, and H. Kawaguchi, “Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection,” Appl. Phys. Lett. 94, 131108 (2009).
[Crossref]

Khitrova, G.

J. Rudolph, D. Hagele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82, 4516 (2003).
[Crossref]

Koh, S.

S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, “Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells,” Appl. Phys. Lett. 98, 081113 (2011).
[Crossref]

H. Fujino, S. Koh, S. Iba, T. Fujimoto, and H. Kawaguchi, “Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection,” Appl. Phys. Lett. 94, 131108 (2009).
[Crossref]

Kosaka, H.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 88 vertical-cavity surfaceemitting laser matrix arrays,” Appl. Phys. Lett. 66, 908 (1995).
[Crossref]

Kroner, A.

S. Hovel, A. Bischoff, N.C. Gerhardt, M.R. Hofmann, T. Ackermann, A. Kroner, and R. Michalzik, “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 92, 041118 (2008).
[Crossref]

Kurihara, K.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 88 vertical-cavity surfaceemitting laser matrix arrays,” Appl. Phys. Lett. 66, 908 (1995).
[Crossref]

Lai, Y.

Lai, Y. F.

J. Zhang, J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence,” Chin. Phys. B 23, 027304 (2014).
[Crossref]

J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation anisotropic mode splitting induced by electro-optic birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 114, 033511 (2013).
[Crossref]

Lear, K. L.

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal of Selected Topics in Quantum Electronics 1, 661–666 (1995).
[Crossref]

Lee, J.

J. Lee, S. Bearden, E. Wasner, and I. Zutić, “Spin-lasers: From threshold reduction to large-signal analysis,” Appl. Phys. Lett. 105, 042411 (2014).
[Crossref]

J. Lee, W. Falls, R. Oszwaldowski, and I. Zutić, “Spin modulation in semiconductor lasers,” Appl. Phys. Lett. 97, 041116 (2010).
[Crossref]

I. Zutić, R. Oszwaldowski, J. Lee, and C. Gothgen, Handbook of Spin Transport and Magnetism, Chap. 38 , “Semiconductor Spin-Lasers,” p. 731–745 (CRC, 2011).
[Crossref]

Lee, Y. H.

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, “Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings,” Appl. Phys. Lett. 66, 2769 (1995).
[Crossref]

Leibenguth, R. E.

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal of Selected Topics in Quantum Electronics 1, 661–666 (1995).
[Crossref]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technology Letters 6, 40 (1994).
[Crossref]

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett. 64, 2062 (1994).
[Crossref]

Li, M.Y.

N.C. Gerhardt, M.Y. Li, H. Jahme, H. Hopfner, T. Ackermann, and M.R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 99, 151107 (2011).
[Crossref]

Li, P.

H. Dery, Y. Song, P. Li, and I. Zutić, “Silicon spin communication,” Appl. Phys. Lett. 99, 082502 (2011).
[Crossref]

Liang, S.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

Liang, S. H.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Lindemann, M.

H. Hopfner, M. Lindemann, N. C. Gerhardt, and M. R. Hofmann, “Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 104, 022409 (2014).
[Crossref]

Liu, D. P.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Liu, H. F.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Lu, Y.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

Mangin, S.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Marie, X.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

Martin-Regalado, J.

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics 33, 765–783 (1997).
[Crossref]

J. Martin-Regalado, J. L. A. Chilla, and J. J. Rocca, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350 (1997).
[Crossref]

Meier, F.

F. Meier and B.P. Zakharchenya, Modern Problems in Condensed Matter Sciences, Vol. 8 (Elsevier Science Ltd, 1984).

Mi, Z.

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAs GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92, 091119 (2008).
[Crossref]

Michalzik, R.

S. Hovel, A. Bischoff, N.C. Gerhardt, M.R. Hofmann, T. Ackermann, A. Kroner, and R. Michalzik, “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 92, 041118 (2008).
[Crossref]

Miranda, B.-X.

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
[Crossref]

Miranda, B-X.

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

Moloney, J. V.

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728 (1995).
[Crossref] [PubMed]

Moronvalle, C.

Morvan, L.

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[Crossref] [PubMed]

G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Light. Technol.,  26, 952–961 (2008).
[Crossref]

Moser, M.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599 (1997).
[Crossref]

Oestreich, M.

J. Rudolph, S. Dhrmann, D. Hgele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Appl. Phys. Lett. 87, 241117 (2005).
[Crossref]

M. Oestreich, J. Rudolph, R. Winkler, and D. Hagele, “Design considerations for semiconductor spin lasers,” Superlattices and Microstructures 37, 306–312 (2005).
[Crossref]

J. Rudolph, D. Hagele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82, 4516 (2003).
[Crossref]

Oszwaldowski, R.

J. Lee, W. Falls, R. Oszwaldowski, and I. Zutić, “Spin modulation in semiconductor lasers,” Appl. Phys. Lett. 97, 041116 (2010).
[Crossref]

C. Gothgen, R. Oszwaldowski, A. Petrou, and I. Zutić, “Analytical model of spin-polarized semiconductor lasers,” Appl. Phys. Lett. 93, 042513 (2008).
[Crossref]

I. Zutić, R. Oszwaldowski, J. Lee, and C. Gothgen, Handbook of Spin Transport and Magnetism, Chap. 38 , “Semiconductor Spin-Lasers,” p. 731–745 (CRC, 2011).
[Crossref]

Pal, V.

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

Perel, V. I.

M. I. Dyakonov and V. I. Perel, “Spin orientation of electrons associated with the interband absorption of light in semiconductors,” Soviet Journal of Experimental and Theoretical Physics 33, 1053 (1971).

Petrou, A.

C. Gothgen, R. Oszwaldowski, A. Petrou, and I. Zutić, “Analytical model of spin-polarized semiconductor lasers,” Appl. Phys. Lett. 93, 042513 (2008).
[Crossref]

Pikus, G. E.

G. L. Bir, A. G. Aronov, and G. E. Pikus, “Spin relaxation of electrons due to scattering by holes,” Soviet Journal of Experimental and Theoretical Physics 69, 1382 (1975).

Pistora, J.

T. Fordos, K. Postava, H. Jaffres, and J. Pistora, “Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers,” J. Opt. 16, 065008 (2014).
[Crossref]

Postava, K.

T. Fordos, K. Postava, H. Jaffres, and J. Pistora, “Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers,” J. Opt. 16, 065008 (2014).
[Crossref]

Prati, F.

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics 33, 765–783 (1997).
[Crossref]

Renucci, P.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Reuter, D.

N. Gerhardt, S. Hovel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electron. Lett. 42, 88–89 (2006).
[Crossref]

Richie, D. A.

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett. 64, 2062 (1994).
[Crossref]

Rocca, J. J.

J. Martin-Regalado, J. L. A. Chilla, and J. J. Rocca, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350 (1997).
[Crossref]

Rudolph, J.

J. Rudolph, S. Dhrmann, D. Hgele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Appl. Phys. Lett. 87, 241117 (2005).
[Crossref]

M. Oestreich, J. Rudolph, R. Winkler, and D. Hagele, “Design considerations for semiconductor spin lasers,” Superlattices and Microstructures 37, 306–312 (2005).
[Crossref]

J. Rudolph, D. Hagele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82, 4516 (2003).
[Crossref]

Sagnes, I.

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
[Crossref]

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
[Crossref]

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34, 3421–3423 (2009).
[Crossref] [PubMed]

G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Light. Technol.,  26, 952–961 (2008).
[Crossref]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32, P. 650–652 (2007).
[Crossref] [PubMed]

Saha, D.

D. Basu, D. Saha, and P. Bhattacharya, “Optical Polarization Modulation and Gain Anisotropy in an electrically injected spin Laser,” Phys. Rev. Lett. 102, 093904 (2009).
[Crossref] [PubMed]

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAs GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92, 091119 (2008).
[Crossref]

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98, 146603 (2007).
[Crossref] [PubMed]

San Miguel, M.

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics 33, 765–783 (1997).
[Crossref]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728 (1995).
[Crossref] [PubMed]

Schneider, R. P.

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal of Selected Topics in Quantum Electronics 1, 661–666 (1995).
[Crossref]

Ser, J.-H.

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, “Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings,” Appl. Phys. Lett. 66, 2769 (1995).
[Crossref]

Shin, J.

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98, 146603 (2007).
[Crossref] [PubMed]

M. Holub, J. Shin, S. Chakrabarti, and P. Bhattacharya, “Spin-polarized vertical-cavity surface-emitting laser: Epitaxial growth issues and device properties,” Journal of Vacuum Science & Technology B 24, 1510 (2006).
[Crossref]

Shin, J.-H.

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, “Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings,” Appl. Phys. Lett. 66, 2769 (1995).
[Crossref]

Sogawa, T.

H. Ando, T. Sogawa, and H. Gotoh, “Photon-spin controlled lasing oscillation in surface-emitting lasers,” Appl. Phys. Lett. 73, 566 (1998).
[Crossref]

Song, Y.

H. Dery, Y. Song, P. Li, and I. Zutić, “Silicon spin communication,” Appl. Phys. Lett. 99, 082502 (2011).
[Crossref]

Stolz, W.

J. Rudolph, S. Dhrmann, D. Hgele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Appl. Phys. Lett. 87, 241117 (2005).
[Crossref]

Sugimoto, Y.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 88 vertical-cavity surfaceemitting laser matrix arrays,” Appl. Phys. Lett. 66, 908 (1995).
[Crossref]

Tao, B.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

Trofimoff, P.

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

van Doorn, A. K. J.

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on VCSEL spectra,” Electron. Lett. 30, 1941 (1994).
[Crossref]

van Exter, M. P.

M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191 (1998).
[Crossref]

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599 (1997).
[Crossref]

A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Tailoring the birefringence in a vertical-cavity semiconductor laser,” Appl. Phys. Lett. 69, 3635 (1996).
[Crossref]

A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041 (1996).
[Crossref]

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on VCSEL spectra,” Electron. Lett. 30, 1941 (1994).
[Crossref]

van Geelen, A.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599 (1997).
[Crossref]

Vidal, M.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

Wang, Z.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

Wang, Z. G.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Wasner, E.

J. Lee, S. Bearden, E. Wasner, and I. Zutić, “Spin-lasers: From threshold reduction to large-signal analysis,” Appl. Phys. Lett. 105, 042411 (2014).
[Crossref]

Weegels, L.

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599 (1997).
[Crossref]

Wieck, A.

N. Gerhardt, S. Hovel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electron. Lett. 42, 88–89 (2006).
[Crossref]

Willemsen, M. B.

M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191 (1998).
[Crossref]

Winkler, R.

M. Oestreich, J. Rudolph, R. Winkler, and D. Hagele, “Design considerations for semiconductor spin lasers,” Superlattices and Microstructures 37, 306–312 (2005).
[Crossref]

Woerdman, J. P.

M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191 (1998).
[Crossref]

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599 (1997).
[Crossref]

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on VCSEL spectra,” Electron. Lett. 30, 1941 (1994).
[Crossref]

Woerdman, J.P.

A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041 (1996).
[Crossref]

A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Tailoring the birefringence in a vertical-cavity semiconductor laser,” Appl. Phys. Lett. 69, 3635 (1996).
[Crossref]

Wu, C. C.

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAs GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92, 091119 (2008).
[Crossref]

Xu, B.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Yang, H. X.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Yang, J.

N. Gerhardt, S. Hovel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electron. Lett. 42, 88–89 (2006).
[Crossref]

Ye, X. L.

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[Crossref]

Yoshikawa, T.

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 88 vertical-cavity surfaceemitting laser matrix arrays,” Appl. Phys. Lett. 66, 908 (1995).
[Crossref]

Yu, J.

Yu, J. L.

J. Zhang, J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence,” Chin. Phys. B 23, 027304 (2014).
[Crossref]

J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation anisotropic mode splitting induced by electro-optic birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 114, 033511 (2013).
[Crossref]

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[Crossref]

Zakharchenya, B.P.

F. Meier and B.P. Zakharchenya, Modern Problems in Condensed Matter Sciences, Vol. 8 (Elsevier Science Ltd, 1984).

Zhang, H. Y.

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[Crossref]

Zhang, J.

J. Zhang, J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence,” Chin. Phys. B 23, 027304 (2014).
[Crossref]

Zhang, T. T.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

Zheng, Y.

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

Zutic, I.

I. Zutic and P. E. Faria, “Taken for a spin,” Nat. Nanotech. 9, 750–752 (2014).
[Crossref]

J. Lee, S. Bearden, E. Wasner, and I. Zutić, “Spin-lasers: From threshold reduction to large-signal analysis,” Appl. Phys. Lett. 105, 042411 (2014).
[Crossref]

H. Dery, Y. Song, P. Li, and I. Zutić, “Silicon spin communication,” Appl. Phys. Lett. 99, 082502 (2011).
[Crossref]

J. Lee, W. Falls, R. Oszwaldowski, and I. Zutić, “Spin modulation in semiconductor lasers,” Appl. Phys. Lett. 97, 041116 (2010).
[Crossref]

C. Gothgen, R. Oszwaldowski, A. Petrou, and I. Zutić, “Analytical model of spin-polarized semiconductor lasers,” Appl. Phys. Lett. 93, 042513 (2008).
[Crossref]

I. Zutić, R. Oszwaldowski, J. Lee, and C. Gothgen, Handbook of Spin Transport and Magnetism, Chap. 38 , “Semiconductor Spin-Lasers,” p. 731–745 (CRC, 2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (22)

T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 88 vertical-cavity surfaceemitting laser matrix arrays,” Appl. Phys. Lett. 66, 908 (1995).
[Crossref]

J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, “Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings,” Appl. Phys. Lett. 66, 2769 (1995).
[Crossref]

R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599 (1997).
[Crossref]

J. Rudolph, D. Hagele, H. M. Gibbs, G. Khitrova, and M. Oestreich, “Laser threshold reduction in a spintronic device,” Appl. Phys. Lett. 82, 4516 (2003).
[Crossref]

H. Fujino, S. Koh, S. Iba, T. Fujimoto, and H. Kawaguchi, “Circularly polarized lasing in a (110)-oriented quantum well vertical-cavity surface-emitting laser under optical spin injection,” Appl. Phys. Lett. 94, 131108 (2009).
[Crossref]

S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, “Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells,” Appl. Phys. Lett. 98, 081113 (2011).
[Crossref]

H. Hopfner, M. Lindemann, N. C. Gerhardt, and M. R. Hofmann, “Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 104, 022409 (2014).
[Crossref]

J. Lee, S. Bearden, E. Wasner, and I. Zutić, “Spin-lasers: From threshold reduction to large-signal analysis,” Appl. Phys. Lett. 105, 042411 (2014).
[Crossref]

J. Lee, W. Falls, R. Oszwaldowski, and I. Zutić, “Spin modulation in semiconductor lasers,” Appl. Phys. Lett. 97, 041116 (2010).
[Crossref]

N.C. Gerhardt, M.Y. Li, H. Jahme, H. Hopfner, T. Ackermann, and M.R. Hofmann, “Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 99, 151107 (2011).
[Crossref]

H. Ando, T. Sogawa, and H. Gotoh, “Photon-spin controlled lasing oscillation in surface-emitting lasers,” Appl. Phys. Lett. 73, 566 (1998).
[Crossref]

J. Rudolph, S. Dhrmann, D. Hgele, M. Oestreich, and W. Stolz, “Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spin-polarized electrons,” Appl. Phys. Lett. 87, 241117 (2005).
[Crossref]

C. Gothgen, R. Oszwaldowski, A. Petrou, and I. Zutić, “Analytical model of spin-polarized semiconductor lasers,” Appl. Phys. Lett. 93, 042513 (2008).
[Crossref]

H. Dery, Y. Song, P. Li, and I. Zutić, “Silicon spin communication,” Appl. Phys. Lett. 99, 082502 (2011).
[Crossref]

S. Hovel, A. Bischoff, N.C. Gerhardt, M.R. Hofmann, T. Ackermann, A. Kroner, and R. Michalzik, “Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 92, 041118 (2008).
[Crossref]

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi, and P. Bhattacharya, “Electrically injected InAs GaAs quantum dot spin laser operating at 200 K,” Appl. Phys. Lett. 92, 091119 (2008).
[Crossref]

P. Barate, S. Liang, T. T. Zhang, J. Frougier, M. Vidal, P. Renucci, X. Devaux, B. Xu, H. Jaffrès, J. M. George, X. Marie, M. Hehn, S. Mangin, Y. Zheng, T. Amand, B. Tao, X. F. Han, Z. Wang, and Y. Lu, “Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods,” Appl. Phys. Lett. 105, 012404 (2014).
[Crossref]

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jaffrès, A. Garnache, C. Deranlot, D. Dolfi, and J.-M. George, “Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers,” Appl. Phys. Lett. 103, 252402 (2013).
[Crossref]

A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041 (1996).
[Crossref]

A. K. Jansen van Doorn, M. P. van Exter, and J.P. Woerdman, “Tailoring the birefringence in a vertical-cavity semiconductor laser,” Appl. Phys. Lett. 69, 3635 (1996).
[Crossref]

J. Martin-Regalado, J. L. A. Chilla, and J. J. Rocca, “Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature,” Appl. Phys. Lett. 70, 3350 (1997).
[Crossref]

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett. 64, 2062 (1994).
[Crossref]

Chin. Phys. B (1)

J. Zhang, J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence,” Chin. Phys. B 23, 027304 (2014).
[Crossref]

Electron. Lett. (2)

A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on VCSEL spectra,” Electron. Lett. 30, 1941 (1994).
[Crossref]

N. Gerhardt, S. Hovel, M. Hofmann, J. Yang, D. Reuter, and A. Wieck, “Enhancement of spin information with vertical cavity surface emitting lasers,” Electron. Lett. 42, 88–89 (2006).
[Crossref]

IEEE Journal of Quantum Electronics (1)

J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics 33, 765–783 (1997).
[Crossref]

IEEE Journal of Selected Topics in Quantum Electronics (1)

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE Journal of Selected Topics in Quantum Electronics 1, 661–666 (1995).
[Crossref]

IEEE Photonics Technology Letters (1)

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technology Letters 6, 40 (1994).
[Crossref]

J. Appl. Phys. (2)

J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012).
[Crossref]

J. L. Yu, S. Y. Cheng, Y. F. Lai, and Y. H. Chen, “Investigation anisotropic mode splitting induced by electro-optic birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 114, 033511 (2013).
[Crossref]

J. Light. Technol. (1)

G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical modeling of excess intensity noise in semiconductor class-A lasers,” J. Light. Technol.,  26, 952–961 (2008).
[Crossref]

J. Opt. (1)

T. Fordos, K. Postava, H. Jaffres, and J. Pistora, “Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers,” J. Opt. 16, 065008 (2014).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D: Appl. Phys. 40, R179 (2007).
[Crossref]

Journal of Vacuum Science & Technology B (1)

M. Holub, J. Shin, S. Chakrabarti, and P. Bhattacharya, “Spin-polarized vertical-cavity surface-emitting laser: Epitaxial growth issues and device properties,” Journal of Vacuum Science & Technology B 24, 1510 (2006).
[Crossref]

Nat. Nanotech. (1)

I. Zutic and P. E. Faria, “Taken for a spin,” Nat. Nanotech. 9, 750–752 (2014).
[Crossref]

Opt. Expr. (1)

V. Pal, P. Trofimoff, B-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Expr. 18, 5008–5014 (2010).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (2)

M. P. van Exter, M. B. Willemsen, and J. P. Woerdman, “Polarization fluctuations in vertical-cavity semiconductor lasers,” Phys. Rev. A 58, 4191 (1998).
[Crossref]

M. San Miguel, Q. Feng, and J. V. Moloney, “Light-polarization dynamics in surface-emitting semiconductor lasers,” Phys. Rev. A 52, 1728 (1995).
[Crossref] [PubMed]

Phys. Rev. B (2)

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu, “Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector,” Phys. Rev. B 90, 085310 (2014).
[Crossref]

J. -N. Chazalviel, “Spin relaxation of conduction electrons in n-type indium antimonide at low temperature,” Phys. Rev. B 11, 1555 (1975).
[Crossref]

Phys. Rev. Lett. (3)

D. Basu, D. Saha, and P. Bhattacharya, “Optical Polarization Modulation and Gain Anisotropy in an electrically injected spin Laser,” Phys. Rev. Lett. 102, 093904 (2009).
[Crossref] [PubMed]

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, “Electrical spin injection and threshold reduction in a semiconductor laser,” Phys. Rev. Lett. 98, 146603 (2007).
[Crossref] [PubMed]

A. El Amili, B.-X. Miranda, F. Goldfarb, G. Baili, G. Beaudoin, I. Sagnes, F. Bretenaker, and M. Alouini, “Observation of slow light in the noise spectrum of a vertical external cavity surface-emitting laser,” Phys. Rev. Lett. 105, 223902 (2010).
[Crossref]

Soviet Journal of Experimental and Theoretical Physics (2)

G. L. Bir, A. G. Aronov, and G. E. Pikus, “Spin relaxation of electrons due to scattering by holes,” Soviet Journal of Experimental and Theoretical Physics 69, 1382 (1975).

M. I. Dyakonov and V. I. Perel, “Spin orientation of electrons associated with the interband absorption of light in semiconductors,” Soviet Journal of Experimental and Theoretical Physics 33, 1053 (1971).

Superlattices and Microstructures (1)

M. Oestreich, J. Rudolph, R. Winkler, and D. Hagele, “Design considerations for semiconductor spin lasers,” Superlattices and Microstructures 37, 306–312 (2005).
[Crossref]

Other (3)

N. C. Gerhardt and M. R. Hofmann, “Spin-controlled vertical-cavity surface-emitting lasers,” Adv. Opt. Tech, Article ID 268949, doi: (2012).
[Crossref]

F. Meier and B.P. Zakharchenya, Modern Problems in Condensed Matter Sciences, Vol. 8 (Elsevier Science Ltd, 1984).

I. Zutić, R. Oszwaldowski, J. Lee, and C. Gothgen, Handbook of Spin Transport and Magnetism, Chap. 38 , “Semiconductor Spin-Lasers,” p. 731–745 (CRC, 2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conceptual illustration of an electrically spin-injected VECSEL operating at room temperature and magnetic remanence. The external laser cavity (L) is fixed between the bottom Distributed Bragg Reflector (DBR) and the output mirror. We deposit on top of the semiconductor 1/2-VCSEL, close to the active medium, a Magnetic-Tunnel-Junction (MTJ) spin-injector with perpendicular magnetization at magnetic remanence. The role of this spin-injector (here MgO(2.5nm)/CoFeB(1.2nm)/Ta(5nm)) is to spin-polarize the electrons which are electrically injected in the system through a top annular Ti/Au electrode. The spin-polarized electrons then drift from the spin-injector toward the active medium based on multiple quantum wells (QWs). In the QWs, the electrons-holes recombinations are driven by the conservation of angular momentum according to the optical selection rules [13]. Spin-up and spin-down electrons generate left (σ) and right (σ+) circularly-polarized photons respectively. Accordingly, by switching the spin-polarization of the injected electrons, one can control the polarization emitted by the VECSEL.

Fig. 2
Fig. 2

Optical and electrical mode spectra: (a) Optical spectrum emitted by the laser. For a given mode, the frequency shift between two adjacent orders is equal to the Free Spectral Range (FSR) of the cavity. (b) Corresponding optical spectrum after projection on the same polarization axis using a polarizer. (c) Associated electrical spetrum after quadratic detection by a photodiode of the projected optical spectrum at 45°.

Fig. 3
Fig. 3

Experimental and characterization setup: L = 23mm, l1 = 10mm, l2 = 25mm, l3 = 175mm, M : (R = 25mm, T = 1%). The Insets 1, 2 and 3 illustrate the evolution of the emitted raw optical spectrum (Inset 1) after projection through a 45°-polarizer (Inset 2) and conversion into a RF spectrum by a photodiode (Inset 3). In the optical spectrum, the TE and TM polarization modes are represented in blue and red respectively. In the electrical spectrum, the beatnotes between modes are identified by the frequencies f 0 = ν TE p ν TM p, f 1 = ν TE p ν TE p 1 (also f 1 = ν TE p + 1 ν TE p), f 2 = ν TE p ν TM 1 and f 3 = ν TM p + 1 ν TE p. The beatnotes between lasing and non lasing modes of same polarization are represented in light blue while the beatnotes between the lasing mode and the cross polarized nonlasing modes are represented in purple (regardless to the mode orders).

Fig. 4
Fig. 4

(a) Amplitude variations of the projected orthogonal polarization modes as a function of the polarizer angle θ for the VECSEL oriented horizontally with a pumping power Ppump = 515 mW at T=282 K. (b) Variation of amplitude maxima of the central peak f1 (blue) and the satellite peak f2 (red) as a function of the polarizer angle. The data are fitted using the Malus’s Law applied to the electrical power at the frequency f1 (Pf1, black dashed line) and at the frequency f2 (Pf2, black solid line). We find that Pf1 is proportional to (1 + cos(2θ))2 and that Pf2 is proportional to sin2(2θ). For polarizer angles where the electrical power approaches zero (θ = 90°), the fit gives values below the measurement noise floor. The SNR for the central peak (f1) and the satellite peaks (f2) is optimal when the polarizer is set at 45° from both the TE and TM modes.

Fig. 5
Fig. 5

Frequency spectra of the monomode emission near the first adjacent mode for the 1/2-VCSEL oriented vertically for both low (Cyan) and moderate (Blue) pumping power: The central peak f1 correspond to the beatnote of the lasing TE mode with the ASE in the first adjacent longitudinal mode while the two side peaks f2 and f3 both originate from the cross-beating of the TE and the TM mode. For this VECSEL’s orientation Δf ∈ [38.08 – 40.81] MHz corresponding to a birefringence γ 2 π [ 6.3 × 10 3 6.4 × 10 3 ] rad. All the measurements were performed at T= 282 K.

Fig. 6
Fig. 6

Frequency spectra of the monomode emission near the first adjacent mode for the 1/2-VCSEL oriented horizontally: (a) Frequency shift measurement for both low (Cyan) and moderate (Blue) pumping power. For this VECSEL orientation Δf ∈ [33.3–40.2] MHz corresponding to a birefringence γ 2 π [ 5.8 × 10 3 6.12 × 10 3 ] rad. (b) For pumping rates r = 2.03, a polarization switch is triggered by a pump induced birefringence favoring the stability of the TE mode in the cavity. All the measurements were performed at T=282 K.

Fig. 7
Fig. 7

Birefringence variations as a function of the pumping rate r = P P th for the VECSEL oriented horizontally (blue) and vertically (black) at T= 282K.

Tables (1)

Tables Icon

Table 1 State-of-the-art measurements of the frequency split (Δf) reported for electrically pumped monolithic VCSELs, with different active mediums, using different experimental setups: Fabry-Perot Interferometers (FPI), Polarization Beat Technique (PBT), Polarization Noise Fitting (PNF), Reflectance Difference Spectroscopy (RDS), Photo-Current Difference Spectroscopy (PCDS) and Polarized Electro-Luminescence (PEL). The birefringence γ 2 π ( rad ) associated with Δf is calculated using Eq. (9). The optical lengths (Lopt) of the laser cavities can be found in the associated references. In most cases, VCSELs exhibit 1λ-cavities corresponding to Lopt = λ.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

γ = 4 π λ ( n e n o ) l
γ 2 π = 2 L opt c Δ ν
{ ν TE p = p c 2 ( L + n e l ) ν TM q = q c 2 ( L + n o l )
{ ν TE p = p c 2 L e ν TM p = p c 2 L o
{ f 1 = ν TE p ν TE p 1 = c 2 L e f 2 = ν TE p ν TM p 1 = p c 2 ( 1 L e 1 L o ) + c 2 L o f 3 = ν TM p + 1 ν TE p = p c 2 ( 1 L o 1 L e ) + c 2 L e
{ f 1 f 2 = c 2 ( 1 p ) ( 1 L e 1 L o ) f 3 f 1 = c 2 ( 1 + p ) ( 1 L o 1 L e )
Δ f = ( f 1 f 2 ) + ( f 3 f 1 ) 2 = p c 2 L o l L e Δ n = l ν o L e Δ n
γ = 4 π λ l Δ n
γ 2 π = 2 L opt c Δ f

Metrics