Abstract

We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of −60 pm/ °C is achieved with our device.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic interferometers for label-free multiplexed sensing

Yongkang Gao, Zheming Xin, Qiaoqiang Gan, Xuanhong Cheng, and Filbert J. Bartoli
Opt. Express 21(5) 5859-5871 (2013)

All-fiber Mach-Zehnder interferometers for sensing applications

Lecheng Li, Li Xia, Zhenhai Xie, and Deming Liu
Opt. Express 20(10) 11109-11120 (2012)

Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor

Ahmmed A. Rifat, G. A. Mahdiraji, Yong Meng Sua, Rajib Ahmed, Y. G. Shee, and F. R. Mahamd Adikan
Opt. Express 24(3) 2485-2495 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, “Optical fiber sensor technologies: opportunities and - perhaps - pitfalls,” J. Lightwave Technol. 22(1), 39–50 (2004).
    [Crossref]
  2. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
    [Crossref] [PubMed]
  3. H. Meixner, Sensors, Micro-and Nanosensor Technology: Trends in Sensor Markets (John Wiley & Sons, 2008).
  4. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  7. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  8. J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
    [Crossref] [PubMed]
  9. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
    [Crossref] [PubMed]
  10. G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
    [Crossref] [PubMed]
  11. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4(11), 457–466 (1999).
    [Crossref] [PubMed]
  12. O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Int. Opt. 24(3-4), 227–244 (2005).
    [Crossref]
  13. T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17(3), 035033 (2008).
    [Crossref]
  14. H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [Crossref] [PubMed]
  15. R. Yang, Y.-S. Yu, C. Chen, Q.-D. Chen, and H.-B. Sun, “Rapid fabrication of microhole array structured optical fibers,” Opt. Lett. 36(19), 3879–3881 (2011).
    [Crossref] [PubMed]
  16. C. Pang, H. Bae, A. Gupta, K. Bryden, and M. Yu, “MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing,” Opt. Express 21(19), 21829–21839 (2013).
    [Crossref] [PubMed]
  17. C. Chen, Y.-S. Yu, X.-Y. Zhang, R. Yang, C.-C. Zhu, C. Wang, Y. Xue, F. Zhu, Q.-D. Chen, and H.-B. Sun, “Compact fiber tip modal interferometer for high-temperature and transverse load measurements,” Opt. Lett. 38(17), 3202–3204 (2013).
    [Crossref] [PubMed]
  18. D. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
    [Crossref] [PubMed]
  19. H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008).
    [Crossref] [PubMed]
  20. H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
    [Crossref] [PubMed]
  21. Disclaimer: Certrain commercial equipment, instruments, materials, or software are identified in this paper to foster understanding. Such identification does not imply endorsement by NIST, nor does it imply that the items or software identified are necessarily the best available for the purpose.
  22. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004).
    [Crossref]
  23. J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
    [Crossref]
  24. Z. M. Zhang, Nano/microscale Heat Transfer (McGraw-Hill, 2007).
  25. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  26. P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
    [Crossref]
  27. S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly Confined Hybrid Spoof Surface Plasmons In Ultrathin Metal-Dielectric Heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
    [Crossref] [PubMed]
  28. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
    [Crossref] [PubMed]
  29. F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
    [Crossref]
  30. Y.-W. Jiang, L. D. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen, and S.-C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009).
    [Crossref] [PubMed]
  31. B. N. Taylor, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (DIANE Publishing, 2009).
  32. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
    [Crossref]
  33. J. Park and B. Lee, “An approximate formula of the effective refractive index of the metal–insulator–metal surface plasmon polariton waveguide in the infrared region,” Jpn. J. Appl. Phys. 47(11), 8449–8451 (2008).
    [Crossref]
  34. S. Tripura Sundari, K. Srinivasu, S. Dash, and A. Tyagi, “Temperature evolution of optical constants and their tuning in silver,” Solid State Commun. 167, 36–39 (2013).
    [Crossref]
  35. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Astronomical Telescopes and Instrumentation (International Society for Optics and Photonics, 2006), pp. 62732K–62732K–62711.
  36. G. White and J. Collins, “Thermal expansion of copper, silver, and gold at low temperatures,” J. Low Temp. Phys. 7(1-2), 43–75 (1972).
    [Crossref]
  37. Y. Fei, “Thermal expansion,” AGU Ref. Shelf 2, 29–44 (1995).
    [Crossref]
  38. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]

2014 (1)

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (4)

D. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
[Crossref] [PubMed]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
[Crossref] [PubMed]

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly Confined Hybrid Spoof Surface Plasmons In Ultrathin Metal-Dielectric Heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

2009 (1)

2008 (4)

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17(3), 035033 (2008).
[Crossref]

J. Park and B. Lee, “An approximate formula of the effective refractive index of the metal–insulator–metal surface plasmon polariton waveguide in the infrared region,” Jpn. J. Appl. Phys. 47(11), 8449–8451 (2008).
[Crossref]

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[Crossref] [PubMed]

H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008).
[Crossref] [PubMed]

2007 (2)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

2006 (2)

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
[Crossref] [PubMed]

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

2005 (3)

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Int. Opt. 24(3-4), 227–244 (2005).
[Crossref]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[Crossref]

2004 (3)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004).
[Crossref]

B. Culshaw, “Optical fiber sensor technologies: opportunities and - perhaps - pitfalls,” J. Lightwave Technol. 22(1), 39–50 (2004).
[Crossref]

2003 (1)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

1999 (2)

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4(11), 457–466 (1999).
[Crossref] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

1995 (1)

Y. Fei, “Thermal expansion,” AGU Ref. Shelf 2, 29–44 (1995).
[Crossref]

1972 (1)

G. White and J. Collins, “Thermal expansion of copper, silver, and gold at low temperatures,” J. Low Temp. Phys. 7(1-2), 43–75 (1972).
[Crossref]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Araújo, F. M.

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Int. Opt. 24(3-4), 227–244 (2005).
[Crossref]

Avitzour, Y.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly Confined Hybrid Spoof Surface Plasmons In Ultrathin Metal-Dielectric Heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[Crossref] [PubMed]

Bae, H.

Bhatia, V.

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Bryden, K.

Catrysse, P. B.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Chen, C.

Chen, C.-Y.

Chen, Q.-D.

Choi, H. Y.

Collins, J.

G. White and J. Collins, “Thermal expansion of copper, silver, and gold at low temperatures,” J. Low Temp. Phys. 7(1-2), 43–75 (1972).
[Crossref]

Consales, M.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Crescitelli, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Culshaw, B.

Cusano, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Cutolo, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Dash, S.

S. Tripura Sundari, K. Srinivasu, S. Dash, and A. Tyagi, “Temperature evolution of optical constants and their tuning in silver,” Solid State Commun. 167, 36–39 (2013).
[Crossref]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Duan, Y.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Ebbesen, T. W.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Esposito, E.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Fan, S.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Fei, Y.

Y. Fei, “Thermal expansion,” AGU Ref. Shelf 2, 29–44 (1995).
[Crossref]

Feng, J.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Ferreira, L. A.

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Int. Opt. 24(3-4), 227–244 (2005).
[Crossref]

Ferro, G.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly Confined Hybrid Spoof Surface Plasmons In Ultrathin Metal-Dielectric Heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[Crossref] [PubMed]

Frazão, O.

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Int. Opt. 24(3-4), 227–244 (2005).
[Crossref]

Garcia-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Gonzalez, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gupta, A.

Hafner, J. H.

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
[Crossref] [PubMed]

Hangyo, M.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Hu, D. J.

Huang, Z.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Huo, W.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Jiang, M.

Jiang, Y.-W.

Khanikaev, A. B.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly Confined Hybrid Spoof Surface Plasmons In Ultrathin Metal-Dielectric Heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[Crossref] [PubMed]

Korobkin, D.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly Confined Hybrid Spoof Surface Plasmons In Ultrathin Metal-Dielectric Heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[Crossref] [PubMed]

Kostovski, G.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Lee, B.

J. Park and B. Lee, “An approximate formula of the effective refractive index of the metal–insulator–metal surface plasmon polariton waveguide in the infrared region,” Jpn. J. Appl. Phys. 47(11), 8449–8451 (2008).
[Crossref]

Lee, B. H.

Lee, S.-C.

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Liao, H.

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
[Crossref] [PubMed]

Lim, J. L.

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Luan, F.

Maradudin, A. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[Crossref]

Martin-Moreno, L.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Mawatari, T.

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17(3), 035033 (2008).
[Crossref]

May, R. G.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Mehta, V.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Mitchell, A.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004).
[Crossref]

Mousavi, S. H.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly Confined Hybrid Spoof Surface Plasmons In Ultrathin Metal-Dielectric Heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[Crossref] [PubMed]

Mudhana, G.

Nehl, C. L.

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
[Crossref] [PubMed]

Nelson, D.

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17(3), 035033 (2008).
[Crossref]

Neuner, B.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly Confined Hybrid Spoof Surface Plasmons In Ultrathin Metal-Dielectric Heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[Crossref] [PubMed]

Otto, C.

H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008).
[Crossref] [PubMed]

Pacifici, D.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Paek, U.-C.

Palmore, G. T. R.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Pang, C.

Park, J.

J. Park and B. Lee, “An approximate formula of the effective refractive index of the metal–insulator–metal surface plasmon polariton waveguide in the infrared region,” Jpn. J. Appl. Phys. 47(11), 8449–8451 (2008).
[Crossref]

Park, K. S.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Peng, W.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Pickrell, G. R.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Qi, B.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Rhieu, S. Y.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Ricciardi, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Roelke, A.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Roos, D.

H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[Crossref]

Santos, J. L.

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Int. Opt. 24(3-4), 227–244 (2005).
[Crossref]

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Shen, J.-T.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Shin, H.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Shum, P. P.

Shvets, G.

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly Confined Hybrid Spoof Surface Plasmons In Ultrathin Metal-Dielectric Heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[Crossref] [PubMed]

Siu, V. S.

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Srinivasu, K.

S. Tripura Sundari, K. Srinivasu, S. Dash, and A. Tyagi, “Temperature evolution of optical constants and their tuning in silver,” Solid State Commun. 167, 36–39 (2013).
[Crossref]

Stoddart, P. R.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Subramaniam, V.

H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008).
[Crossref] [PubMed]

Sun, H.-B.

Tong, W.

Tripura Sundari, S.

S. Tripura Sundari, K. Srinivasu, S. Dash, and A. Tyagi, “Temperature evolution of optical constants and their tuning in silver,” Solid State Commun. 167, 36–39 (2013).
[Crossref]

Tsai, M.-W.

Tyagi, A.

S. Tripura Sundari, K. Srinivasu, S. Dash, and A. Tyagi, “Temperature evolution of optical constants and their tuning in silver,” Solid State Commun. 167, 36–39 (2013).
[Crossref]

Tzuang, L. D.

van den Berg, T. K.

H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008).
[Crossref] [PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

van Manen, H.-J.

H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008).
[Crossref] [PubMed]

Verkuijlen, P.

H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008).
[Crossref] [PubMed]

Veronis, G.

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Wang, A.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Wang, C.

Wang, Y.

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Wei, H.

White, G.

G. White and J. Collins, “Thermal expansion of copper, silver, and gold at low temperatures,” J. Low Temp. Phys. 7(1-2), 43–75 (1972).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wittendorp, P.

H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008).
[Crossref] [PubMed]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[Crossref] [PubMed]

Wu, Y.-T.

Xiao, H.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Xu, J.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Xue, Y.

Yang, R.

Ye, Y.-H.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yu, M.

Yu, Y.-S.

Zhang, P.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Zhang, X.-Y.

Zhu, C.-C.

Zhu, F.

ACS Nano (1)

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

AGU Ref. Shelf (1)

Y. Fei, “Thermal expansion,” AGU Ref. Shelf 2, 29–44 (1995).
[Crossref]

Anal. Chem. (1)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80(12), 4269–4283 (2008).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004).
[Crossref]

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[Crossref]

P. B. Catrysse, G. Veronis, H. Shin, J.-T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
[Crossref]

Biophys. J. (1)

H.-J. van Manen, P. Verkuijlen, P. Wittendorp, V. Subramaniam, T. K. van den Berg, D. Roos, and C. Otto, “Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy,” Biophys. J. 94(8), L67–L69 (2008).
[Crossref] [PubMed]

Fiber Int. Opt. (1)

O. Frazão, L. A. Ferreira, F. M. Araújo, and J. L. Santos, “Applications of fiber optic grating technology to multi-parameter measurement,” Fiber Int. Opt. 24(3-4), 227–244 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Low Temp. Phys. (1)

G. White and J. Collins, “Thermal expansion of copper, silver, and gold at low temperatures,” J. Low Temp. Phys. 7(1-2), 43–75 (1972).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. Park and B. Lee, “An approximate formula of the effective refractive index of the metal–insulator–metal surface plasmon polariton waveguide in the infrared region,” Jpn. J. Appl. Phys. 47(11), 8449–8451 (2008).
[Crossref]

Nano Lett. (1)

J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett. 12(2), 602–609 (2012).
[Crossref] [PubMed]

Nanomedicine (Lond) (1)

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine (Lond) 1(2), 201–208 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Nat. Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007).
[Crossref]

Opt. Eng. (1)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly Confined Hybrid Spoof Surface Plasmons In Ultrathin Metal-Dielectric Heterostructures,” Phys. Rev. Lett. 105(17), 176803 (2010).
[Crossref] [PubMed]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Sensors (Basel) (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17(3), 035033 (2008).
[Crossref]

Solid State Commun. (1)

S. Tripura Sundari, K. Srinivasu, S. Dash, and A. Tyagi, “Temperature evolution of optical constants and their tuning in silver,” Solid State Commun. 167, 36–39 (2013).
[Crossref]

Other (6)

D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Astronomical Telescopes and Instrumentation (International Society for Optics and Photonics, 2006), pp. 62732K–62732K–62711.

H. Meixner, Sensors, Micro-and Nanosensor Technology: Trends in Sensor Markets (John Wiley & Sons, 2008).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Disclaimer: Certrain commercial equipment, instruments, materials, or software are identified in this paper to foster understanding. Such identification does not imply endorsement by NIST, nor does it imply that the items or software identified are necessarily the best available for the purpose.

B. N. Taylor, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (DIANE Publishing, 2009).

Z. M. Zhang, Nano/microscale Heat Transfer (McGraw-Hill, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of on-fiber plasmonic interferometer with nano-hole array. The inset shows the unit cells of the array (t = 150 nm, d = 528 nm and Λ = 1055 nm). (b) SEM of the fabricated sensor. (c) SEM of the nano-hole array.
Fig. 2
Fig. 2 (a) Schematic of the experimental setup, (b) typical reflection spectrum of the sensor in glucose solution at room temperature (glucose concentration 10%), (c) reflection spectrum of SP resonance extracted from (b), (d) reflection spectrum of plasmonic interference extracted from (b), (e) The schematic of the on-fiber plasmonic interference effect, and (f) reflection spectrum obtained with RCWA simulations for a hole array structure of infinite size in a 10% glucose solution. The insets show the field distributions at the SP resonance peak and the Wood’s anomaly dip in one unit cell.
Fig. 3
Fig. 3 (a) Extracted reflection spectra dominated by SP resonance with respect to refractive index change, (b) peak wavelength of the SP resonance versus refractive index, (c) extracted reflection spectra dominated by plasmonic interference with respect to different refractive indices, (d) effective OPD versus refractive index.
Fig. 4
Fig. 4 (a) Extracted reflection spectra dominated by SP resonance with respect to temperature change, (b) peak wavelength of SP resonance versus temperature, (c) extracted reflection spectra due to plasmonic interference with respect to temperature change, and (d) effective OPD versus temperature.
Fig. 5
Fig. 5 The comparison of dispersion relations of surface plasmons on the hole array structure (red line) and on the flat silver surface (blue line). The dashed line represents the light dispersion in the fiber core region.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ r e s o n a c e = Λ ε d ( λ ) ε m ( λ ) ε d ( λ ) + ε m ( λ ) ,
( Δ n Δ T ) = K 1 ( Δ λ Δ L ) = ( k λ , n k λ , T k L , n k L , T ) 1 ( Δ λ Δ L ) = ( 220 n m / R I U 60 × 10 3 n m / o C 1700 n m / R I U 500 × 10 3 n m / o C ) 1 ( Δ λ Δ L ) ,
k s p ( ω ) d 2 φ ( ω ) = m π .
d ( 2 π / λ i ) n i 2 φ i = ( m + i ) π ,
n i + 1 = λ i + 1 / 2 d + n i λ i + 1 / λ i ,
k ( f i ) = n i 2 π / λ i ,

Metrics