Abstract

We propose a family of ring-core fibers, designed for the transmission of OAM modes, that can be fabricated by drawing five different fibers from a single preform. This novel technique allows us to experimentally sweep design parameters and speed up the fiber design optimization process. Such a family of fibers could be used to examine system performance, but also facilitate understanding of parameter impact in the transition from design to fabrication. We present design parameters characterizing our fiber, and enumerate criteria to be satisfied. We determine targeted fiber dimensions and explain our strategy for examining a design family rather than a single fiber design. We simulate modal properties of the designed fibers, and compare the results with measurements performed on fabricated fibers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of PANDA ring-core fiber with 10 polarization-maintaining modes

Haozhe Yan, Shangyuan Li, Zhengyang Xie, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou
Photon. Res. 5(1) 1-5 (2017)

Design trade-offs and optimization of radially single-mode and azimuthally multimode ring-core fibers for mode-division multiplexing systems

Jiawei Han, Guanjun Gao, Yongli Zhao, and Shanglin Hou
Opt. Express 27(8) 11844-11861 (2019)

Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes

B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle
Opt. Express 22(15) 18044-18055 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [Crossref]
  2. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photon. 6, 413–487 (2014).
    [Crossref]
  3. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref] [PubMed]
  4. S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for oam multiplexing,” Opt. Express 23, 3721–3730 (2015).
    [Crossref] [PubMed]
  5. B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Few-mode fiber with inverse-parabolic graded-index profile for transmission of oam-carrying modes,” Opt. Express 22, 18044–18055 (2014).
    [Crossref] [PubMed]
  6. P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of 12 oam states in air-core fiber,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2K.2.
  7. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an oam fiber supporting 36 states,” Opt. Express 22, 26117–26127 (2014).
    [Crossref] [PubMed]
  8. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
    [Crossref] [PubMed]
  9. C. Brunet, B. Ung, P.-A. Belanger, Y. Messaddeq, S. LaRochelle, and L. Rusch, “Vector mode analysis of ring-core fibers: Design tools for spatial division multiplexing,” J. Lightwave Technol. 32, 4046–4057 (2014).
    [Crossref]
  10. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [Crossref]
  11. H. Sunak and S. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6–1.8μm wavelength region,”, IEEE Photonics Technol. Lett. 1, 142–145 (1989).
  12. J. W. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984).
    [Crossref]
  13. P. Yeh, A. Yariv, and E. Marom, “Theory of bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).
    [Crossref]
  14. L. Wang, P. Vaity, B. Ung, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Characterization of oam fibers using fiber bragg gratings,” Opt. Express 22, 15653–15661 (2014).
    [Crossref] [PubMed]
  15. N. K. Fontaine, C. R. Doerr, and L. Buhl, “Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OTu1I.2.
  16. R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.
  17. G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J.-F. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22, 15599–15607 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (6)

2013 (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

2009 (1)

1989 (1)

H. Sunak and S. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6–1.8μm wavelength region,”, IEEE Photonics Technol. Lett. 1, 142–145 (1989).

1984 (1)

1978 (1)

1965 (1)

Bai, N.

Bastien, S.

H. Sunak and S. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6–1.8μm wavelength region,”, IEEE Photonics Technol. Lett. 1, 142–145 (1989).

Belanger, P.-A.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Brunet, C.

Buhl, L.

N. K. Fontaine, C. R. Doerr, and L. Buhl, “Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OTu1I.2.

Cappuzzo, M.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Denolle, B.

Doerr, C. R.

N. K. Fontaine, C. R. Doerr, and L. Buhl, “Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OTu1I.2.

Earnshaw, M.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Ferrari, C.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Fleming, J. W.

Fontaine, N.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Fontaine, N. K.

N. K. Fontaine, C. R. Doerr, and L. Buhl, “Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OTu1I.2.

Genevaux, P.

Golowich, S.

P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of 12 oam states in air-core fiber,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2K.2.

Golowich, S. E.

Gregg, P.

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for oam multiplexing,” Opt. Express 23, 3721–3730 (2015).
[Crossref] [PubMed]

P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of 12 oam states in air-core fiber,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2K.2.

Guan, B.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Jian, P.

Keller, B.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Klemens, F.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Kristensen, P.

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for oam multiplexing,” Opt. Express 23, 3721–3730 (2015).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
[Crossref] [PubMed]

P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of 12 oam states in air-core fiber,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2K.2.

Labroille, G.

LaRochelle, S.

Li, G.

Malitson, I. H.

Marom, E.

Messaddeq, Y.

Morizur, J.-F.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Olsen, J.

P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of 12 oam states in air-core fiber,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2K.2.

Qin, C.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Ramachandran, S.

S. Ramachandran, P. Gregg, P. Kristensen, and S. E. Golowich, “On the scalability of ring fiber designs for oam multiplexing,” Opt. Express 23, 3721–3730 (2015).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
[Crossref] [PubMed]

P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of 12 oam states in air-core fiber,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2K.2.

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Rusch, L.

Rusch, L. A.

Scott, R.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Steinvurzel, P.

P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of 12 oam states in air-core fiber,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2K.2.

Su, T.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Sunak, H.

H. Sunak and S. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6–1.8μm wavelength region,”, IEEE Photonics Technol. Lett. 1, 142–145 (1989).

Treps, N.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Ung, B.

Vaity, P.

Wang, L.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Xia, C.

Yan, M. F.

Yariv, A.

Yeh, P.

Yoo, S.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Zhao, N.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

H. Sunak and S. Bastien, “Refractive index and material dispersion interpolation of doped silica in the 0.6–1.8μm wavelength region,”, IEEE Photonics Technol. Lett. 1, 142–145 (1989).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (2)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Other (3)

P. Gregg, P. Kristensen, S. Golowich, J. Olsen, P. Steinvurzel, and S. Ramachandran, “Stable transmission of 12 oam states in air-core fiber,” in “CLEO: 2013,” (Optical Society of America, 2013), p. CTu2K.2.

N. K. Fontaine, C. R. Doerr, and L. Buhl, “Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OTu1I.2.

R. Scott, B. Guan, C. Qin, N. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, and S. Yoo, “Free-space coherent optical communication demonstration using a 3d photonic integrated circuit device for orbital angular momentum multiplexing/demultiplexing,” in “Optical Communication (ECOC 2013), 39th European Conference and Exhibition on,” (2013), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Annular fiber geometry (top view, and profile).
Fig. 2
Fig. 2 Modal map (solid black lines), along with minimal Δneff (colormap), as function of core radius ratio ρ and normalized frequency V0 [see (2)]. Horizontal dashed line is the chosen ρ parameter, while dots indicate chosen fiber parameters.
Fig. 3
Fig. 3 Normalized propagation constant as function of normalized frequency.
Fig. 4
Fig. 4 Designed (red) and measured (blue: averaged, others: x- and y-scan on both directions) profile (at λ = 657.6nm), for samples of fiber 2 and fiber 4. Profile of other fibers are similar.
Fig. 5
Fig. 5 Output intensity profiles after 2 m transmission in fiber 2 for the (a) OAM−1,1 and (b) OAM+1,1 modes, at 1550 nm. Corresponding output interference patterns with a Gaussian beam for the (c) OAM−1,1 and (d) OAM+1,1 modes.
Fig. 6
Fig. 6 FBG reflectogram for fiber 2 (sample 2).
Fig. 7
Fig. 7 Superimposed FBG reflectogram for all fibers. This allows comparison of reflection wavelengths for the different fibers. All reflectogram were vertically aligned and scaled to fit the graph, hence absolute heights from reflectogram to reflectogram convey no information.

Tables (6)

Tables Icon

Table 1 List of design criteria

Tables Icon

Table 2 Fiber index parameters.

Tables Icon

Table 3 Geometry of the designed fibers (rounded to the second decimal).

Tables Icon

Table 4 Effective indices of the modes (at 1550 nm).

Tables Icon

Table 5 Effective index separation within mode groups (at 1550 nm).

Tables Icon

Table 6 Δneff measured values (using FBG), compared to calculated values.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β ˜ = n eff n 2 n 1 n 2
V 0 = 2 π λ b n 1 2 n 2 2

Metrics