Abstract

A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of deep ultraviolet narrow linewidth laser by mixing frequency Ti:sapphire laser at 5 kHz repetition rate

Nan Wang, Rui Wang, Hao Teng, Dehua Li, and Zhiyi Wei
Appl. Opt. 51(12) 1905-1909 (2012)

True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers

Jun Sakuma, Koichi Moriizumi, and Haruhiko Kusunose
Opt. Express 19(16) 15020-15025 (2011)

Deep UV light generation by a fiber/bulk hybrid amplifier at 199 nm

Yoshiharu Urata, Tatsuya Shinozaki, Yoshio Wada, Yushi Kaneda, Satoshi Wada, and Shinichi Imai
Appl. Opt. 48(9) 1668-1674 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22, 375302 (2011).
    [Crossref] [PubMed]
  2. A. Ozawa and Y. Kobayashi, “vuv frequency-comb spectroscopy of atomic xenon,” Phys. Rev. A 87, 022507 (2013).
    [Crossref]
  3. G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
    [Crossref] [PubMed]
  4. J. Sakuma, K. Deki, A. Finch, Y. Ohsako, and T. Yokota, “All-solid-state, high-power, deep-UV laser system based on cascaded sum-frequency mixing in CsLiB6O10 crystals,” Appl. Opt. 39(30), 5505–5511 (2000).
    [Crossref]
  5. H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2003), CTuT4.
  6. N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “200-mW-average power ultraviolet generation at 0.193μ m in K2Al2B2O7,” Appl. Opt. 42(15), 2716–2719 (2003)
    [Crossref]
  7. H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
    [Crossref]
  8. T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express,  17(10), 8696–8703 (2009).
    [Crossref] [PubMed]
  9. S. Ito, T. Onose, K. Kakizaki, T. Matsunaga, J. Fujimoto, and H. Mizoguchi, “A sub-Watt, linenarrowing, 193-nm solid state laser operating at 6 kHz with KBBF for injection-locking ArF eximer laser systems,” in Proceedings of Advanced Solid-State Photonics (Optical Society of America, 2012), AT4A.7.
  10. P. Koch, J. Bartschke, and J. A. L’huillier, “All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO4 laser with excellent beam quality,” Opt. Express 22(11), 13648–13658 (2014).
    [Crossref] [PubMed]
  11. J. Sakuma, K. Moriizumi, and H. Kusunose, “True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers,” Opt. Express 19(16), 15020–15025 (2011).
    [Crossref] [PubMed]
  12. M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.
  13. T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
    [Crossref]
  14. M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014).
    [Crossref]
  15. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400 W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17(15), 12230–12245 (2009).
    [Crossref] [PubMed]
  16. M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.
  17. X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2) 109–111 (2013).
    [Crossref] [PubMed]
  18. X. Délen, L. Deyra, A. Benoit, M. Hanna, F. Balembois, B. Cocquelin, D. Sangla, F. Salin, J. Didierjean, and P. Georges, “Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm,” Opt. Lett.,  38(6), 995–997 (2013).
    [Crossref]
  19. H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “Development of narrow-linewidth Yb-and Er-fiber lasers and frequency mixing for ArF eximer laser seeding,” Proc. SPIE 8961, 89612M (2014).
    [Crossref]
  20. SNLO nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, NM.
  21. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett. 19(19), 1538–1540 (1994)
    [Crossref] [PubMed]
  22. S. Guha and Joel Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980)
    [Crossref]
  23. C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
    [Crossref]
  24. K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al Doping of CsLiB6O10 for High Resistance to Ultraviolet-induced Degradation,” Appl. Phys. Express 6, 022701 (2013).
    [Crossref]
  25. K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and β -BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014)
    [Crossref]

2014 (4)

P. Koch, J. Bartschke, and J. A. L’huillier, “All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO4 laser with excellent beam quality,” Opt. Express 22(11), 13648–13658 (2014).
[Crossref] [PubMed]

M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014).
[Crossref]

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “Development of narrow-linewidth Yb-and Er-fiber lasers and frequency mixing for ArF eximer laser seeding,” Proc. SPIE 8961, 89612M (2014).
[Crossref]

K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and β -BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014)
[Crossref]

2013 (5)

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al Doping of CsLiB6O10 for High Resistance to Ultraviolet-induced Degradation,” Appl. Phys. Express 6, 022701 (2013).
[Crossref]

X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2) 109–111 (2013).
[Crossref] [PubMed]

X. Délen, L. Deyra, A. Benoit, M. Hanna, F. Balembois, B. Cocquelin, D. Sangla, F. Salin, J. Didierjean, and P. Georges, “Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm,” Opt. Lett.,  38(6), 995–997 (2013).
[Crossref]

A. Ozawa and Y. Kobayashi, “vuv frequency-comb spectroscopy of atomic xenon,” Phys. Rev. A 87, 022507 (2013).
[Crossref]

2011 (2)

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22, 375302 (2011).
[Crossref] [PubMed]

J. Sakuma, K. Moriizumi, and H. Kusunose, “True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers,” Opt. Express 19(16), 15020–15025 (2011).
[Crossref] [PubMed]

2009 (2)

2008 (2)

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

2003 (1)

2000 (1)

1994 (1)

1980 (1)

S. Guha and Joel Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980)
[Crossref]

Adachi, S.

Ando, M.

Asayama, T.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

Aubry, N.

Balembois, F.

Bartschke, J.

Benoit, A.

Bo, Y.

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

Chen, C.

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express,  17(10), 8696–8703 (2009).
[Crossref] [PubMed]

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Cocquelin, B.

Cui, D.

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

David, C.

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22, 375302 (2011).
[Crossref] [PubMed]

Deki, K.

Délen, X.

Deyra, L.

Didierjean, J.

Doi, M.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2003), CTuT4.

Drescher, M.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

Duesterer, S.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

Ekinci, Y.

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22, 375302 (2011).
[Crossref] [PubMed]

Faatz, B.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

Falk, Joel

S. Guha and Joel Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980)
[Crossref]

Feldhaus, J.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

Finch, A.

Fujimoto, J.

S. Ito, T. Onose, K. Kakizaki, T. Matsunaga, J. Fujimoto, and H. Mizoguchi, “A sub-Watt, linenarrowing, 193-nm solid state laser operating at 6 kHz with KBBF for injection-locking ArF eximer laser systems,” in Proceedings of Advanced Solid-State Photonics (Optical Society of America, 2012), AT4A.7.

Fukushima, Y.

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al Doping of CsLiB6O10 for High Resistance to Ultraviolet-induced Degradation,” Appl. Phys. Express 6, 022701 (2013).
[Crossref]

Geng, A.

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

Georges, P.

Guha, S.

S. Guha and Joel Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980)
[Crossref]

Guo, L.

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

Hanna, M.

Hoffmann, H. D.

Hönninger, C.

Hu, Z.

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “200-mW-average power ultraviolet generation at 0.193μ m in K2Al2B2O7,” Appl. Opt. 42(15), 2716–2719 (2003)
[Crossref]

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Igarashi, H.

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “Development of narrow-linewidth Yb-and Er-fiber lasers and frequency mixing for ArF eximer laser seeding,” Proc. SPIE 8961, 89612M (2014).
[Crossref]

Imade, M.

K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and β -BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014)
[Crossref]

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al Doping of CsLiB6O10 for High Resistance to Ultraviolet-induced Degradation,” Appl. Phys. Express 6, 022701 (2013).
[Crossref]

Ito, S.

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “Development of narrow-linewidth Yb-and Er-fiber lasers and frequency mixing for ArF eximer laser seeding,” Proc. SPIE 8961, 89612M (2014).
[Crossref]

S. Ito, T. Onose, K. Kakizaki, T. Matsunaga, J. Fujimoto, and H. Mizoguchi, “A sub-Watt, linenarrowing, 193-nm solid state laser operating at 6 kHz with KBBF for injection-locking ArF eximer laser systems,” in Proceedings of Advanced Solid-State Photonics (Optical Society of America, 2012), AT4A.7.

Kaenders, W.

M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.

Kakizaki, K.

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “Development of narrow-linewidth Yb-and Er-fiber lasers and frequency mixing for ArF eximer laser seeding,” Proc. SPIE 8961, 89612M (2014).
[Crossref]

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

S. Ito, T. Onose, K. Kakizaki, T. Matsunaga, J. Fujimoto, and H. Mizoguchi, “A sub-Watt, linenarrowing, 193-nm solid state laser operating at 6 kHz with KBBF for injection-locking ArF eximer laser systems,” in Proceedings of Advanced Solid-State Photonics (Optical Society of America, 2012), AT4A.7.

Kanai, T.

Kaneda, Y.

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Kato, K.

Kawai, H.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2003), CTuT4.

Kirk, E.

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22, 375302 (2011).
[Crossref] [PubMed]

Kitano, H.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2003), CTuT4.

Kittelmann, O.

Kobayashi, Y.

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “Development of narrow-linewidth Yb-and Er-fiber lasers and frequency mixing for ArF eximer laser seeding,” Proc. SPIE 8961, 89612M (2014).
[Crossref]

A. Ozawa and Y. Kobayashi, “vuv frequency-comb spectroscopy of atomic xenon,” Phys. Rev. A 87, 022507 (2013).
[Crossref]

Koch, P.

Kumazaki, T.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

Kurosu, A.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

Kusunose, H.

L’huillier, J. A.

Langner, A.

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22, 375302 (2011).
[Crossref] [PubMed]

Leisching, P.

M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.

Li, R.

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Lin, Z.

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Liu, G.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

Liu, H.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

Mans, T.

Martial, I.

Matsunaga, T.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

S. Ito, T. Onose, K. Kakizaki, T. Matsunaga, J. Fujimoto, and H. Mizoguchi, “A sub-Watt, linenarrowing, 193-nm solid state laser operating at 6 kHz with KBBF for injection-locking ArF eximer laser systems,” in Proceedings of Advanced Solid-State Photonics (Optical Society of America, 2012), AT4A.7.

Matsuura, H.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2003), CTuT4.

Melo, M.

M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014).
[Crossref]

Meng, J.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

Miwa, S.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2003), CTuT4.

Mizoguchi, H.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

S. Ito, T. Onose, K. Kakizaki, T. Matsunaga, J. Fujimoto, and H. Mizoguchi, “A sub-Watt, linenarrowing, 193-nm solid state laser operating at 6 kHz with KBBF for injection-locking ArF eximer laser systems,” in Proceedings of Advanced Solid-State Photonics (Optical Society of America, 2012), AT4A.7.

Mori, Y.

K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and β -BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014)
[Crossref]

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al Doping of CsLiB6O10 for High Resistance to Ultraviolet-induced Degradation,” Appl. Phys. Express 6, 022701 (2013).
[Crossref]

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “200-mW-average power ultraviolet generation at 0.193μ m in K2Al2B2O7,” Appl. Opt. 42(15), 2716–2719 (2003)
[Crossref]

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Moriizumi, K.

Mottay, E.

Nagashima, T.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

Noack, F.

Ohsako, Y.

Onose, T.

S. Ito, T. Onose, K. Kakizaki, T. Matsunaga, J. Fujimoto, and H. Mizoguchi, “A sub-Watt, linenarrowing, 193-nm solid state laser operating at 6 kHz with KBBF for injection-locking ArF eximer laser systems,” in Proceedings of Advanced Solid-State Photonics (Optical Society of America, 2012), AT4A.7.

Opalevs, D.

M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.

Owa, S.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2003), CTuT4.

Ozawa, A.

A. Ozawa and Y. Kobayashi, “vuv frequency-comb spectroscopy of atomic xenon,” Phys. Rev. A 87, 022507 (2013).
[Crossref]

Päivänranta, B.

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22, 375302 (2011).
[Crossref] [PubMed]

Petrov, V.

Poprawe, R.

Prandolini, M. J.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

Riedel, R.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

Ringling, J.

Rossbach, J.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

Rotarius, G.

Russbueldt, P.

Sakuma, J.

Salin, F.

Sangla, D.

Sasaki, T.

K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and β -BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014)
[Crossref]

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al Doping of CsLiB6O10 for High Resistance to Ultraviolet-induced Degradation,” Appl. Phys. Express 6, 022701 (2013).
[Crossref]

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “200-mW-average power ultraviolet generation at 0.193μ m in K2Al2B2O7,” Appl. Opt. 42(15), 2716–2719 (2003)
[Crossref]

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Sasaki, Y.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

Scholz, M.

M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.

Schulz, M.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

Seifert, F.

Sousa, J. M.

M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014).
[Crossref]

Stuhler, J.

M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.

Suzuki, K.

Takachiho, K.

K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and β -BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014)
[Crossref]

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al Doping of CsLiB6O10 for High Resistance to Ultraviolet-induced Degradation,” Appl. Phys. Express 6, 022701 (2013).
[Crossref]

Takahashi, Y.

K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and β -BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014)
[Crossref]

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al Doping of CsLiB6O10 for High Resistance to Ultraviolet-induced Degradation,” Appl. Phys. Express 6, 022701 (2013).
[Crossref]

Takaoka, E.

Tavella, F.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

Tokuhisa, A.

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2003), CTuT4.

Tsushima, H.

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

Uda, S.

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Umemura, N.

Wang, G.

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.

Wang, J.

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Wang, X.

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express,  17(10), 8696–8703 (2009).
[Crossref] [PubMed]

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.

Watanabe, S.

Weitenberg, J.

Willner, A.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

Wu, Y.

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Xu, Z.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

Xuan, H.

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “Development of narrow-linewidth Yb-and Er-fiber lasers and frequency mixing for ArF eximer laser seeding,” Proc. SPIE 8961, 89612M (2014).
[Crossref]

Yokota, T.

Yoshimura, M.

K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and β -BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014)
[Crossref]

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al Doping of CsLiB6O10 for High Resistance to Ultraviolet-induced Degradation,” Appl. Phys. Express 6, 022701 (2013).
[Crossref]

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “200-mW-average power ultraviolet generation at 0.193μ m in K2Al2B2O7,” Appl. Opt. 42(15), 2716–2719 (2003)
[Crossref]

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Zaouter, Y.

Zhang, G.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

Zhang, H.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

Zhang, W.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

Zhao, L.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

Zhao, Z.

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “Development of narrow-linewidth Yb-and Er-fiber lasers and frequency mixing for ArF eximer laser seeding,” Proc. SPIE 8961, 89612M (2014).
[Crossref]

Zhou, X.J.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

Zhou, Y.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

Zhu, Y.

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, X. Wang, and C. Chen, “175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal,” Appl. Phys. B,  93, 323–326 (2008).
[Crossref]

Appl. Phys. Express (1)

K. Takachiho, M. Yoshimura, Y. Fukushima, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Al Doping of CsLiB6O10 for High Resistance to Ultraviolet-induced Degradation,” Appl. Phys. Express 6, 022701 (2013).
[Crossref]

J. Appl. Phys. (1)

S. Guha and Joel Falk, “The effects of focusing in the three-frequency parametric upconverter,” J. Appl. Phys. 51(1), 50–60 (1980)
[Crossref]

Nanotechnology (1)

B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22, 375302 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. A (1)

A. Ozawa and Y. Kobayashi, “vuv frequency-comb spectroscopy of atomic xenon,” Phys. Rev. A 87, 022507 (2013).
[Crossref]

Proc. SPIE (3)

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “Development of narrow-linewidth Yb-and Er-fiber lasers and frequency mixing for ArF eximer laser seeding,” Proc. SPIE 8961, 89612M (2014).
[Crossref]

T. Asayama, Y. Sasaki, T. Nagashima, A. Kurosu, H. Tsushima, T. Kumazaki, K. Kakizaki, T. Matsunaga, and H. Mizoguchi, “Power up: 120 Watt injection-locked ArF eximer laser required for both multi-patterning and 450 mm wafer lithography,” Proc. SPIE 8683, 86831G (2013).
[Crossref]

M. Melo and J. M. Sousa, “Power scaling through narrowband ASE seeding in pulsed MOPA fiber systems,” Proc. SPIE 8961, 89612L (2014).
[Crossref]

Rev. Sci. Instrum. (1)

G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L. Zhao, J. Meng, X. Wang, C. Chen, Z. Xu, and X.J. Zhou, “Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV,” Rev. Sci. Instrum. 79, 023105 (2008).
[Crossref] [PubMed]

Other (6)

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2003), CTuT4.

S. Ito, T. Onose, K. Kakizaki, T. Matsunaga, J. Fujimoto, and H. Mizoguchi, “A sub-Watt, linenarrowing, 193-nm solid state laser operating at 6 kHz with KBBF for injection-locking ArF eximer laser systems,” in Proceedings of Advanced Solid-State Photonics (Optical Society of America, 2012), AT4A.7.

M. Scholz, D. Opalevs, J. Stuhler, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “15 mW of CW emission at 193 nm using the crystal KBBF,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2014), AM2L.1.

SNLO nonlinear optics code available from A. V. Smith, AS-Photonics, Albuquerque, NM.

M. Schulz, A. Willner, R. Riedel, M. J. Prandolini, S. Duesterer, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Kilowatt level Yb:YAG thin-disk pump laser amplifier system for seeding FLASH2,” in Proceedings ofConference on Lasers and Electro-Optics (Optical Society of America, 2012), CM1D.1.

C. Chen, T. Sasaki, R. Li, Y. Wu, Z. Lin, Y. Mori, Z. Hu, J. Wang, S. Uda, M. Yoshimura, and Y. Kaneda, Nonlinear Optical Borate Crystals: Principles and Applications (Wiley-VCH Verlag GmbH, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the 193 nm laser generation.

Fig. 2
Fig. 2

Schematic diagram of the different components in the Yb-doped fiber amplifier; ISO: Isolator; AOM: Acoustic-optics modulator.

Fig. 3
Fig. 3

(a) Average output power of the PCF amplifier at varying pump power; (b)Spectrum of the PCF amplifier at 1.2 W

Fig. 4
Fig. 4

(a)Average output power of Yb:YAG SCF amplifier at varying pump power in the single- and double-pass configurations; (b) Spectrum of the Yb:YAG SCF amplifier at 9.12 W

Fig. 5
Fig. 5

Average output power and frequency conversion efficiency for varying pump power resulting from (a) SHG to 515 nm; (b) FHG to 258 nm.

Fig. 6
Fig. 6

Schematic diagram of the two stages of SFG; DM1: 258HR/1553HT mirror; DM2: 221HR/1553HT mirror; DM3: 221HR/1553HT mirror; HWP: Half Wave Plate.

Fig. 7
Fig. 7

Average output power and conversion efficiency of (a) SFG to 221 nm; (b) SFG to 193 nm.

Fig. 8
Fig. 8

(a)Pulse duration of 193-nm measured by a oscilloscope; Inset: Beam profile of the 193-nm laser; (b) Power stability of the 193-nm laser over 30 minutes.

Tables (1)

Tables Icon

Table 1 Nonlinear Optical Properties of different crystals for SFG

Metrics