Abstract

We demonstrate an imaging system employing continuous high-rate photonically-enabled compressed sensing (CHiRP-CS) to enable efficient microscopic imaging of rapidly moving objects with only a few percent of the samples traditionally required for Nyquist sampling. Ultrahigh-rate spectral shaping is achieved through chirp processing of broadband laser pulses and permits ultrafast structured illumination of the object flow. Image reconstructions of high-speed microscopic flows are demonstrated at effective rates up to 39.6 Gigapixel/sec from a 720-MHz sampling rate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed all-optical Haar wavelet transform for real-time image compression

Milad Alemohammad, Jasper R. Stroud, Bryan T. Bosworth, and Mark A. Foster
Opt. Express 25(9) 9802-9811 (2017)

Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition

Qiang Guo, Hongwei Chen, Zhiliang Weng, Minghua Chen, Sigang Yang, and Shizhong Xie
Opt. Express 23(23) 29639-29646 (2015)

Optical coherence tomography using physical domain data compression to achieve MHz A-scan rates

Jasper R. Stroud, Luoluo Liu, Sang Chin, Trac D. Tran, and Mark A. Foster
Opt. Express 27(25) 36329-36339 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” BioSystems 83, 217–224 (2006).
    [Crossref]
  2. P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discovery. 5, 343–356 (2006).
    [Crossref]
  3. E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
    [Crossref] [PubMed]
  4. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
    [Crossref] [PubMed]
  5. N. Rimon and M. Schuldiner, “Getting the whole picture: combining throughput with content in microscopy,” J. Cell Sci. 124, 3743–3751 (2011).
    [Crossref] [PubMed]
  6. W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
    [Crossref] [PubMed]
  7. D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
    [Crossref] [PubMed]
  8. Amnis Corporation, INSPIRE ImageStreamX System Software User’s Manual, 4. (INSPIRE2010).
  9. K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
    [Crossref] [PubMed]
  10. T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37, 3330–3332 (2012).
    [Crossref]
  11. T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
    [Crossref] [PubMed]
  12. F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1 GHz line-scan microscopic imaging,” Photonics Res. 2, B31–B34 (2014).
    [Crossref]
  13. H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
    [Crossref] [PubMed]
  14. M. El-Desouki, M. JamalDeen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors 9, 430–444 (2009).
    [Crossref] [PubMed]
  15. T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward one giga frames per second—evolution of in situ storage image sensors,” Sensors 13, 4640–4658 (2013).
    [Crossref]
  16. T. Arai, J. Yonai, T. Hayashida, H. Ohtake, H. van Kuijk, and T. G. Etoh, “Back-side-illuminated image sensor with burst capturing speed of 5.2 Tpixel per second,” in Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, R. Widenhorn and A. Dupret, eds., Proc. SPIE 8659, 865904 (2013).
    [Crossref]
  17. K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
    [Crossref]
  18. L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–77 (2014).
    [Crossref] [PubMed]
  19. C. Azeredo-Leme, “Clock jitter effects on sampling: A tutorial,” IEEE Circuits Syst. Mag. 11, 26–37 (2011).
    [Crossref]
  20. E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).
    [Crossref]
  21. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
    [Crossref]
  22. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [Crossref]
  23. E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
    [Crossref]
  24. R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24, 118–124 (2007).
    [Crossref]
  25. J. M. Nichols and F. Bucholtz, “Beating nyquist with light: a compressively sampled photonic link,” Opt. Express 19, 7339–7348 (2011).
    [Crossref] [PubMed]
  26. G. C. Valley, G. A. Sefler, and T. J. Shaw, “Compressive sensing of sparse radio frequency signals using optical mixing,” Opt. Lett. 37, 4675–4677 (2012).
    [Crossref] [PubMed]
  27. B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38, 4892–4895 (2013).
    [Crossref] [PubMed]
  28. Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21, 25700–25707 (2013).
    [Crossref] [PubMed]
  29. Y. Chen, X. Yu, H. Chi, X. Jin, X. Zhang, S. Zheng, and M. Galili, “Compressive sensing in a photonic link with optical integration,” Opt. Lett. 39, 2222–2224 (2014).
    [Crossref] [PubMed]
  30. M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52, 6735–6743 (2013).
    [Crossref] [PubMed]
  31. M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104, 111101 (2014).
    [Crossref]
  32. B. T. Bosworth and M. A. Foster, “High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper ATh4P.3.
  33. A. C. Chan, A. Lau, K. Wong, E. Y. Lam, K. Tsia, and M. Z. Ren, “Two-dimensional spectral-encoding for high speed arbitrary patterned illumination,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper STh1H.2.
  34. H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.
  35. A. C. S. Chan, E. Y. Lam, and K. K. Tsia, “Signal reduction in fluorescence imaging using radio frequency-multiplexed excitation by compressed sensing,” in Real-time Photonic Measurements, Data Management, and Processing, B. Jalali, M. Li, K. Goda, and M. H. Asghari, eds., Proc. SPIE 9279, 92790U (2014).
    [Crossref]
  36. M. W. Marcellin, JPEG2000: Image Compression Fundamentals, Standards, and Practice (Springer, 2002).
  37. S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (Academic, 2008).
  38. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
    [Crossref]
  39. F. Magalhães, F. M. Araújo, M. V. Correia, M. Abolbashari, and F. Farahi, “Active illumination single-pixel camera based on compressive sensing,” Appl. Opt. 50, 405–414 (2011).
    [Crossref] [PubMed]
  40. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U. S. A. 109, E1679–E1687 (2012).
    [Crossref] [PubMed]
  41. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref] [PubMed]
  42. J. Yang, X. Yuan, X. Liao, P. Llull, D. Brady, G. Sapiro, and L. Carin, “Video compressive sensing using gaussian mixture models,” IEEE Trans. Image Process. 23, 4863–4878 (2014).
    [Crossref] [PubMed]
  43. D. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2007).
    [Crossref]
  44. J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “5 MHz all-optical swept-source optical coherence tomography based on amplified dispersive fourier transform,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2013), paper NW5B.5.
    [Crossref]
  45. M. Mishali, Y. Eldar, and A. Elron, “Xampling: Signal acquisition and processing in union of subspaces,” IEEE Trans. Signal Process 59, 4719–4734 (2011).
    [Crossref]

2014 (10)

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1 GHz line-scan microscopic imaging,” Photonics Res. 2, B31–B34 (2014).
[Crossref]

H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
[Crossref] [PubMed]

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–77 (2014).
[Crossref] [PubMed]

Y. Chen, X. Yu, H. Chi, X. Jin, X. Zhang, S. Zheng, and M. Galili, “Compressive sensing in a photonic link with optical integration,” Opt. Lett. 39, 2222–2224 (2014).
[Crossref] [PubMed]

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104, 111101 (2014).
[Crossref]

A. C. S. Chan, E. Y. Lam, and K. K. Tsia, “Signal reduction in fluorescence imaging using radio frequency-multiplexed excitation by compressed sensing,” in Real-time Photonic Measurements, Data Management, and Processing, B. Jalali, M. Li, K. Goda, and M. H. Asghari, eds., Proc. SPIE 9279, 92790U (2014).
[Crossref]

J. Yang, X. Yuan, X. Liao, P. Llull, D. Brady, G. Sapiro, and L. Carin, “Video compressive sensing using gaussian mixture models,” IEEE Trans. Image Process. 23, 4863–4878 (2014).
[Crossref] [PubMed]

2013 (5)

M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52, 6735–6743 (2013).
[Crossref] [PubMed]

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38, 4892–4895 (2013).
[Crossref] [PubMed]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21, 25700–25707 (2013).
[Crossref] [PubMed]

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward one giga frames per second—evolution of in situ storage image sensors,” Sensors 13, 4640–4658 (2013).
[Crossref]

T. Arai, J. Yonai, T. Hayashida, H. Ohtake, H. van Kuijk, and T. G. Etoh, “Back-side-illuminated image sensor with burst capturing speed of 5.2 Tpixel per second,” in Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, R. Widenhorn and A. Dupret, eds., Proc. SPIE 8659, 865904 (2013).
[Crossref]

2012 (3)

2011 (5)

N. Rimon and M. Schuldiner, “Getting the whole picture: combining throughput with content in microscopy,” J. Cell Sci. 124, 3743–3751 (2011).
[Crossref] [PubMed]

C. Azeredo-Leme, “Clock jitter effects on sampling: A tutorial,” IEEE Circuits Syst. Mag. 11, 26–37 (2011).
[Crossref]

J. M. Nichols and F. Bucholtz, “Beating nyquist with light: a compressively sampled photonic link,” Opt. Express 19, 7339–7348 (2011).
[Crossref] [PubMed]

F. Magalhães, F. M. Araújo, M. V. Correia, M. Abolbashari, and F. Farahi, “Active illumination single-pixel camera based on compressive sensing,” Appl. Opt. 50, 405–414 (2011).
[Crossref] [PubMed]

M. Mishali, Y. Eldar, and A. Elron, “Xampling: Signal acquisition and processing in union of subspaces,” IEEE Trans. Signal Process 59, 4719–4734 (2011).
[Crossref]

2009 (3)

M. El-Desouki, M. JamalDeen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[Crossref] [PubMed]

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref] [PubMed]

2008 (1)

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

2007 (4)

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24, 118–124 (2007).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[Crossref] [PubMed]

D. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2007).
[Crossref]

2006 (5)

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” BioSystems 83, 217–224 (2006).
[Crossref]

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discovery. 5, 343–356 (2006).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

2005 (1)

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).
[Crossref]

Abolbashari, M.

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Arai, T.

T. Arai, J. Yonai, T. Hayashida, H. Ohtake, H. van Kuijk, and T. G. Etoh, “Back-side-illuminated image sensor with burst capturing speed of 5.2 Tpixel per second,” in Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, R. Widenhorn and A. Dupret, eds., Proc. SPIE 8659, 865904 (2013).
[Crossref]

Araújo, F. M.

Armstrong, D.

M. El-Desouki, M. JamalDeen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[Crossref] [PubMed]

Asghari, M. H.

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104, 111101 (2014).
[Crossref]

M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52, 6735–6743 (2013).
[Crossref] [PubMed]

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Azeredo-Leme, C.

C. Azeredo-Leme, “Clock jitter effects on sampling: A tutorial,” IEEE Circuits Syst. Mag. 11, 26–37 (2011).
[Crossref]

Baraniuk, R. G.

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24, 118–124 (2007).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Baron, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Basiji, D. A.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[Crossref] [PubMed]

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U. S. A. 109, E1679–E1687 (2012).
[Crossref] [PubMed]

Bosworth, B. T.

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38, 4892–4895 (2013).
[Crossref] [PubMed]

B. T. Bosworth and M. A. Foster, “High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper ATh4P.3.

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Brady, D.

J. Yang, X. Yuan, X. Liao, P. Llull, D. Brady, G. Sapiro, and L. Carin, “Video compressive sensing using gaussian mixture models,” IEEE Trans. Image Process. 23, 4863–4878 (2014).
[Crossref] [PubMed]

Brouzes, E.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Bucholtz, F.

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U. S. A. 109, E1679–E1687 (2012).
[Crossref] [PubMed]

Candès, E. J.

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).
[Crossref]

Carin, L.

J. Yang, X. Yuan, X. Liao, P. Llull, D. Brady, G. Sapiro, and L. Carin, “Video compressive sensing using gaussian mixture models,” IEEE Trans. Image Process. 23, 4863–4878 (2014).
[Crossref] [PubMed]

Carlo, D. D.

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U. S. A. 109, E1679–E1687 (2012).
[Crossref] [PubMed]

Chan, A. C.

A. C. Chan, A. Lau, K. Wong, E. Y. Lam, K. Tsia, and M. Z. Ren, “Two-dimensional spectral-encoding for high speed arbitrary patterned illumination,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper STh1H.2.

Chan, A. C. S.

A. C. S. Chan, E. Y. Lam, and K. K. Tsia, “Signal reduction in fluorescence imaging using radio frequency-multiplexed excitation by compressed sensing,” in Real-time Photonic Measurements, Data Management, and Processing, B. Jalali, M. Li, K. Goda, and M. H. Asghari, eds., Proc. SPIE 9279, 92790U (2014).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Chan, G. C. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Charbon, E.

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward one giga frames per second—evolution of in situ storage image sensors,” Sensors 13, 4640–4658 (2013).
[Crossref]

Chen, H.

H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
[Crossref] [PubMed]

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1 GHz line-scan microscopic imaging,” Photonics Res. 2, B31–B34 (2014).
[Crossref]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21, 25700–25707 (2013).
[Crossref] [PubMed]

H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.

Chen, M.

H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
[Crossref] [PubMed]

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1 GHz line-scan microscopic imaging,” Photonics Res. 2, B31–B34 (2014).
[Crossref]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21, 25700–25707 (2013).
[Crossref] [PubMed]

H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.

Chen, Y.

Chi, H.

Chou, J.

D. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2007).
[Crossref]

Chung, A. J.

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

Correia, M. V.

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U. S. A. 109, E1679–E1687 (2012).
[Crossref] [PubMed]

Di Carlo, D.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

Duarte, M. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Dudani, J. S.

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

Eldar, Y.

M. Mishali, Y. Eldar, and A. Elron, “Xampling: Signal acquisition and processing in union of subspaces,” IEEE Trans. Signal Process 59, 4719–4734 (2011).
[Crossref]

El-Desouki, M.

M. El-Desouki, M. JamalDeen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[Crossref] [PubMed]

Elron, A.

M. Mishali, Y. Eldar, and A. Elron, “Xampling: Signal acquisition and processing in union of subspaces,” IEEE Trans. Signal Process 59, 4719–4734 (2011).
[Crossref]

Etoh, T. G.

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward one giga frames per second—evolution of in situ storage image sensors,” Sensors 13, 4640–4658 (2013).
[Crossref]

T. Arai, J. Yonai, T. Hayashida, H. Ohtake, H. van Kuijk, and T. G. Etoh, “Back-side-illuminated image sensor with burst capturing speed of 5.2 Tpixel per second,” in Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, R. Widenhorn and A. Dupret, eds., Proc. SPIE 8659, 865904 (2013).
[Crossref]

Fang, Q.

M. El-Desouki, M. JamalDeen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[Crossref] [PubMed]

Farahi, F.

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Foster, M. A.

B. T. Bosworth and M. A. Foster, “High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals,” Opt. Lett. 38, 4892–4895 (2013).
[Crossref] [PubMed]

B. T. Bosworth and M. A. Foster, “High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper ATh4P.3.

Galili, M.

Gao, L.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–77 (2014).
[Crossref] [PubMed]

Goda, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref] [PubMed]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Hayashida, T.

T. Arai, J. Yonai, T. Hayashida, H. Ohtake, H. van Kuijk, and T. G. Etoh, “Back-side-illuminated image sensor with burst capturing speed of 5.2 Tpixel per second,” in Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, R. Widenhorn and A. Dupret, eds., Proc. SPIE 8659, 865904 (2013).
[Crossref]

Hirosawa, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Ho, K. K. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Horisaki, R.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Hutchison, J. B.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Iwasaki, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Jalali, B.

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104, 111101 (2014).
[Crossref]

M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52, 6735–6743 (2013).
[Crossref] [PubMed]

K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref] [PubMed]

D. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2007).
[Crossref]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

JamalDeen, M.

M. El-Desouki, M. JamalDeen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[Crossref] [PubMed]

Jin, X.

Kannari, F.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Kelly, K. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Kittur, H.

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

Kulkarni, R. P.

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

Kunze, A.

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

Lam, E. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

A. C. S. Chan, E. Y. Lam, and K. K. Tsia, “Signal reduction in fluorescence imaging using radio frequency-multiplexed excitation by compressed sensing,” in Real-time Photonic Measurements, Data Management, and Processing, B. Jalali, M. Li, K. Goda, and M. H. Asghari, eds., Proc. SPIE 9279, 92790U (2014).
[Crossref]

A. C. Chan, A. Lau, K. Wong, E. Y. Lam, K. Tsia, and M. Z. Ren, “Two-dimensional spectral-encoding for high speed arbitrary patterned illumination,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper STh1H.2.

Lang, P.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discovery. 5, 343–356 (2006).
[Crossref]

Laska, J. N.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Lau, A.

A. C. Chan, A. Lau, K. Wong, E. Y. Lam, K. Tsia, and M. Z. Ren, “Two-dimensional spectral-encoding for high speed arbitrary patterned illumination,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper STh1H.2.

Lau, A. K. S.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37, 3330–3332 (2012).
[Crossref]

Lei, C.

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1 GHz line-scan microscopic imaging,” Photonics Res. 2, B31–B34 (2014).
[Crossref]

H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
[Crossref] [PubMed]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21, 25700–25707 (2013).
[Crossref] [PubMed]

H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.

Li, C.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–77 (2014).
[Crossref] [PubMed]

Li, P.

Liang, J.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–77 (2014).
[Crossref] [PubMed]

Liang, L.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[Crossref] [PubMed]

Liang, Y.

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21, 25700–25707 (2013).
[Crossref] [PubMed]

H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.

Liao, H.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Liao, X.

J. Yang, X. Yuan, X. Liao, P. Llull, D. Brady, G. Sapiro, and L. Carin, “Video compressive sensing using gaussian mixture models,” IEEE Trans. Image Process. 23, 4863–4878 (2014).
[Crossref] [PubMed]

Link, D. R.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Liu, L.

M. El-Desouki, M. JamalDeen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[Crossref] [PubMed]

Llull, P.

J. Yang, X. Yuan, X. Liao, P. Llull, D. Brady, G. Sapiro, and L. Carin, “Video compressive sensing using gaussian mixture models,” IEEE Trans. Image Process. 23, 4863–4878 (2014).
[Crossref] [PubMed]

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Magalhães, F.

Mallat, S.

S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (Academic, 2008).

Marcellin, M. W.

M. W. Marcellin, JPEG2000: Image Compression Fundamentals, Standards, and Practice (Springer, 2002).

Marran, D.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Masaeli, M.

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Medkova, M.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Mishali, M.

M. Mishali, Y. Eldar, and A. Elron, “Xampling: Signal acquisition and processing in union of subspaces,” IEEE Trans. Signal Process 59, 4719–4734 (2011).
[Crossref]

Morrissey, P.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[Crossref] [PubMed]

Mousavi, H. S.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U. S. A. 109, E1679–E1687 (2012).
[Crossref] [PubMed]

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Nakagawa, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Nakamura, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Nichols, A.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discovery. 5, 343–356 (2006).
[Crossref]

Nichols, J. M.

Ohtake, H.

T. Arai, J. Yonai, T. Hayashida, H. Ohtake, H. van Kuijk, and T. G. Etoh, “Back-side-illuminated image sensor with burst capturing speed of 5.2 Tpixel per second,” in Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, R. Widenhorn and A. Dupret, eds., Proc. SPIE 8659, 865904 (2013).
[Crossref]

Oishi, Y.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Ortyn, W. E.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[Crossref] [PubMed]

Perrimon, N.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Petty, H. R.

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” BioSystems 83, 217–224 (2006).
[Crossref]

Ren, M. Z.

A. C. Chan, A. Lau, K. Wong, E. Y. Lam, K. Tsia, and M. Z. Ren, “Two-dimensional spectral-encoding for high speed arbitrary patterned illumination,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper STh1H.2.

Rimon, N.

N. Rimon and M. Schuldiner, “Getting the whole picture: combining throughput with content in microscopy,” J. Cell Sci. 124, 3743–3751 (2011).
[Crossref] [PubMed]

Robles, J. D. F.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Romberg, J.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

Rothberg, J. M.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Sakuma, I.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Samuels, M. L.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Sapiro, G.

J. Yang, X. Yuan, X. Liao, P. Llull, D. Brady, G. Sapiro, and L. Carin, “Video compressive sensing using gaussian mixture models,” IEEE Trans. Image Process. 23, 4863–4878 (2014).
[Crossref] [PubMed]

Sarvotham, S.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Savenelli, N.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Scheer, A.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discovery. 5, 343–356 (2006).
[Crossref]

Schuldiner, M.

N. Rimon and M. Schuldiner, “Getting the whole picture: combining throughput with content in microscopy,” J. Cell Sci. 124, 3743–3751 (2011).
[Crossref] [PubMed]

Sefler, G. A.

Shaw, T. J.

Shum, H. C.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Solli, D.

D. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2007).
[Crossref]

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Son, D. V.

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward one giga frames per second—evolution of in situ storage image sensors,” Sensors 13, 4640–4658 (2013).
[Crossref]

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U. S. A. 109, E1679–E1687 (2012).
[Crossref] [PubMed]

Takhar, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Tang, A. H. L.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Tang, M. Y. H.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Tao, T.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).
[Crossref]

Tse, F.

M. El-Desouki, M. JamalDeen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[Crossref] [PubMed]

Tseng, P.

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

Tsia, K.

K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref] [PubMed]

A. C. Chan, A. Lau, K. Wong, E. Y. Lam, K. Tsia, and M. Z. Ren, “Two-dimensional spectral-encoding for high speed arbitrary patterned illumination,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper STh1H.2.

Tsia, K. K.

A. C. S. Chan, E. Y. Lam, and K. K. Tsia, “Signal reduction in fluorescence imaging using radio frequency-multiplexed excitation by compressed sensing,” in Real-time Photonic Measurements, Data Management, and Processing, B. Jalali, M. Li, K. Goda, and M. H. Asghari, eds., Proc. SPIE 9279, 92790U (2014).
[Crossref]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37, 3330–3332 (2012).
[Crossref]

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “5 MHz all-optical swept-source optical coherence tomography based on amplified dispersive fourier transform,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2013), paper NW5B.5.
[Crossref]

Tsukamoto, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Twardowski, M.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Ushida, T.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Valley, G. C.

van Kuijk, H.

T. Arai, J. Yonai, T. Hayashida, H. Ohtake, H. van Kuijk, and T. G. Etoh, “Back-side-illuminated image sensor with burst capturing speed of 5.2 Tpixel per second,” in Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, R. Widenhorn and A. Dupret, eds., Proc. SPIE 8659, 865904 (2013).
[Crossref]

Venkatachalam, V.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[Crossref] [PubMed]

Wakin, M. B.

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Wang, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Wang, L. V.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–77 (2014).
[Crossref] [PubMed]

Weaver, W. M.

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

Wei, X.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Weng, Z.

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1 GHz line-scan microscopic imaging,” Photonics Res. 2, B31–B34 (2014).
[Crossref]

H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
[Crossref] [PubMed]

H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.

Wong, K.

A. C. Chan, A. Lau, K. Wong, E. Y. Lam, K. Tsia, and M. Z. Ren, “Two-dimensional spectral-encoding for high speed arbitrary patterned illumination,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper STh1H.2.

Wong, K. K. Y.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37, 3330–3332 (2012).
[Crossref]

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “5 MHz all-optical swept-source optical coherence tomography based on amplified dispersive fourier transform,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2013), paper NW5B.5.
[Crossref]

Wong, T. T. W.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37, 3330–3332 (2012).
[Crossref]

Xie, S.

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1 GHz line-scan microscopic imaging,” Photonics Res. 2, B31–B34 (2014).
[Crossref]

H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
[Crossref] [PubMed]

Y. Liang, M. Chen, H. Chen, C. Lei, P. Li, and S. Xie, “Photonic-assisted multi-channel compressive sampling based on effective time delay pattern,” Opt. Express 21, 25700–25707 (2013).
[Crossref] [PubMed]

H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.

Xing, F.

H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
[Crossref] [PubMed]

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1 GHz line-scan microscopic imaging,” Photonics Res. 2, B31–B34 (2014).
[Crossref]

H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.

Xu, J.

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “5 MHz all-optical swept-source optical coherence tomography based on amplified dispersive fourier transform,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2013), paper NW5B.5.
[Crossref]

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “5 MHz all-optical swept-source optical coherence tomography based on amplified dispersive fourier transform,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2013), paper NW5B.5.
[Crossref]

Yamada, T.

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward one giga frames per second—evolution of in situ storage image sensors,” Sensors 13, 4640–4658 (2013).
[Crossref]

Yang, J.

J. Yang, X. Yuan, X. Liao, P. Llull, D. Brady, G. Sapiro, and L. Carin, “Video compressive sensing using gaussian mixture models,” IEEE Trans. Image Process. 23, 4863–4878 (2014).
[Crossref] [PubMed]

Yang, S.

H. Chen, C. Lei, F. Xing, Z. Weng, M. Chen, S. Yang, and S. Xie, “Multiwavelength time-stretch imaging system,” Opt. Lett. 39, 2202–2205 (2014).
[Crossref] [PubMed]

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1 GHz line-scan microscopic imaging,” Photonics Res. 2, B31–B34 (2014).
[Crossref]

Yeow, K.

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discovery. 5, 343–356 (2006).
[Crossref]

Yonai, J.

T. Arai, J. Yonai, T. Hayashida, H. Ohtake, H. van Kuijk, and T. G. Etoh, “Back-side-illuminated image sensor with burst capturing speed of 5.2 Tpixel per second,” in Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, R. Widenhorn and A. Dupret, eds., Proc. SPIE 8659, 865904 (2013).
[Crossref]

Yu, X.

Yuan, X.

J. Yang, X. Yuan, X. Liao, P. Llull, D. Brady, G. Sapiro, and L. Carin, “Video compressive sensing using gaussian mixture models,” IEEE Trans. Image Process. 23, 4863–4878 (2014).
[Crossref] [PubMed]

Zhang, C.

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “5 MHz all-optical swept-source optical coherence tomography based on amplified dispersive fourier transform,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2013), paper NW5B.5.
[Crossref]

Zhang, X.

Zheng, S.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. H. Asghari and B. Jalali, “Experimental demonstration of optical real-time data compression,” Appl. Phys. Lett. 104, 111101 (2014).
[Crossref]

BioSystems (1)

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” BioSystems 83, 217–224 (2006).
[Crossref]

Clin. Lab. Med. (1)

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

W. M. Weaver, P. Tseng, A. Kunze, M. Masaeli, A. J. Chung, J. S. Dudani, H. Kittur, R. P. Kulkarni, and D. D. Carlo, “Advances in high-throughput single-cell microtechnologies,” Curr. Opin. Biotechnol. 25, 114–123 (2014).
[Crossref] [PubMed]

IEEE Circuits Syst. Mag. (1)

C. Azeredo-Leme, “Clock jitter effects on sampling: A tutorial,” IEEE Circuits Syst. Mag. 11, 26–37 (2011).
[Crossref]

IEEE Signal Process. Mag. (2)

E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24, 118–124 (2007).
[Crossref]

IEEE Trans. Image Process. (1)

J. Yang, X. Yuan, X. Liao, P. Llull, D. Brady, G. Sapiro, and L. Carin, “Video compressive sensing using gaussian mixture models,” IEEE Trans. Image Process. 23, 4863–4878 (2014).
[Crossref] [PubMed]

IEEE Trans. Inf. Theory (3)

E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).
[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

IEEE Trans. Signal Process (1)

M. Mishali, Y. Eldar, and A. Elron, “Xampling: Signal acquisition and processing in union of subspaces,” IEEE Trans. Signal Process 59, 4719–4734 (2011).
[Crossref]

J. Cell Sci. (1)

N. Rimon and M. Schuldiner, “Getting the whole picture: combining throughput with content in microscopy,” J. Cell Sci. 124, 3743–3751 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

D. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2007).
[Crossref]

Nat. Rev. Drug Discovery. (1)

P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discovery. 5, 343–356 (2006).
[Crossref]

Nature (3)

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–77 (2014).
[Crossref] [PubMed]

K. Goda, K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[Crossref] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Photonics Res. (1)

F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, and S. Xie, “Serial wavelength division 1 GHz line-scan microscopic imaging,” Photonics Res. 2, B31–B34 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (2)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U. S. A. 109, E1679–E1687 (2012).
[Crossref] [PubMed]

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U. S. A. 106, 14195–14200 (2009).
[Crossref] [PubMed]

Proc. SPIE (3)

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

T. Arai, J. Yonai, T. Hayashida, H. Ohtake, H. van Kuijk, and T. G. Etoh, “Back-side-illuminated image sensor with burst capturing speed of 5.2 Tpixel per second,” in Sensors, Cameras, and Systems for Industrial and Scientific Applications XIV, R. Widenhorn and A. Dupret, eds., Proc. SPIE 8659, 865904 (2013).
[Crossref]

A. C. S. Chan, E. Y. Lam, and K. K. Tsia, “Signal reduction in fluorescence imaging using radio frequency-multiplexed excitation by compressed sensing,” in Real-time Photonic Measurements, Data Management, and Processing, B. Jalali, M. Li, K. Goda, and M. H. Asghari, eds., Proc. SPIE 9279, 92790U (2014).
[Crossref]

Sci. Rep. (1)

T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci. Rep. 4, 3656 (2014).
[Crossref] [PubMed]

Sensors (2)

M. El-Desouki, M. JamalDeen, Q. Fang, L. Liu, F. Tse, and D. Armstrong, “CMOS image sensors for high speed applications,” Sensors 9, 430–444 (2009).
[Crossref] [PubMed]

T. G. Etoh, D. V. Son, T. Yamada, and E. Charbon, “Toward one giga frames per second—evolution of in situ storage image sensors,” Sensors 13, 4640–4658 (2013).
[Crossref]

Other (8)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U. S. A.11630–11635 (2012).
[Crossref] [PubMed]

Amnis Corporation, INSPIRE ImageStreamX System Software User’s Manual, 4. (INSPIRE2010).

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “5 MHz all-optical swept-source optical coherence tomography based on amplified dispersive fourier transform,” in Optics in the Life Sciences, OSA Technical Digest (Optical Society of America, 2013), paper NW5B.5.
[Crossref]

M. W. Marcellin, JPEG2000: Image Compression Fundamentals, Standards, and Practice (Springer, 2002).

S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (Academic, 2008).

B. T. Bosworth and M. A. Foster, “High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper ATh4P.3.

A. C. Chan, A. Lau, K. Wong, E. Y. Lam, K. Tsia, and M. Z. Ren, “Two-dimensional spectral-encoding for high speed arbitrary patterned illumination,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper STh1H.2.

H. Chen, Z. Weng, Y. Liang, C. Lei, F. Xing, M. Chen, and S. Xie, “High speed single-pixel imaging via time domain compressive sampling,” in CLEO: 2014, OSA Technical Digest (Optical Society of America, 2014), paper JTh2A.132.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Broadband laser pulses are dispersed in optical fiber to accomplish spectrum-to-time mapping. Each pulse is modulated with a unique ultrahigh-rate pseudorandom binary pattern and then re-compressed in fiber (Dispersion compensation) to an ultrashort duration before passing through a 1D wavelength-to-space mapping diffraction grating and lens that focuses the spectral pattern onto the object plane, providing structured illumination of the object flow. The output pulse energy traveling back through the spatial disperser to the photodiode and ADC represents an optically-computed inner product between the pseudorandom pattern and the object. The image is reconstructed via a sparsity-driven optimization from sub-Nyquist compressive measurements. (b) Temporal overlap of the pulses at the pattern modulation stage. (c) Detailed system schematic for low magnification results in Subsection 5.1. (d) Pulse interleaver and (e) spatial disperser with microscope for high magnification results in Subsection 5.2.
Fig. 2
Fig. 2 Example repeating 128-bit pseudorandom binary patterns observed with an optical spectrum analyzer. In practice, we reconstruct 325 horizontal pixels utilizing the full width of the spectrum. Actual sampling patterns are unique to each pulse and cannot be observed on the averaged spectrum.
Fig. 3
Fig. 3 Patch based image recovery from 1D compressive pseudorandom measurements, which iterates between two steps—global reconstruction of the image estimates and maximizing the sparsity level of all local image patches.
Fig. 4
Fig. 4 A laser-printed transparency with three objects of varying complexity (rows a–c) was fixed to the top platter of a 7200-RPM computer hard drive and imaged by the system at compression ratios of 6.15, 2.15, and 1.23%. The unevenness in the illumination is due to the spectral envelope (Fig. 2), which was left un-compensated in these results.
Fig. 5
Fig. 5 A single cluster of 25-μm undyed polystyrene microspheres imaged by the extended system, depicted in Fig. 1(c–e), moving at 12.4, 26.0, and 42.2 m/s using compression ratios of 7.27, 3.64, and 1.82%. The measurements were acquired at the interleaved pulse rate of 720 MHz and downsampled to the equivalent of 360, 180, and 90 MHz pulse rates for comparison.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

min x x 1 s . t . y Ax 2 σ .
α = Ψ ˜ ( x )
y j = Φ j [ P ( { Ψ ( α ¯ k ) } k = 1 p ) ] j , j = 1 , , M
min { α k } k = 1 p α k 1 s . t . Φ j [ P ( { Ψ ( α k ) } k = 1 p ) ] j = y j , j 1 , , M .
Compression ratio = M l N l , Line rate = f s M l , and Pixel rate = f s N l M l

Metrics