Abstract

According to recent models, non-local effects in dual-probe-sideband Brillouin Optical Time Domain Analysis (BOTDA) systems should be essentially negligible whenever the probe power is below the Stimulated Brillouin Scattering (SBS) threshold. This paper shows that actually there appear non-local effects in this type of systems before the SBS threshold. To explain these effects it is necessary to take into account a full spectral description of the SBS process. The pump pulse experiences a frequency-dependent spectral deformation that affects the readout process differently in the gain and loss configurations. This paper provides a simple analytical model of this phenomenon, which is validated against compelling experimental data, showing good agreement. The main conclusion of our study is that the measurements in gain configuration are more robust to this non-local effect than the loss configuration. Experimental and theoretical results show that, for a total probe wave power of ~1 mW (500 μW on each sideband), there is an up-shifting of ~1 MHz in the Brillouin Frequency Shift (BFS) retrieved from the Brillouin Loss Spectrum, whereas the BFS extracted from the measured Brillouin Gain Spectrum is up-shifted only ~0.6 MHz. These results are of particular interest for manufacturers of long-range BOTDA systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin optical time-domain analyzer based on orthogonally-polarized four-tone probe wave

Xiaobin Hong, Wenqiao Lin, Zhisheng Yang, Sheng Wang, and Jian Wu
Opt. Express 24(18) 21046-21058 (2016)

Novel scanning method for distortion-free BOTDA measurements

Alejandro Dominguez-Lopez, Zhisheng Yang, Marcelo A. Soto, Xabier Angulo-Vinuesa, Sonia Martin-Lopez, Luc Thevenaz, and Miguel Gonzalez-Herraez
Opt. Express 24(10) 10188-10204 (2016)

Cyclic coding for Brillouin optical time-domain analyzers using probe dithering

Haritz Iribas, Alayn Loayssa, Florian Sauser, Miguel Llera, and Sébastien Le Floch
Opt. Express 25(8) 8787-8800 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [Crossref] [PubMed]
  2. M. Niklès, “Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
    [Crossref]
  3. T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
    [Crossref] [PubMed]
  4. T. Horiguchi and M. Tateda, “BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [Crossref]
  5. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  6. G. P. Agrawal, “Stimulated Brillouin Scattering,” in Nonlinear Fiber Optics, 3rd ed. (Academic, 2001) pp. 355–384.
  7. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]
  8. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
    [Crossref]
  9. J. Urricelqui, M. Sagues, and A. Loayssa, “Phasorial differential pulse-width pair technique for long-range Brillouin optical time-domain analysis sensors,” Opt. Express 22(14), 17403–17408 (2014).
    [Crossref] [PubMed]
  10. A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
    [Crossref] [PubMed]
  11. A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(4), 338–341 (2014).
    [Crossref]
  12. A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Strong cancellation of RIN transfer in a Raman-assisted BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(18), 1817–1820 (2014).
    [Crossref]
  13. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref] [PubMed]

2014 (3)

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(4), 338–341 (2014).
[Crossref]

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Strong cancellation of RIN transfer in a Raman-assisted BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(18), 1817–1820 (2014).
[Crossref]

J. Urricelqui, M. Sagues, and A. Loayssa, “Phasorial differential pulse-width pair technique for long-range Brillouin optical time-domain analysis sensors,” Opt. Express 22(14), 17403–17408 (2014).
[Crossref] [PubMed]

2013 (1)

2009 (2)

M. Niklès, “Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

2004 (1)

1997 (1)

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1996 (1)

1989 (2)

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
[Crossref] [PubMed]

T. Horiguchi and M. Tateda, “BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

1986 (1)

Benito, D.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Domínguez-López, A.

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(4), 338–341 (2014).
[Crossref]

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Strong cancellation of RIN transfer in a Raman-assisted BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(18), 1817–1820 (2014).
[Crossref]

Galech, S.

González-Herráez, M.

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(4), 338–341 (2014).
[Crossref]

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Strong cancellation of RIN transfer in a Raman-assisted BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(18), 1817–1820 (2014).
[Crossref]

Gordon, J. P.

Hernández, R.

Horiguchi, T.

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
[Crossref] [PubMed]

T. Horiguchi and M. Tateda, “BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

Lin, J.

Loayssa, A.

López-Gil, A.

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Strong cancellation of RIN transfer in a Raman-assisted BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(18), 1817–1820 (2014).
[Crossref]

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(4), 338–341 (2014).
[Crossref]

Mafang, S. F.

Martín-López, S.

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Strong cancellation of RIN transfer in a Raman-assisted BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(18), 1817–1820 (2014).
[Crossref]

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(4), 338–341 (2014).
[Crossref]

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

Niklès, M.

M. Niklès, “Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
[Crossref]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
[Crossref] [PubMed]

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
[Crossref] [PubMed]

Sagues, M.

Tateda, M.

T. Horiguchi and M. Tateda, “BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
[Crossref] [PubMed]

Thévenaz, L.

Urricelqui, J.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Signal-to-noise ratio improvement in BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(4), 338–341 (2014).
[Crossref]

A. Domínguez-López, A. López-Gil, S. Martín-López, and M. González-Herráez, “Strong cancellation of RIN transfer in a Raman-assisted BOTDA using balanced detection,” IEEE Photon. Technol. Lett. 26(18), 1817–1820 (2014).
[Crossref]

IEEE Sens. J. (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

J. Lightwave Technol. (2)

T. Horiguchi and M. Tateda, “BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (1)

M. Niklès, “Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
[Crossref]

Other (1)

G. P. Agrawal, “Stimulated Brillouin Scattering,” in Nonlinear Fiber Optics, 3rd ed. (Academic, 2001) pp. 355–384.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Illustration of the SBS-induced distortion in the pump pulse when using DSB-SC modulation on the probe wave. The pump pulse suffers a spectral deformation with several consequences, including a spectral deformation and a shifting of the central frequency.
Fig. 2
Fig. 2 a) Illustration of the SBS interaction between a non-uniform pulse spectrum and the Brillouin Gain and Loss curves while sweeping the probe wave modulation frequency; b) Resulting spectra after a complete sweep of the probe wave modulation frequency, varying such frequency over a certain amount ( ± δ) around the BFS of the FUT. The gain process shows an apparent narrowing while the attenuation process appears to be broader.
Fig. 3
Fig. 3 Pump pulse theoretical spectra after going through the fiber and interacting with a probe wave whose modulation frequency is sweeping around the BFS of the FUT. a) Sweeping frequency below the BFS; b) Sweeping frequency above the BFS.
Fig. 4
Fig. 4 Simulated BGS and BLS retrieved for a distorted pulse spectrum (DPS) overlapped with the simulated BGS for a non-distorted pulse spectrum (NDPS) at the end of the FUT for a pump pulse peak power of ~57 mW and a probe wave power of ~275 μW (on each sideband). Simulations obtained for a Gaussian pump pulse of 10 MHz of width.
Fig. 5
Fig. 5 BOTDA experimental setup. LD: Laser Diode; I. Mod.: Intensity Modulator; EDFA: Erbium Doped Fiber Amplifier; RF: Radio-frequency generator; VOA: Variable Optical Attenuator; PS: Polarization Scrambler; FUT: Fiber Under Test; WDM: Wavelength Division Multiplexer; ESA: Electrical Spectrum Analyzer.
Fig. 6
Fig. 6 Electrical spectra (75 kHz of resolution bandwidth) of the detected pump pulse recorded after going through the FUT and experiencing SBS for a fixed probe wave power of ~500 μW (on each sideband), sweeping the probe modulation frequency around the BFS of the FUT; a) Sweeping frequency below the BFS; b) Sweeping frequency above the BFS. The vertical lines located at 0 MHz in the spectra correspond to the DC leakage of the pump pulse.
Fig. 7
Fig. 7 Electrical spectra (75 kHz of resolution bandwidth) of the detected pump pulse recorded after going through the FUT and experiencing. a) Probe power variation for a fixed probe wave modulation frequency of 10.873 GHz (νB + 5 MHz). b) Probe power variation for a fixed probe wave modulation frequency of 10.873 GHz (νB + 10 MHz). Again, the vertical lines located at 0 MHz in the spectra correspond to the DC leakage of the pump pulse.
Fig. 8
Fig. 8 BOTDA outcomes for a probe wave power of ~500 μW (on each sideband). a) Experimental and theoretical representation of the BGS and BLS at 49.768 km for a frequency sweep between 10.78 GHz and 10.98 GHz. b) Experimental and theoretical evolution of the FWHM for the Brillouin Gain and Brillouin Loss spectra.
Fig. 9
Fig. 9 BOTDA analysis for a probe wave power of ~275 μW (on each sideband). a) Experimental and theoretical representation of the BGS and BLS at 49.768 km for a frequency sweep between 10.78 GHz and 10.98 GHz. b) Experimental and theoretical evolution of the FWHM for the Brillouin Gain and Brillouin Loss spectra.
Fig. 10
Fig. 10 Brillouin frequency shift profiles obtained for different probe wave powers on a ~50 km SMF. a) BFS profiles obtained from the measured Brillouin Gain band for two values of probe power; b) BFS profiles obtained from the measured Brillouin Loss band for two values of probe power; c) BFS profiles of the Brilluoin Gain and Loss bands for a fixed probe wave power of ~500 μW (on each sideband).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ν B + ν B = 2n V A λ us 2n V A λ ls
d P P ( ν,z )=α P P ( ν )dz+[ g B ( ν, ν mod ν B + ) g B ( ν, ν B ν mod ) ] P s ( z ) P P ( ν,z )dz
g B ( ν, ν B )= g B 1+ ( ν ν B ) 2 ( Δ ν B 2 ) 2
P P ( ν,z ) | ν mod = = P P ( ν,0 )exp( αz )exp[ ( g B ( ν, ν mod ν B + ) g B ( ν, ν B ν mod ) ) P s ( L )exp(αL) exp(αz)1 α ]
g( ν,z ) | ν mod = g B ( ν, ν B ) P P ( ν,z ) | ν mod

Metrics