Abstract

We consider the cloaking properties of electromagnetic wired media deduced from arbitrary coordinate transformations. We propose an interpretation of invisibility via sub-wavelength imaging features. The quality of cloaking is assessed by the level of deformation of the image of a P-shaped source through the stretched wired media: the lesser the image deformation, the more effective the cloaking. We numerically and experimentally demonstrate a tetrahedral wired cloak with longer edge length about 7cm at a frequency of 1GHz (the cloak is thus subwavelength). The wired cloak has two functionalities: it can serve as a high-resolution imaging system over long distances, and it can also perform space transformations such as, but not limited to, cloaking at a single operation frequency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Finite frequency external cloaking with complementary bianisotropic media

Yan Liu, Boris Gralak, Ross. C. McPhedran, and Sebastien Guenneau
Opt. Express 22(14) 17387-17402 (2014)

An external cloak with arbitrary cross section based on complementary medium and coordinate transformation

Chengfu Yang, Jingjing Yang, Ming Huang, Zhe Xiao, and Jinhui Peng
Opt. Express 19(2) 1147-1157 (2011)

Calculation of material properties and ray tracing in transformation media

D. Schurig, J. B. Pendry, and D. R. Smith
Opt. Express 14(21) 9794-9804 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 2), 016623 (2005).
    [Crossref] [PubMed]
  2. G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A 462(2074), 3027–3059 (2006).
    [Crossref]
  3. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  6. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  7. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [Crossref] [PubMed]
  8. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  9. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [Crossref] [PubMed]
  10. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [Crossref]
  11. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 1–6 (2010).
    [Crossref] [PubMed]
  12. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  13. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
    [Crossref] [PubMed]
  14. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [Crossref] [PubMed]
  15. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
    [Crossref] [PubMed]
  16. S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
    [Crossref] [PubMed]
  17. H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci Rep 2, 255 (2012).
    [Crossref] [PubMed]
  18. D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
    [Crossref] [PubMed]
  19. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
    [Crossref] [PubMed]
  20. S. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
    [Crossref]
  21. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [Crossref] [PubMed]
  22. J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13(8), 083007 (2011).
    [Crossref]
  23. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
    [Crossref] [PubMed]
  24. H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
    [Crossref] [PubMed]
  25. P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
    [Crossref]
  26. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref] [PubMed]
  27. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  28. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
    [Crossref]
  29. C. G. Poulton, S. Guenneau, and A. B. Movchan, “Non commuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fibres,” Phys. Rev. B 69(19), 195112 (2004).
    [Crossref]
  30. A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
    [Crossref] [PubMed]
  31. A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. Martijn de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
    [Crossref] [PubMed]
  32. G. Dupont, S. Guenneau, S. Enoch, G. Demesy, A. Nicolet, F. Zolla, and A. Diatta, “Revolution analysis of three-dimensional arbitrary cloaks,” Opt. Express 17(25), 22603–22608 (2009).
    [Crossref] [PubMed]
  33. A. Ourir, R. Abdeddaim, and J. de Rosny, “Planar metamaterial based on hybridization for directive emission,” Opt. Express 20(16), 17545–17551 (2012).
    [Crossref] [PubMed]
  34. S. W. Schneider, J. Kemp, E. Georget, R. Abdeddaim, and P. Sabouroux, “A new method to design a multi-band flexible textile antenna,” in Proceedings of the35th Annual Symposium of the Antenna Measurement Techniques Association (2014), pp. 240–248.
    [Crossref]

2014 (1)

2013 (3)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

2012 (4)

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci Rep 2, 255 (2012).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

A. Ourir, R. Abdeddaim, and J. de Rosny, “Planar metamaterial based on hybridization for directive emission,” Opt. Express 20(16), 17545–17551 (2012).
[Crossref] [PubMed]

2011 (3)

J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13(8), 083007 (2011).
[Crossref]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

2010 (2)

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 1–6 (2010).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

2009 (7)

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

S. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

G. Dupont, S. Guenneau, S. Enoch, G. Demesy, A. Nicolet, F. Zolla, and A. Diatta, “Revolution analysis of three-dimensional arbitrary cloaks,” Opt. Express 17(25), 22603–22608 (2009).
[Crossref] [PubMed]

2008 (1)

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2006 (6)

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A 462(2074), 3027–3059 (2006).
[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

2005 (2)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 2), 016623 (2005).
[Crossref] [PubMed]

2004 (1)

C. G. Poulton, S. Guenneau, and A. B. Movchan, “Non commuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fibres,” Phys. Rev. B 69(19), 195112 (2004).
[Crossref]

2003 (1)

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[Crossref]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Abdeddaim, R.

A. Ourir, R. Abdeddaim, and J. de Rosny, “Planar metamaterial based on hybridization for directive emission,” Opt. Express 20(16), 17545–17551 (2012).
[Crossref] [PubMed]

S. W. Schneider, J. Kemp, E. Georget, R. Abdeddaim, and P. Sabouroux, “A new method to design a multi-band flexible textile antenna,” in Proceedings of the35th Annual Symposium of the Antenna Measurement Techniques Association (2014), pp. 240–248.
[Crossref]

Alù, A.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 2), 016623 (2005).
[Crossref] [PubMed]

Argyros, A.

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. Martijn de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
[Crossref] [PubMed]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Baek, S.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Barbastathis, G.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Belov, P. A.

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Chen, H.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci Rep 2, 255 (2012).
[Crossref] [PubMed]

S. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Cheng, X.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Choi, M.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Cui, T. J.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 1–6 (2010).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

de Rosny, J.

Demesy, G.

Diatta, A.

Dupont, G.

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 2), 016623 (2005).
[Crossref] [PubMed]

Enoch, S.

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Fischer, B. M.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Fleming, S. C.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Georget, E.

S. W. Schneider, J. Kemp, E. Georget, R. Abdeddaim, and P. Sabouroux, “A new method to design a multi-band flexible textile antenna,” in Proceedings of the35th Annual Symposium of the Antenna Measurement Techniques Association (2014), pp. 240–248.
[Crossref]

Guenneau, S.

G. Dupont, S. Guenneau, S. Enoch, G. Demesy, A. Nicolet, F. Zolla, and A. Diatta, “Revolution analysis of three-dimensional arbitrary cloaks,” Opt. Express 17(25), 22603–22608 (2009).
[Crossref] [PubMed]

C. G. Poulton, S. Guenneau, and A. B. Movchan, “Non commuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fibres,” Phys. Rev. B 69(19), 195112 (2004).
[Crossref]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Hao, Y.

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

Huang, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Ireland, D.

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Jung, Y.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kaltenecker, K. J.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Kang, G.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Kemp, J.

S. W. Schneider, J. Kemp, E. Georget, R. Abdeddaim, and P. Sabouroux, “A new method to design a multi-band flexible textile antenna,” in Proceedings of the35th Annual Symposium of the Antenna Measurement Techniques Association (2014), pp. 240–248.
[Crossref]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kim, K.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Kong, J. A.

S. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Kuhlmey, B. T.

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. Martijn de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
[Crossref] [PubMed]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

Leonhardt, U.

J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13(8), 083007 (2011).
[Crossref]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Liu, X.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Luo, Y.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 1–6 (2010).
[Crossref] [PubMed]

Martijn de Sterke, C.

Milton, G. W.

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A 462(2074), 3027–3059 (2006).
[Crossref]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Moser, H. O.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Movchan, A. B.

C. G. Poulton, S. Guenneau, and A. B. Movchan, “Non commuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fibres,” Phys. Rev. B 69(19), 195112 (2004).
[Crossref]

Nicolet, A.

Nicorovici, N. A. P.

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A 462(2074), 3027–3059 (2006).
[Crossref]

Ourir, A.

Park, H.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[Crossref]

Perczel, J.

J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13(8), 083007 (2011).
[Crossref]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Poladian, L.

Poulton, C. G.

C. G. Poulton, S. Guenneau, and A. B. Movchan, “Non commuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fibres,” Phys. Rev. B 69(19), 195112 (2004).
[Crossref]

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[Crossref]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

S. W. Schneider, J. Kemp, E. Georget, R. Abdeddaim, and P. Sabouroux, “A new method to design a multi-band flexible textile antenna,” in Proceedings of the35th Annual Symposium of the Antenna Measurement Techniques Association (2014), pp. 240–248.
[Crossref]

Schneider, S. W.

S. W. Schneider, J. Kemp, E. Georget, R. Abdeddaim, and P. Sabouroux, “A new method to design a multi-band flexible textile antenna,” in Proceedings of the35th Annual Symposium of the Antenna Measurement Techniques Association (2014), pp. 240–248.
[Crossref]

Schurig, D.

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shen, L.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Shen, Z.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Shin, D.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Smith, D. R.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14(21), 9794–9804 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Sudhakaran, S.

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Tuniz, A.

A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. Martijn de Sterke, and B. T. Kuhlmey, “Imaging performance of finite uniaxial metamaterials with large anisotropy,” Opt. Lett. 39(11), 3286–3289 (2014).
[Crossref] [PubMed]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Tyc, T.

J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13(8), 083007 (2011).
[Crossref]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

Urzhumov, Y.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Walther, M.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Wang, H.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Wu, B.-I.

S. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Xi, S.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

S. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

Xu, S.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Xu, Y.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Yu, F.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhang, B.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Zhang, J.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Zhang, R.

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Zhang, X.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zheludev, N. I.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

Zheng, B.

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci Rep 2, 255 (2012).
[Crossref] [PubMed]

Zolla, F.

IEEE Microw. Wirel. Compon. Lett. (1)

S. Xi, H. Chen, B.-I. Wu, and J. A. Kong, “One-directional perfect cloak created with homogeneous material,” IEEE Microw. Wirel. Compon. Lett. 19(3), 131–133 (2009).
[Crossref]

J. Phys. Condens. Matter (1)

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[Crossref]

Nat. Commun. (5)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

H. Chen, B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, “Ray-optics cloaking devices for large objects in incoherent natural light,” Nat. Commun. 4, 2652 (2013).
[Crossref] [PubMed]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 1–6 (2010).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

New J. Phys. (1)

J. Perczel, T. Tyc, and U. Leonhardt, “Invisibility cloaking without superluminal propagation,” New J. Phys. 13(8), 083007 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

C. G. Poulton, S. Guenneau, and A. B. Movchan, “Non commuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fibres,” Phys. Rev. B 69(19), 195112 (2004).
[Crossref]

P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Phys. Rev. B 73(3), 033108 (2006).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 2), 016623 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

S. Xu, X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, “Experimental demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett. 109(22), 223903 (2012).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A (1)

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. Lond. A 462(2074), 3027–3059 (2006).
[Crossref]

Sci Rep (1)

H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci Rep 2, 255 (2012).
[Crossref] [PubMed]

Science (6)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

Other (1)

S. W. Schneider, J. Kemp, E. Georget, R. Abdeddaim, and P. Sabouroux, “A new method to design a multi-band flexible textile antenna,” in Proceedings of the35th Annual Symposium of the Antenna Measurement Techniques Association (2014), pp. 240–248.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Photo of the fabricated wired medium with a tetrahedral cloak. It consists of 440 brass wires of radius 0.5mm that connect two interfaces (made of Plexiglas) structured with square arrays of pitch 1cm which are located 15cm apart.
Fig. 2
Fig. 2 Schematics and numerics of metallic wired media for cloaking of a P shape electric line current source at 1GHz: Straight wired medium originally proposed in [25] (a) and curved wire medium with a tetrahedral cloak whose inner and outer boundaries are defined by two pyramids of respective heights 8.1cm and 12cm along z and edge lengths 1.4cm and 5.4cm along x and y (b); Color maps of the modulus of the total electric field in the source plane (c) and the image plane for a straight wired medium (d), a curved wired medium with a tetrahedral cloak (e) and a curved wired medium with a tetrahedral cloak surrounding a cuboid (4x4x4.4cm3) metallic obstacle (f). The strong similarities between fields in (d-f) are noted. Color scale is in decibels.
Fig. 3
Fig. 3 Numerical and experimental results for cloaking versus protection of a P shape electric line current source at frequency 1GHz through a straight wired medium (a), a curved wired medium with a tetrahedral cloak (b) and a curved wired medium with a tetrahedral cloak surrounding a cuboid metallic obstacle (c) as in Fig. 2; (d) shows the experimental counterpart of (b); Color maps show the modulus of the total electric field in the xy-plane passing through the center of the wired medium. Color scales are in decibels and have the same bounds as in Fig. 4 for comparison with numerical (a)-(c) and experimental (d) maps. The reduction of total electric field inside the tetrahedron cloak in (c-d) is noted. Color scale is in decibels (dB).
Fig. 4
Fig. 4 Experimental ((a) and (b)) versus numerical ((c) and (d)) results for lensing of a P shape electric line current source through the curved wired medium (back end) without (a) and (c) and with (b) and (d) the metallic cuboid obstacle within the cloak. The marked area in (c) and (d) corresponds to the map in (a) and (b). The strong similarities between all four panels are noted. Color scale is in decibels (dB).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( k 0 2 ε xx k z 2 k y 2 k 0 2 ε xy + k x k y k 0 2 ε xz + k x k z k 0 2 ε yx + k x k y k 0 2 ε yy k z 2 k y 2 k 0 2 ε yz + k y k z k 0 2 ε zx + k x k z k 0 2 ε zy + k y k z k 0 2 ε zz k z 2 k y 2 )( E x E y E z )=( 0 0 0 )

Metrics