C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D
metamaterial/photonic crystals,” Opt.
Express 19, 19027–19041 (2011).

[Crossref]
[PubMed]

X. Huang, Y. Lai, Z. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in
photonic crystals and zero-refractive-index materials,” Nature Mater. 10, 582–586 (2011).

[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point
in hexagonal photonic crystals,” Physica B 405, 2990–2995 (2010).

[Crossref]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its
extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80, 155103 (2009).

[Crossref]

X. Zhang, “Observing Zitterbewegung for Photons near the
Dirac point of a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 100, 113903 (2008).

[Crossref]
[PubMed]

F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical
Waveguides in Photonic Crystals with Broken Time-Reversal
Symmetry,” Phys. Rev. Lett. 100, 013904 (2008).

[Crossref]
[PubMed]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a
two-dimensional photonic crystal,” Phys. Rev.
B 71, 085106 (2005).

[Crossref]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refractive
index,” Phys. Rev. Lett. 90, 107402 (2003).

[Crossref]
[PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode
theory for efficient taper transitions in photonic
crystals,” Phys. Rev. E 66, 066608 (2002).

[Crossref]

M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling
perturbations in a transmitting waveguide: fundamental connection between
polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002).

[Crossref]

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic
crystals,” Phys. Rev. B 50, 1988–1991 (1994).

[Crossref]

U. Fano, “Effects of configuration interation on
intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).

[Crossref]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode
theory for efficient taper transitions in photonic
crystals,” Phys. Rev. E 66, 066608 (2002).

[Crossref]

X. Huang, Y. Lai, Z. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in
photonic crystals and zero-refractive-index materials,” Nature Mater. 10, 582–586 (2011).

[Crossref]

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic
crystals,” Phys. Rev. B 50, 1988–1991 (1994).

[Crossref]

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic
crystals,” Phys. Rev. B 50, 1988–1991 (1994).

[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point
in hexagonal photonic crystals,” Physica B 405, 2990–2995 (2010).

[Crossref]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refractive
index,” Phys. Rev. Lett. 90, 107402 (2003).

[Crossref]
[PubMed]

M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling
perturbations in a transmitting waveguide: fundamental connection between
polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002).

[Crossref]

U. Fano, “Effects of configuration interation on
intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).

[Crossref]

M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling
perturbations in a transmitting waveguide: fundamental connection between
polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002).

[Crossref]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a
two-dimensional photonic crystal,” Phys. Rev.
B 71, 085106 (2005).

[Crossref]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refractive
index,” Phys. Rev. Lett. 90, 107402 (2003).

[Crossref]
[PubMed]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a
two-dimensional photonic crystal,” Phys. Rev.
B 71, 085106 (2005).

[Crossref]

F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical
Waveguides in Photonic Crystals with Broken Time-Reversal
Symmetry,” Phys. Rev. Lett. 100, 013904 (2008).

[Crossref]
[PubMed]

X. Huang, Y. Lai, Z. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in
photonic crystals and zero-refractive-index materials,” Nature Mater. 10, 582–586 (2011).

[Crossref]

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic
crystals,” Phys. Rev. B 50, 1988–1991 (1994).

[Crossref]

X. Huang, Y. Lai, Z. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in
photonic crystals and zero-refractive-index materials,” Nature Mater. 10, 582–586 (2011).

[Crossref]

M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling
perturbations in a transmitting waveguide: fundamental connection between
polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002).

[Crossref]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode
theory for efficient taper transitions in photonic
crystals,” Phys. Rev. E 66, 066608 (2002).

[Crossref]

M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling
perturbations in a transmitting waveguide: fundamental connection between
polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002).

[Crossref]

M. Jin, The Finite Element Method in Electromagnetics, 2nd Edition (Wiley, 2002).

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode
theory for efficient taper transitions in photonic
crystals,” Phys. Rev. E 66, 066608 (2002).

[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Edition (Princeton University Press, 2008).

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode
theory for efficient taper transitions in photonic
crystals,” Phys. Rev. E 66, 066608 (2002).

[Crossref]

M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling
perturbations in a transmitting waveguide: fundamental connection between
polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002).

[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point
in hexagonal photonic crystals,” Physica B 405, 2990–2995 (2010).

[Crossref]

X. Huang, Y. Lai, Z. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in
photonic crystals and zero-refractive-index materials,” Nature Mater. 10, 582–586 (2011).

[Crossref]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode
theory for efficient taper transitions in photonic
crystals,” Phys. Rev. E 66, 066608 (2002).

[Crossref]

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals
and Left-Handed Materials (Princeton University Press, 2008).

[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Edition (Princeton University Press, 2008).

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a
two-dimensional photonic crystal,” Phys. Rev.
B 71, 085106 (2005).

[Crossref]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its
extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80, 155103 (2009).

[Crossref]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its
extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80, 155103 (2009).

[Crossref]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a
two-dimensional photonic crystal,” Phys. Rev.
B 71, 085106 (2005).

[Crossref]

F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical
Waveguides in Photonic Crystals with Broken Time-Reversal
Symmetry,” Phys. Rev. Lett. 100, 013904 (2008).

[Crossref]
[PubMed]

C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D
metamaterial/photonic crystals,” Opt.
Express 19, 19027–19041 (2011).

[Crossref]
[PubMed]

M. Davanco, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic
crystal displaying isotropic negative refraction,” Opt. Express 15, 9681–9691 (2007).

[Crossref]
[PubMed]

M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling
perturbations in a transmitting waveguide: fundamental connection between
polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002).

[Crossref]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode
theory for efficient taper transitions in photonic
crystals,” Phys. Rev. E 66, 066608 (2002).

[Crossref]

M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling
perturbations in a transmitting waveguide: fundamental connection between
polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002).

[Crossref]

M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point
in hexagonal photonic crystals,” Physica B 405, 2990–2995 (2010).

[Crossref]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a
two-dimensional photonic crystal,” Phys. Rev.
B 71, 085106 (2005).

[Crossref]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refractive
index,” Phys. Rev. Lett. 90, 107402 (2003).

[Crossref]
[PubMed]

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic
crystals,” Phys. Rev. B 50, 1988–1991 (1994).

[Crossref]

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals
and Left-Handed Materials (Princeton University Press, 2008).

[Crossref]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a
two-dimensional photonic crystal,” Phys. Rev.
B 71, 085106 (2005).

[Crossref]

C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D
metamaterial/photonic crystals,” Opt.
Express 19, 19027–19041 (2011).

[Crossref]
[PubMed]

M. Davanco, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic
crystal displaying isotropic negative refraction,” Opt. Express 15, 9681–9691 (2007).

[Crossref]
[PubMed]

M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling
perturbations in a transmitting waveguide: fundamental connection between
polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002).

[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Edition (Princeton University Press, 2008).

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a
two-dimensional photonic crystal,” Phys. Rev.
B 71, 085106 (2005).

[Crossref]

X. Zhang, “Observing Zitterbewegung for Photons near the
Dirac point of a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 100, 113903 (2008).

[Crossref]
[PubMed]

X. Huang, Y. Lai, Z. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in
photonic crystals and zero-refractive-index materials,” Nature Mater. 10, 582–586 (2011).

[Crossref]

M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling
perturbations in a transmitting waveguide: fundamental connection between
polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002).

[Crossref]

C. Fietz, “Absorbing boundary condition for Bloch-Floquet
eigenmodes,” J. Opt. Soc. Am. B 30, 2615–2620 (2013).

[Crossref]

X. Huang, Y. Lai, Z. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in
photonic crystals and zero-refractive-index materials,” Nature Mater. 10, 582–586 (2011).

[Crossref]

M. Davanco, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic
crystal displaying isotropic negative refraction,” Opt. Express 15, 9681–9691 (2007).

[Crossref]
[PubMed]

C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D
metamaterial/photonic crystals,” Opt.
Express 19, 19027–19041 (2011).

[Crossref]
[PubMed]

K. Sakoda, “Dirac cone in two- and three-dimensional
metamaterials,” Opt. Express 20, 3898–3917 (2012).

[Crossref]
[PubMed]

U. Fano, “Effects of configuration interation on
intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).

[Crossref]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its
extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80, 155103 (2009).

[Crossref]

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: A family of photonic
crystals,” Phys. Rev. B 50, 1988–1991 (1994).

[Crossref]

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, “Negative refraction and superlens behavior in a
two-dimensional photonic crystal,” Phys. Rev.
B 71, 085106 (2005).

[Crossref]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode
theory for efficient taper transitions in photonic
crystals,” Phys. Rev. E 66, 066608 (2002).

[Crossref]

X. Zhang, “Observing Zitterbewegung for Photons near the
Dirac point of a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 100, 113903 (2008).

[Crossref]
[PubMed]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refractive
index,” Phys. Rev. Lett. 90, 107402 (2003).

[Crossref]
[PubMed]

F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical
Waveguides in Photonic Crystals with Broken Time-Reversal
Symmetry,” Phys. Rev. Lett. 100, 013904 (2008).

[Crossref]
[PubMed]

M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point
in hexagonal photonic crystals,” Physica B 405, 2990–2995 (2010).

[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Edition (Princeton University Press, 2008).

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals
and Left-Handed Materials (Princeton University Press, 2008).

[Crossref]

M. Jin, The Finite Element Method in Electromagnetics, 2nd Edition (Wiley, 2002).

K. Sakoda, Optical Properties of Photonic Crystals, 2nd Edition (Springer, 2004).