Abstract

Phytoplankton size structure plays an important role in ocean biogeochemical processes. The light absorption spectra of phytoplankton provide a great potential for retrieving phytoplankton size structure because of the strong dependence on the packaging effect caused by phytoplankton cell size and on different pigment compositions related to phytoplankton taxonomy. In this study, we investigated the variability in light absorption spectra of phytoplankton in relation to the size structure. Based on this, a new approach was proposed for estimating phytoplankton size fractions. Our approach use the spectral shape of the normalized phytoplankton absorption coefficient (aph(λ)) through principal component analysis (PCA). Values of aph(λ) were normalized to remove biomass effects, and PCA was conducted to separate the spectral variance of normalized aph(λ) into uncorrelated principal components (PCs). Spectral variations captured by the first four PC modes were used to build relationships with phytoplankton size fractions. The results showed that PCA had powerful ability to capture spectral variations in normalized aph(λ), which were significantly related to phytoplankton size fractions. For both hyperspectral aph(λ) and multiband aph(λ), our approach is applicable. We evaluated our approach using wide in situ data collected from coastal waters and the global ocean, and the results demonstrated a good and robust performance in estimating phytoplankton size fractions in various regions. The model performance was further evaluated by aph(λ) derived from in situ remote sensing reflectance (Rrs(λ)) with a quasi-analytical algorithm. Using Rrs(λ) only at six bands, accurate estimations of phytoplankton size fractions were obtained, with R2 values of 0.85, 0.61, and 0.76, and root mean-square errors of 0.130, 0.126, and 0.112 for micro-, nano-, and picophytoplankton, respectively. Our approach provides practical basis for remote estimation of phytoplankton size structure using aph(λ) derived from satellite observations or rapid field instrument measurements in the future.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inversion of spectral absorption coefficients to infer phytoplankton size classes, chlorophyll concentration, and detrital matter

Xiaodong Zhang, Yannick Huot, Annick Bricaud, and Heidi M. Sosik
Appl. Opt. 54(18) 5805-5816 (2015)

Statistical approach for the retrieval of phytoplankton community structures from in situ fluorescence measurements

Shengqiang Wang, Cong Xiao, Joji Ishizaka, Zhongfeng Qiu, Deyong Sun, Qian Xu, Yuanli Zhu, Yu Huan, and Yuji Watanabe
Opt. Express 24(21) 23635-23653 (2016)

Model of phytoplankton absorption based on three size classes

Robert J. W. Brewin, Emmanuel Devred, Shubha Sathyendranath, Samantha J. Lavender, and Nick J. Hardman-Mountford
Appl. Opt. 50(22) 4535-4549 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Bouman, T. Platt, S. Sathyendranath, and V. Stuart, “Dependence of light-saturated photosynthesis on temperature and community structure,” Deep Sea Res. Part I Oceanogr. Res. Pap. 52(7), 1284–1299 (2005).
    [Crossref]
  2. T. Kameda and J. Ishizaka, “Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing,” J. Oceanogr. 61(4), 663–672 (2005).
    [Crossref]
  3. P. Boyd and P. Newton, “Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?” Deep Sea Res. Part I Oceanogr. Res. Pap. 46(1), 63–91 (1999).
    [Crossref]
  4. L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
    [Crossref]
  5. K. M. Hilligsøe, K. Richardson, J. Bendtsen, L.-L. Sørensen, T. G. Nielsen, and M. M. Lyngsgaard, “Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux,” Deep Sea Res. Part I Oceanogr. Res. Pap. 58(8), 826–838 (2011).
    [Crossref]
  6. J. Sieburth, V. Smetacek, and J. Lenz, “Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions,” Limnol. Oceanogr. 23(6), 1256–1263 (1978).
    [Crossref]
  7. F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. 106(C9), 19939–19956 (2001).
    [Crossref]
  8. J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll,” J. Geophys. Res. 111(C8), C08005 (2006).
    [Crossref]
  9. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
    [Crossref]
  10. A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4, 237–253 (2006).
    [Crossref]
  11. E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111(C3), C03011 (2006).
    [Crossref]
  12. R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. J. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Modell. 221(11), 1472–1483 (2010).
    [Crossref]
  13. R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
    [Crossref]
  14. A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
    [Crossref]
  15. T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
    [Crossref]
  16. E. Organelli, A. Bricaud, D. Antoine, and J. Uitz, “Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site),” Appl. Opt. 52(11), 2257–2273 (2013).
    [Crossref] [PubMed]
  17. S. Roy, S. Sathyendranath, and T. Platt, “Retrieval of phytoplankton size from bio-optical measurements: theory and applications,” J. R. Soc. Interface 8(58), 650–660 (2011).
    [Crossref] [PubMed]
  18. S. Roy, S. Sathyendranath, H. Bouman, and T. Platt, “The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data,” Remote Sens. Environ. 139, 185–197 (2013).
    [Crossref]
  19. E. Devred, S. Sathyendranath, V. Stuart, and T. Platt, “A three component classification of phytoplankton absorption spectra: Application to ocean-color data,” Remote Sens. Environ. 115(9), 2255–2266 (2011).
    [Crossref]
  20. S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
    [Crossref]
  21. A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
    [Crossref]
  22. G. Zheng and D. Stramski, “A model based on stacked‐constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non‐phytoplankton components,” J. Geophys. Res. Oceans 118(4), 2155–2174 (2013).
  23. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
    [Crossref] [PubMed]
  24. Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (QAA_v5),” http://www. ioccg.org/groups/Software OCA/QAA v5.pdf (2009).
  25. J. R. Moisan, T. A. H. Moisan, and M. A. Linkswiler, “An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra,” J. Geophys. Res. 116(C9), C09018 (2011).
    [Crossref]
  26. T. A. H. Moisan, J. R. Moisan, M. A. Linkswiler, and R. A. Steinhardt, “Algorithm development for predicting biodiversity based on phytoplankton absorption,” Cont. Shelf Res. 55, 17–28 (2013).
    [Crossref]
  27. T. Harimoto, J. Ishizaka, and R. Tsuda, “Latitudinal and vertical distributions of phytoplankton absorption spectra in the central North Pacific during spring 1994,” J. Oceanogr. 55(6), 667–679 (1999).
    [Crossref]
  28. B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
    [Crossref]
  29. S. E. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
    [Crossref]
  30. A. Bracher, M. Taylor, B. Taylor, T. Dinter, R. Roettgers, and F. Steinmetz, “Using empirical orthogonal functions derived from remote sensing reflectance for the prediction of phytoplankton pigments concentrations,” Ocean Sci. 11(1), 139–158 (2015).
    [Crossref]
  31. B. G. Mitchell, “Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique,” Proc. SPIE 1302, 137–148 (1990).
    [Crossref]
  32. M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37(2), 634–642 (1985).
  33. J. Cleveland and A. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
    [Crossref]
  34. B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation, Revision 3, 231–257 (2002).
  35. L. Van Heukelem and C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910(1), 31–49 (2001).
    [Crossref] [PubMed]
  36. T. Hirata, J. Aiken, N. Hardman-Mountford, T. J. Smyth, and R. G. Barlow, “An absorption model to determine phytoplankton size classes from satellite ocean colour,” Remote Sens. Environ. 112(6), 3153–3159 (2008).
    [Crossref]
  37. T. Hirawake, S. Takao, N. Horimoto, T. Ishimaru, Y. Yamaguchi, and M. Fukuchi, “A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean,” Polar Biol. 34(2), 291–302 (2011).
    [Crossref]
  38. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
    [Crossref]
  39. J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(15), 899–917 (2009).
    [Crossref]
  40. D. W. Hosmer, Jr. and S. Lemeshow, Applied Logistic Regression (John Wiley & Sons, 2004).
  41. A. Ferreira, D. Stramski, C. A. E. Garcia, V. M. T. Garcia, Á. M. Ciotti, and C. R. B. Mendes, “Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition,” J. Geophys. Res.- Oceans 118(2), 698–714 (2013).
  42. R. Barlow, J. Aiken, P. Holligan, D. Cummings, S. Maritorena, and S. Hooker, “Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 637–660 (2002).
    [Crossref]
  43. C.-F. J. Wu, “Jackknife, bootstrap and other resampling methods in regression analysis,” Ann. Stat. 14(4), 1261–1295 (1986).
    [Crossref]
  44. T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt. 45(31), 8116–8131 (2006).
    [Crossref] [PubMed]
  45. P. Costa Goela, J. Icely, S. Cristina, A. Newton, G. Moore, and C. Cordeiro, “Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing,” Cont. Shelf Res. 52, 119–132 (2013).
    [Crossref]
  46. R. J. Brewin, S. Sathyendranath, P. K. Lange, and G. Tilstone, “Comparison of two methods to derive the size-structure of natural populations of phytoplankton,” Deep Sea Res. Part I Oceanogr. Res. Pap. 85, 72–79 (2014).
    [Crossref]
  47. P. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
    [Crossref]
  48. Z. Li, L. Li, K. Song, and N. Cassar, “Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data,” J. Geophys. Res. 118(3), 1445–1458 (2013).

2015 (1)

A. Bracher, M. Taylor, B. Taylor, T. Dinter, R. Roettgers, and F. Steinmetz, “Using empirical orthogonal functions derived from remote sensing reflectance for the prediction of phytoplankton pigments concentrations,” Ocean Sci. 11(1), 139–158 (2015).
[Crossref]

2014 (2)

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

R. J. Brewin, S. Sathyendranath, P. K. Lange, and G. Tilstone, “Comparison of two methods to derive the size-structure of natural populations of phytoplankton,” Deep Sea Res. Part I Oceanogr. Res. Pap. 85, 72–79 (2014).
[Crossref]

2013 (7)

Z. Li, L. Li, K. Song, and N. Cassar, “Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data,” J. Geophys. Res. 118(3), 1445–1458 (2013).

G. Zheng and D. Stramski, “A model based on stacked‐constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non‐phytoplankton components,” J. Geophys. Res. Oceans 118(4), 2155–2174 (2013).

P. Costa Goela, J. Icely, S. Cristina, A. Newton, G. Moore, and C. Cordeiro, “Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing,” Cont. Shelf Res. 52, 119–132 (2013).
[Crossref]

E. Organelli, A. Bricaud, D. Antoine, and J. Uitz, “Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site),” Appl. Opt. 52(11), 2257–2273 (2013).
[Crossref] [PubMed]

A. Ferreira, D. Stramski, C. A. E. Garcia, V. M. T. Garcia, Á. M. Ciotti, and C. R. B. Mendes, “Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition,” J. Geophys. Res.- Oceans 118(2), 698–714 (2013).

S. Roy, S. Sathyendranath, H. Bouman, and T. Platt, “The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data,” Remote Sens. Environ. 139, 185–197 (2013).
[Crossref]

T. A. H. Moisan, J. R. Moisan, M. A. Linkswiler, and R. A. Steinhardt, “Algorithm development for predicting biodiversity based on phytoplankton absorption,” Cont. Shelf Res. 55, 17–28 (2013).
[Crossref]

2012 (1)

S. E. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

2011 (8)

E. Devred, S. Sathyendranath, V. Stuart, and T. Platt, “A three component classification of phytoplankton absorption spectra: Application to ocean-color data,” Remote Sens. Environ. 115(9), 2255–2266 (2011).
[Crossref]

T. Hirawake, S. Takao, N. Horimoto, T. Ishimaru, Y. Yamaguchi, and M. Fukuchi, “A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean,” Polar Biol. 34(2), 291–302 (2011).
[Crossref]

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[Crossref]

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

J. R. Moisan, T. A. H. Moisan, and M. A. Linkswiler, “An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra,” J. Geophys. Res. 116(C9), C09018 (2011).
[Crossref]

K. M. Hilligsøe, K. Richardson, J. Bendtsen, L.-L. Sørensen, T. G. Nielsen, and M. M. Lyngsgaard, “Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux,” Deep Sea Res. Part I Oceanogr. Res. Pap. 58(8), 826–838 (2011).
[Crossref]

S. Roy, S. Sathyendranath, and T. Platt, “Retrieval of phytoplankton size from bio-optical measurements: theory and applications,” J. R. Soc. Interface 8(58), 650–660 (2011).
[Crossref] [PubMed]

2010 (1)

R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. J. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Modell. 221(11), 1472–1483 (2010).
[Crossref]

2009 (2)

J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(15), 899–917 (2009).
[Crossref]

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[Crossref]

2008 (1)

T. Hirata, J. Aiken, N. Hardman-Mountford, T. J. Smyth, and R. G. Barlow, “An absorption model to determine phytoplankton size classes from satellite ocean colour,” Remote Sens. Environ. 112(6), 3153–3159 (2008).
[Crossref]

2007 (1)

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

2006 (4)

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll,” J. Geophys. Res. 111(C8), C08005 (2006).
[Crossref]

A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4, 237–253 (2006).
[Crossref]

E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111(C3), C03011 (2006).
[Crossref]

T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt. 45(31), 8116–8131 (2006).
[Crossref] [PubMed]

2005 (3)

H. Bouman, T. Platt, S. Sathyendranath, and V. Stuart, “Dependence of light-saturated photosynthesis on temperature and community structure,” Deep Sea Res. Part I Oceanogr. Res. Pap. 52(7), 1284–1299 (2005).
[Crossref]

T. Kameda and J. Ishizaka, “Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing,” J. Oceanogr. 61(4), 663–672 (2005).
[Crossref]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

2004 (2)

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

P. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
[Crossref]

2002 (4)

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

R. Barlow, J. Aiken, P. Holligan, D. Cummings, S. Maritorena, and S. Hooker, “Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 637–660 (2002).
[Crossref]

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation, Revision 3, 231–257 (2002).

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
[Crossref]

2001 (2)

F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. 106(C9), 19939–19956 (2001).
[Crossref]

L. Van Heukelem and C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910(1), 31–49 (2001).
[Crossref] [PubMed]

1999 (2)

P. Boyd and P. Newton, “Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?” Deep Sea Res. Part I Oceanogr. Res. Pap. 46(1), 63–91 (1999).
[Crossref]

T. Harimoto, J. Ishizaka, and R. Tsuda, “Latitudinal and vertical distributions of phytoplankton absorption spectra in the central North Pacific during spring 1994,” J. Oceanogr. 55(6), 667–679 (1999).
[Crossref]

1993 (1)

J. Cleveland and A. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[Crossref]

1990 (1)

B. G. Mitchell, “Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique,” Proc. SPIE 1302, 137–148 (1990).
[Crossref]

1986 (1)

C.-F. J. Wu, “Jackknife, bootstrap and other resampling methods in regression analysis,” Ann. Stat. 14(4), 1261–1295 (1986).
[Crossref]

1985 (1)

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37(2), 634–642 (1985).

1978 (1)

J. Sieburth, V. Smetacek, and J. Lenz, “Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions,” Limnol. Oceanogr. 23(6), 1256–1263 (1978).
[Crossref]

Aiken, J.

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(15), 899–917 (2009).
[Crossref]

T. Hirata, J. Aiken, N. Hardman-Mountford, T. J. Smyth, and R. G. Barlow, “An absorption model to determine phytoplankton size classes from satellite ocean colour,” Remote Sens. Environ. 112(6), 3153–3159 (2008).
[Crossref]

T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt. 45(31), 8116–8131 (2006).
[Crossref] [PubMed]

R. Barlow, J. Aiken, P. Holligan, D. Cummings, S. Maritorena, and S. Hooker, “Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 637–660 (2002).
[Crossref]

Antoine, D.

Arnone, R. A.

Bailey, S. W.

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

Barciela, R. M.

R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. J. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Modell. 221(11), 1472–1483 (2010).
[Crossref]

Barlow, R.

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(15), 899–917 (2009).
[Crossref]

R. Barlow, J. Aiken, P. Holligan, D. Cummings, S. Maritorena, and S. Hooker, “Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 637–660 (2002).
[Crossref]

Barlow, R. G.

T. Hirata, J. Aiken, N. Hardman-Mountford, T. J. Smyth, and R. G. Barlow, “An absorption model to determine phytoplankton size classes from satellite ocean colour,” Remote Sens. Environ. 112(6), 3153–3159 (2008).
[Crossref]

Bendtsen, J.

K. M. Hilligsøe, K. Richardson, J. Bendtsen, L.-L. Sørensen, T. G. Nielsen, and M. M. Lyngsgaard, “Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux,” Deep Sea Res. Part I Oceanogr. Res. Pap. 58(8), 826–838 (2011).
[Crossref]

Bouman, H.

S. Roy, S. Sathyendranath, H. Bouman, and T. Platt, “The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data,” Remote Sens. Environ. 139, 185–197 (2013).
[Crossref]

H. Bouman, T. Platt, S. Sathyendranath, and V. Stuart, “Dependence of light-saturated photosynthesis on temperature and community structure,” Deep Sea Res. Part I Oceanogr. Res. Pap. 52(7), 1284–1299 (2005).
[Crossref]

Boyd, P.

P. Boyd and P. Newton, “Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?” Deep Sea Res. Part I Oceanogr. Res. Pap. 46(1), 63–91 (1999).
[Crossref]

Bracher, A.

A. Bracher, M. Taylor, B. Taylor, T. Dinter, R. Roettgers, and F. Steinmetz, “Using empirical orthogonal functions derived from remote sensing reflectance for the prediction of phytoplankton pigments concentrations,” Ocean Sci. 11(1), 139–158 (2015).
[Crossref]

Brewin, R. J.

R. J. Brewin, S. Sathyendranath, P. K. Lange, and G. Tilstone, “Comparison of two methods to derive the size-structure of natural populations of phytoplankton,” Deep Sea Res. Part I Oceanogr. Res. Pap. 85, 72–79 (2014).
[Crossref]

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

Brewin, R. J. W.

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. J. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Modell. 221(11), 1472–1483 (2010).
[Crossref]

Bricaud, A.

E. Organelli, A. Bricaud, D. Antoine, and J. Uitz, “Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site),” Appl. Opt. 52(11), 2257–2273 (2013).
[Crossref] [PubMed]

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4, 237–253 (2006).
[Crossref]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

Carder, K. L.

Cassar, N.

Z. Li, L. Li, K. Song, and N. Cassar, “Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data,” J. Geophys. Res. 118(3), 1445–1458 (2013).

Caverhill, C.

S. E. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Ciotti, A.

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

Ciotti, A. M.

A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4, 237–253 (2006).
[Crossref]

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
[Crossref]

Ciotti, Á. M.

A. Ferreira, D. Stramski, C. A. E. Garcia, V. M. T. Garcia, Á. M. Ciotti, and C. R. B. Mendes, “Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition,” J. Geophys. Res.- Oceans 118(2), 698–714 (2013).

Claustre, H.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[Crossref]

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll,” J. Geophys. Res. 111(C8), C08005 (2006).
[Crossref]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. 106(C9), 19939–19956 (2001).
[Crossref]

Cleveland, J.

J. Cleveland and A. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[Crossref]

Cordeiro, C.

P. Costa Goela, J. Icely, S. Cristina, A. Newton, G. Moore, and C. Cordeiro, “Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing,” Cont. Shelf Res. 52, 119–132 (2013).
[Crossref]

Costa Goela, P.

P. Costa Goela, J. Icely, S. Cristina, A. Newton, G. Moore, and C. Cordeiro, “Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing,” Cont. Shelf Res. 52, 119–132 (2013).
[Crossref]

Craig, S. E.

S. E. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Cristina, S.

P. Costa Goela, J. Icely, S. Cristina, A. Newton, G. Moore, and C. Cordeiro, “Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing,” Cont. Shelf Res. 52, 119–132 (2013).
[Crossref]

Cullen, J. J.

S. E. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
[Crossref]

Cummings, D.

R. Barlow, J. Aiken, P. Holligan, D. Cummings, S. Maritorena, and S. Hooker, “Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 637–660 (2002).
[Crossref]

Devred, E.

E. Devred, S. Sathyendranath, V. Stuart, and T. Platt, “A three component classification of phytoplankton absorption spectra: Application to ocean-color data,” Remote Sens. Environ. 115(9), 2255–2266 (2011).
[Crossref]

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111(C3), C03011 (2006).
[Crossref]

Dinter, T.

A. Bracher, M. Taylor, B. Taylor, T. Dinter, R. Roettgers, and F. Steinmetz, “Using empirical orthogonal functions derived from remote sensing reflectance for the prediction of phytoplankton pigments concentrations,” Ocean Sci. 11(1), 139–158 (2015).
[Crossref]

Ferreira, A.

A. Ferreira, D. Stramski, C. A. E. Garcia, V. M. T. Garcia, Á. M. Ciotti, and C. R. B. Mendes, “Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition,” J. Geophys. Res.- Oceans 118(2), 698–714 (2013).

Fujiwara, A.

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[Crossref]

Fukuchi, M.

T. Hirawake, S. Takao, N. Horimoto, T. Ishimaru, Y. Yamaguchi, and M. Fukuchi, “A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean,” Polar Biol. 34(2), 291–302 (2011).
[Crossref]

Garcia, C. A. E.

A. Ferreira, D. Stramski, C. A. E. Garcia, V. M. T. Garcia, Á. M. Ciotti, and C. R. B. Mendes, “Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition,” J. Geophys. Res.- Oceans 118(2), 698–714 (2013).

Garcia, V. M. T.

A. Ferreira, D. Stramski, C. A. E. Garcia, V. M. T. Garcia, Á. M. Ciotti, and C. R. B. Mendes, “Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition,” J. Geophys. Res.- Oceans 118(2), 698–714 (2013).

Gentili, B.

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

Gorsky, G.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[Crossref]

Guidi, L.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[Crossref]

Hardman-Mountford, N.

J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(15), 899–917 (2009).
[Crossref]

T. Hirata, J. Aiken, N. Hardman-Mountford, T. J. Smyth, and R. G. Barlow, “An absorption model to determine phytoplankton size classes from satellite ocean colour,” Remote Sens. Environ. 112(6), 3153–3159 (2008).
[Crossref]

Hardman-Mountford, N. J.

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. J. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Modell. 221(11), 1472–1483 (2010).
[Crossref]

Harimoto, T.

T. Harimoto, J. Ishizaka, and R. Tsuda, “Latitudinal and vertical distributions of phytoplankton absorption spectra in the central North Pacific during spring 1994,” J. Oceanogr. 55(6), 667–679 (1999).
[Crossref]

Hashioka, T.

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

Hayashi, M.

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

Hilligsøe, K. M.

K. M. Hilligsøe, K. Richardson, J. Bendtsen, L.-L. Sørensen, T. G. Nielsen, and M. M. Lyngsgaard, “Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux,” Deep Sea Res. Part I Oceanogr. Res. Pap. 58(8), 826–838 (2011).
[Crossref]

Hirata, T.

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. J. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Modell. 221(11), 1472–1483 (2010).
[Crossref]

T. Hirata, J. Aiken, N. Hardman-Mountford, T. J. Smyth, and R. G. Barlow, “An absorption model to determine phytoplankton size classes from satellite ocean colour,” Remote Sens. Environ. 112(6), 3153–3159 (2008).
[Crossref]

T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt. 45(31), 8116–8131 (2006).
[Crossref] [PubMed]

Hirawake, T.

T. Hirawake, S. Takao, N. Horimoto, T. Ishimaru, Y. Yamaguchi, and M. Fukuchi, “A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean,” Polar Biol. 34(2), 291–302 (2011).
[Crossref]

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[Crossref]

Holligan, P.

J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(15), 899–917 (2009).
[Crossref]

R. Barlow, J. Aiken, P. Holligan, D. Cummings, S. Maritorena, and S. Hooker, “Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 637–660 (2002).
[Crossref]

Hooker, S.

R. Barlow, J. Aiken, P. Holligan, D. Cummings, S. Maritorena, and S. Hooker, “Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 637–660 (2002).
[Crossref]

Hooker, S. B.

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll,” J. Geophys. Res. 111(C8), C08005 (2006).
[Crossref]

Horimoto, N.

T. Hirawake, S. Takao, N. Horimoto, T. Ishimaru, Y. Yamaguchi, and M. Fukuchi, “A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean,” Polar Biol. 34(2), 291–302 (2011).
[Crossref]

Horne, E.

S. E. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Howell, E.

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

Ibanez, F.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[Crossref]

Icely, J.

P. Costa Goela, J. Icely, S. Cristina, A. Newton, G. Moore, and C. Cordeiro, “Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing,” Cont. Shelf Res. 52, 119–132 (2013).
[Crossref]

Ichimura, S.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37(2), 634–642 (1985).

Isada, T.

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

Ishimaru, T.

T. Hirawake, S. Takao, N. Horimoto, T. Ishimaru, Y. Yamaguchi, and M. Fukuchi, “A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean,” Polar Biol. 34(2), 291–302 (2011).
[Crossref]

Ishizaka, J.

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

T. Kameda and J. Ishizaka, “Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing,” J. Oceanogr. 61(4), 663–672 (2005).
[Crossref]

T. Harimoto, J. Ishizaka, and R. Tsuda, “Latitudinal and vertical distributions of phytoplankton absorption spectra in the central North Pacific during spring 1994,” J. Oceanogr. 55(6), 667–679 (1999).
[Crossref]

Jackson, G. A.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[Crossref]

Jones, C. T.

S. E. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Kahru, M.

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation, Revision 3, 231–257 (2002).

Kameda, T.

T. Kameda and J. Ishizaka, “Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing,” J. Oceanogr. 61(4), 663–672 (2005).
[Crossref]

Kishino, M.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37(2), 634–642 (1985).

Lange, P. K.

R. J. Brewin, S. Sathyendranath, P. K. Lange, and G. Tilstone, “Comparison of two methods to derive the size-structure of natural populations of phytoplankton,” Deep Sea Res. Part I Oceanogr. Res. Pap. 85, 72–79 (2014).
[Crossref]

Lavender, S.

J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(15), 899–917 (2009).
[Crossref]

Lavender, S. J.

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. J. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Modell. 221(11), 1472–1483 (2010).
[Crossref]

Lazin, G.

S. E. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Lee, Z.

Legendre, L.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[Crossref]

Lenz, J.

J. Sieburth, V. Smetacek, and J. Lenz, “Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions,” Limnol. Oceanogr. 23(6), 1256–1263 (1978).
[Crossref]

Lewis, M. R.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
[Crossref]

Li, L.

Z. Li, L. Li, K. Song, and N. Cassar, “Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data,” J. Geophys. Res. 118(3), 1445–1458 (2013).

Li, W. K. W.

S. E. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

Li, Z.

Z. Li, L. Li, K. Song, and N. Cassar, “Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data,” J. Geophys. Res. 118(3), 1445–1458 (2013).

Linkswiler, M. A.

T. A. H. Moisan, J. R. Moisan, M. A. Linkswiler, and R. A. Steinhardt, “Algorithm development for predicting biodiversity based on phytoplankton absorption,” Cont. Shelf Res. 55, 17–28 (2013).
[Crossref]

J. R. Moisan, T. A. H. Moisan, and M. A. Linkswiler, “An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra,” J. Geophys. Res. 116(C9), C09018 (2011).
[Crossref]

Loisel, H.

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

Lubac, B.

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

Luchetta, A.

F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. 106(C9), 19939–19956 (2001).
[Crossref]

Lyngsgaard, M. M.

K. M. Hilligsøe, K. Richardson, J. Bendtsen, L.-L. Sørensen, T. G. Nielsen, and M. M. Lyngsgaard, “Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux,” Deep Sea Res. Part I Oceanogr. Res. Pap. 58(8), 826–838 (2011).
[Crossref]

Maass, H.

E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111(C3), C03011 (2006).
[Crossref]

Manca, B. B.

F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. 106(C9), 19939–19956 (2001).
[Crossref]

Maritorena, S.

R. Barlow, J. Aiken, P. Holligan, D. Cummings, S. Maritorena, and S. Hooker, “Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 637–660 (2002).
[Crossref]

Markager, S.

P. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
[Crossref]

Marty, J. C.

F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. 106(C9), 19939–19956 (2001).
[Crossref]

Matsuno, T.

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

Mendes, C. R. B.

A. Ferreira, D. Stramski, C. A. E. Garcia, V. M. T. Garcia, Á. M. Ciotti, and C. R. B. Mendes, “Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition,” J. Geophys. Res.- Oceans 118(2), 698–714 (2013).

Mino, Y.

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

Mitchell, B. G.

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation, Revision 3, 231–257 (2002).

B. G. Mitchell, “Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique,” Proc. SPIE 1302, 137–148 (1990).
[Crossref]

Moisan, J. R.

T. A. H. Moisan, J. R. Moisan, M. A. Linkswiler, and R. A. Steinhardt, “Algorithm development for predicting biodiversity based on phytoplankton absorption,” Cont. Shelf Res. 55, 17–28 (2013).
[Crossref]

J. R. Moisan, T. A. H. Moisan, and M. A. Linkswiler, “An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra,” J. Geophys. Res. 116(C9), C09018 (2011).
[Crossref]

Moisan, T. A. H.

T. A. H. Moisan, J. R. Moisan, M. A. Linkswiler, and R. A. Steinhardt, “Algorithm development for predicting biodiversity based on phytoplankton absorption,” Cont. Shelf Res. 55, 17–28 (2013).
[Crossref]

J. R. Moisan, T. A. H. Moisan, and M. A. Linkswiler, “An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra,” J. Geophys. Res. 116(C9), C09018 (2011).
[Crossref]

Moore, G.

P. Costa Goela, J. Icely, S. Cristina, A. Newton, G. Moore, and C. Cordeiro, “Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing,” Cont. Shelf Res. 52, 119–132 (2013).
[Crossref]

Moore, G. F.

Morel, A.

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll,” J. Geophys. Res. 111(C8), C08005 (2006).
[Crossref]

Newton, A.

P. Costa Goela, J. Icely, S. Cristina, A. Newton, G. Moore, and C. Cordeiro, “Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing,” Cont. Shelf Res. 52, 119–132 (2013).
[Crossref]

Newton, P.

P. Boyd and P. Newton, “Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?” Deep Sea Res. Part I Oceanogr. Res. Pap. 46(1), 63–91 (1999).
[Crossref]

Nielsen, T. G.

K. M. Hilligsøe, K. Richardson, J. Bendtsen, L.-L. Sørensen, T. G. Nielsen, and M. M. Lyngsgaard, “Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux,” Deep Sea Res. Part I Oceanogr. Res. Pap. 58(8), 826–838 (2011).
[Crossref]

Noguchi-Aita, M.

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

Okami, N.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37(2), 634–642 (1985).

Organelli, E.

Oubelkheir, K.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

Picheral, M.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[Crossref]

Platt, T.

S. Roy, S. Sathyendranath, H. Bouman, and T. Platt, “The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data,” Remote Sens. Environ. 139, 185–197 (2013).
[Crossref]

E. Devred, S. Sathyendranath, V. Stuart, and T. Platt, “A three component classification of phytoplankton absorption spectra: Application to ocean-color data,” Remote Sens. Environ. 115(9), 2255–2266 (2011).
[Crossref]

S. Roy, S. Sathyendranath, and T. Platt, “Retrieval of phytoplankton size from bio-optical measurements: theory and applications,” J. R. Soc. Interface 8(58), 650–660 (2011).
[Crossref] [PubMed]

E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111(C3), C03011 (2006).
[Crossref]

H. Bouman, T. Platt, S. Sathyendranath, and V. Stuart, “Dependence of light-saturated photosynthesis on temperature and community structure,” Deep Sea Res. Part I Oceanogr. Res. Pap. 52(7), 1284–1299 (2005).
[Crossref]

Poulton, A.

J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(15), 899–917 (2009).
[Crossref]

Pradhan, Y.

J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(15), 899–917 (2009).
[Crossref]

Raitsos, D. E.

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

Ras, J.

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

Richardson, K.

K. M. Hilligsøe, K. Richardson, J. Bendtsen, L.-L. Sørensen, T. G. Nielsen, and M. M. Lyngsgaard, “Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux,” Deep Sea Res. Part I Oceanogr. Res. Pap. 58(8), 826–838 (2011).
[Crossref]

Roettgers, R.

A. Bracher, M. Taylor, B. Taylor, T. Dinter, R. Roettgers, and F. Steinmetz, “Using empirical orthogonal functions derived from remote sensing reflectance for the prediction of phytoplankton pigments concentrations,” Ocean Sci. 11(1), 139–158 (2015).
[Crossref]

Roy, S.

S. Roy, S. Sathyendranath, H. Bouman, and T. Platt, “The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data,” Remote Sens. Environ. 139, 185–197 (2013).
[Crossref]

S. Roy, S. Sathyendranath, and T. Platt, “Retrieval of phytoplankton size from bio-optical measurements: theory and applications,” J. R. Soc. Interface 8(58), 650–660 (2011).
[Crossref] [PubMed]

Saitoh, S. I.

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[Crossref]

Sand-Jensen, K.

P. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
[Crossref]

Sathyendranath, S.

R. J. Brewin, S. Sathyendranath, P. K. Lange, and G. Tilstone, “Comparison of two methods to derive the size-structure of natural populations of phytoplankton,” Deep Sea Res. Part I Oceanogr. Res. Pap. 85, 72–79 (2014).
[Crossref]

S. Roy, S. Sathyendranath, H. Bouman, and T. Platt, “The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data,” Remote Sens. Environ. 139, 185–197 (2013).
[Crossref]

S. Roy, S. Sathyendranath, and T. Platt, “Retrieval of phytoplankton size from bio-optical measurements: theory and applications,” J. R. Soc. Interface 8(58), 650–660 (2011).
[Crossref] [PubMed]

E. Devred, S. Sathyendranath, V. Stuart, and T. Platt, “A three component classification of phytoplankton absorption spectra: Application to ocean-color data,” Remote Sens. Environ. 115(9), 2255–2266 (2011).
[Crossref]

R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. J. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Modell. 221(11), 1472–1483 (2010).
[Crossref]

E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111(C3), C03011 (2006).
[Crossref]

H. Bouman, T. Platt, S. Sathyendranath, and V. Stuart, “Dependence of light-saturated photosynthesis on temperature and community structure,” Deep Sea Res. Part I Oceanogr. Res. Pap. 52(7), 1284–1299 (2005).
[Crossref]

Sieburth, J.

J. Sieburth, V. Smetacek, and J. Lenz, “Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions,” Limnol. Oceanogr. 23(6), 1256–1263 (1978).
[Crossref]

Smetacek, V.

J. Sieburth, V. Smetacek, and J. Lenz, “Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions,” Limnol. Oceanogr. 23(6), 1256–1263 (1978).
[Crossref]

Smyth, T. J.

T. Hirata, J. Aiken, N. Hardman-Mountford, T. J. Smyth, and R. G. Barlow, “An absorption model to determine phytoplankton size classes from satellite ocean colour,” Remote Sens. Environ. 112(6), 3153–3159 (2008).
[Crossref]

T. J. Smyth, G. F. Moore, T. Hirata, and J. Aiken, “Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment,” Appl. Opt. 45(31), 8116–8131 (2006).
[Crossref] [PubMed]

Song, K.

Z. Li, L. Li, K. Song, and N. Cassar, “Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data,” J. Geophys. Res. 118(3), 1445–1458 (2013).

Sørensen, L.-L.

K. M. Hilligsøe, K. Richardson, J. Bendtsen, L.-L. Sørensen, T. G. Nielsen, and M. M. Lyngsgaard, “Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux,” Deep Sea Res. Part I Oceanogr. Res. Pap. 58(8), 826–838 (2011).
[Crossref]

Stæhr, P.

P. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
[Crossref]

Steinhardt, R. A.

T. A. H. Moisan, J. R. Moisan, M. A. Linkswiler, and R. A. Steinhardt, “Algorithm development for predicting biodiversity based on phytoplankton absorption,” Cont. Shelf Res. 55, 17–28 (2013).
[Crossref]

Steinmetz, F.

A. Bracher, M. Taylor, B. Taylor, T. Dinter, R. Roettgers, and F. Steinmetz, “Using empirical orthogonal functions derived from remote sensing reflectance for the prediction of phytoplankton pigments concentrations,” Ocean Sci. 11(1), 139–158 (2015).
[Crossref]

Stemmann, L.

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[Crossref]

Stramska, M.

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation, Revision 3, 231–257 (2002).

Stramski, D.

A. Ferreira, D. Stramski, C. A. E. Garcia, V. M. T. Garcia, Á. M. Ciotti, and C. R. B. Mendes, “Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition,” J. Geophys. Res.- Oceans 118(2), 698–714 (2013).

G. Zheng and D. Stramski, “A model based on stacked‐constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non‐phytoplankton components,” J. Geophys. Res. Oceans 118(4), 2155–2174 (2013).

Stuart, V.

E. Devred, S. Sathyendranath, V. Stuart, and T. Platt, “A three component classification of phytoplankton absorption spectra: Application to ocean-color data,” Remote Sens. Environ. 115(9), 2255–2266 (2011).
[Crossref]

E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111(C3), C03011 (2006).
[Crossref]

H. Bouman, T. Platt, S. Sathyendranath, and V. Stuart, “Dependence of light-saturated photosynthesis on temperature and community structure,” Deep Sea Res. Part I Oceanogr. Res. Pap. 52(7), 1284–1299 (2005).
[Crossref]

Suzuki, K.

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[Crossref]

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

Takahashi, M.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37(2), 634–642 (1985).

Takao, S.

T. Hirawake, S. Takao, N. Horimoto, T. Ishimaru, Y. Yamaguchi, and M. Fukuchi, “A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean,” Polar Biol. 34(2), 291–302 (2011).
[Crossref]

Taylor, B.

A. Bracher, M. Taylor, B. Taylor, T. Dinter, R. Roettgers, and F. Steinmetz, “Using empirical orthogonal functions derived from remote sensing reflectance for the prediction of phytoplankton pigments concentrations,” Ocean Sci. 11(1), 139–158 (2015).
[Crossref]

Taylor, M.

A. Bracher, M. Taylor, B. Taylor, T. Dinter, R. Roettgers, and F. Steinmetz, “Using empirical orthogonal functions derived from remote sensing reflectance for the prediction of phytoplankton pigments concentrations,” Ocean Sci. 11(1), 139–158 (2015).
[Crossref]

Thomas, C. S.

L. Van Heukelem and C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910(1), 31–49 (2001).
[Crossref] [PubMed]

Tilstone, G.

R. J. Brewin, S. Sathyendranath, P. K. Lange, and G. Tilstone, “Comparison of two methods to derive the size-structure of natural populations of phytoplankton,” Deep Sea Res. Part I Oceanogr. Res. Pap. 85, 72–79 (2014).
[Crossref]

Tripathy, S.

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

Tsuda, R.

T. Harimoto, J. Ishizaka, and R. Tsuda, “Latitudinal and vertical distributions of phytoplankton absorption spectra in the central North Pacific during spring 1994,” J. Oceanogr. 55(6), 667–679 (1999).
[Crossref]

Uitz, J.

E. Organelli, A. Bricaud, D. Antoine, and J. Uitz, “Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site),” Appl. Opt. 52(11), 2257–2273 (2013).
[Crossref] [PubMed]

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll,” J. Geophys. Res. 111(C8), C08005 (2006).
[Crossref]

Ulloa, O.

E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111(C3), C03011 (2006).
[Crossref]

Van Heukelem, L.

L. Van Heukelem and C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910(1), 31–49 (2001).
[Crossref] [PubMed]

Vidussi, F.

F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. 106(C9), 19939–19956 (2001).
[Crossref]

Wang, S.

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

Watanabe, Y.

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

Weidemann, A.

J. Cleveland and A. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[Crossref]

Werdell, P. J.

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

Wieland, J.

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation, Revision 3, 231–257 (2002).

Wu, C.-F. J.

C.-F. J. Wu, “Jackknife, bootstrap and other resampling methods in regression analysis,” Ann. Stat. 14(4), 1261–1295 (1986).
[Crossref]

Xu, Y.

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

Yamaguchi, H.

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

Yamaguchi, Y.

T. Hirawake, S. Takao, N. Horimoto, T. Ishimaru, Y. Yamaguchi, and M. Fukuchi, “A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean,” Polar Biol. 34(2), 291–302 (2011).
[Crossref]

Yamanaka, Y.

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

Yoo, S.

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

Zheng, G.

G. Zheng and D. Stramski, “A model based on stacked‐constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non‐phytoplankton components,” J. Geophys. Res. Oceans 118(4), 2155–2174 (2013).

Ann. Stat. (1)

C.-F. J. Wu, “Jackknife, bootstrap and other resampling methods in regression analysis,” Ann. Stat. 14(4), 1261–1295 (1986).
[Crossref]

Appl. Opt. (3)

Biogeosciences (3)

S. Wang, J. Ishizaka, H. Yamaguchi, S. Tripathy, M. Hayashi, Y. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. Yoo, “Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea,” Biogeosciences 11(7), 1759–1773 (2014).
[Crossref]

A. Fujiwara, T. Hirawake, K. Suzuki, and S. I. Saitoh, “Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region,” Biogeosciences 8(12), 3567–3580 (2011).
[Crossref]

T. Hirata, N. J. Hardman-Mountford, R. J. W. Brewin, J. Aiken, R. Barlow, K. Suzuki, T. Isada, E. Howell, T. Hashioka, M. Noguchi-Aita, and Y. Yamanaka, “Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types,” Biogeosciences 8(2), 311–327 (2011).
[Crossref]

Bull. Mar. Sci. (1)

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37(2), 634–642 (1985).

Cont. Shelf Res. (2)

T. A. H. Moisan, J. R. Moisan, M. A. Linkswiler, and R. A. Steinhardt, “Algorithm development for predicting biodiversity based on phytoplankton absorption,” Cont. Shelf Res. 55, 17–28 (2013).
[Crossref]

P. Costa Goela, J. Icely, S. Cristina, A. Newton, G. Moore, and C. Cordeiro, “Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing,” Cont. Shelf Res. 52, 119–132 (2013).
[Crossref]

Deep Sea Res. Part I Oceanogr. Res. Pap. (5)

R. J. Brewin, S. Sathyendranath, P. K. Lange, and G. Tilstone, “Comparison of two methods to derive the size-structure of natural populations of phytoplankton,” Deep Sea Res. Part I Oceanogr. Res. Pap. 85, 72–79 (2014).
[Crossref]

R. Barlow, J. Aiken, P. Holligan, D. Cummings, S. Maritorena, and S. Hooker, “Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean,” Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 637–660 (2002).
[Crossref]

K. M. Hilligsøe, K. Richardson, J. Bendtsen, L.-L. Sørensen, T. G. Nielsen, and M. M. Lyngsgaard, “Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux,” Deep Sea Res. Part I Oceanogr. Res. Pap. 58(8), 826–838 (2011).
[Crossref]

H. Bouman, T. Platt, S. Sathyendranath, and V. Stuart, “Dependence of light-saturated photosynthesis on temperature and community structure,” Deep Sea Res. Part I Oceanogr. Res. Pap. 52(7), 1284–1299 (2005).
[Crossref]

P. Boyd and P. Newton, “Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?” Deep Sea Res. Part I Oceanogr. Res. Pap. 46(1), 63–91 (1999).
[Crossref]

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

J. Aiken, Y. Pradhan, R. Barlow, S. Lavender, A. Poulton, P. Holligan, and N. Hardman-Mountford, “Phytoplankton pigments and functional types in the Atlantic Ocean: a decadal assessment, 1995–2005,” Deep Sea Res. Part II Top. Stud. Oceanogr. 56(15), 899–917 (2009).
[Crossref]

Ecol. Modell. (1)

R. J. W. Brewin, S. Sathyendranath, T. Hirata, S. J. Lavender, R. M. Barciela, and N. J. Hardman-Mountford, “A three-component model of phytoplankton size class for the Atlantic Ocean,” Ecol. Modell. 221(11), 1472–1483 (2010).
[Crossref]

J. Chromatogr. A (1)

L. Van Heukelem and C. S. Thomas, “Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments,” J. Chromatogr. A 910(1), 31–49 (2001).
[Crossref] [PubMed]

J. Geophys. Res. (6)

E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111(C3), C03011 (2006).
[Crossref]

J. R. Moisan, T. A. H. Moisan, and M. A. Linkswiler, “An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra,” J. Geophys. Res. 116(C9), C09018 (2011).
[Crossref]

F. Vidussi, H. Claustre, B. B. Manca, A. Luchetta, and J. C. Marty, “Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter,” J. Geophys. Res. 106(C9), 19939–19956 (2001).
[Crossref]

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll,” J. Geophys. Res. 111(C8), C08005 (2006).
[Crossref]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, “Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations,” J. Geophys. Res. 109(C11), C11010 (2004).
[Crossref]

Z. Li, L. Li, K. Song, and N. Cassar, “Estimation of phytoplankton size fractions based on spectral features of remote sensing ocean color data,” J. Geophys. Res. 118(3), 1445–1458 (2013).

J. Geophys. Res. Oceans (1)

G. Zheng and D. Stramski, “A model based on stacked‐constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non‐phytoplankton components,” J. Geophys. Res. Oceans 118(4), 2155–2174 (2013).

J. Geophys. Res.- Oceans (1)

A. Ferreira, D. Stramski, C. A. E. Garcia, V. M. T. Garcia, Á. M. Ciotti, and C. R. B. Mendes, “Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition,” J. Geophys. Res.- Oceans 118(2), 698–714 (2013).

J. Oceanogr. (2)

T. Harimoto, J. Ishizaka, and R. Tsuda, “Latitudinal and vertical distributions of phytoplankton absorption spectra in the central North Pacific during spring 1994,” J. Oceanogr. 55(6), 667–679 (1999).
[Crossref]

T. Kameda and J. Ishizaka, “Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing,” J. Oceanogr. 61(4), 663–672 (2005).
[Crossref]

J. R. Soc. Interface (1)

S. Roy, S. Sathyendranath, and T. Platt, “Retrieval of phytoplankton size from bio-optical measurements: theory and applications,” J. R. Soc. Interface 8(58), 650–660 (2011).
[Crossref] [PubMed]

Limnol. Oceanogr. (4)

L. Guidi, L. Stemmann, G. A. Jackson, F. Ibanez, H. Claustre, L. Legendre, M. Picheral, and G. Gorsky, “Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis,” Limnol. Oceanogr. 54(6), 1951–1963 (2009).
[Crossref]

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002).
[Crossref]

J. Sieburth, V. Smetacek, and J. Lenz, “Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions,” Limnol. Oceanogr. 23(6), 1256–1263 (1978).
[Crossref]

J. Cleveland and A. Weidemann, “Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters,” Limnol. Oceanogr. 38(6), 1321–1327 (1993).
[Crossref]

Limnol. Oceanogr. Methods (1)

A. M. Ciotti and A. Bricaud, “Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil,” Limnol. Oceanogr. Methods 4, 237–253 (2006).
[Crossref]

Mar. Ecol. Prog. Ser. (1)

P. Stæhr, S. Markager, and K. Sand-Jensen, “Pigment specific in vivo light absorption of phytoplankton from estuarine, coastal and oceanic waters,” Mar. Ecol. Prog. Ser. 275, 115–128 (2004).
[Crossref]

Ocean optics protocols for satellite ocean color sensor validation, Revision (1)

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” Ocean optics protocols for satellite ocean color sensor validation, Revision 3, 231–257 (2002).

Ocean Sci. (1)

A. Bracher, M. Taylor, B. Taylor, T. Dinter, R. Roettgers, and F. Steinmetz, “Using empirical orthogonal functions derived from remote sensing reflectance for the prediction of phytoplankton pigments concentrations,” Ocean Sci. 11(1), 139–158 (2015).
[Crossref]

Polar Biol. (1)

T. Hirawake, S. Takao, N. Horimoto, T. Ishimaru, Y. Yamaguchi, and M. Fukuchi, “A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean,” Polar Biol. 34(2), 291–302 (2011).
[Crossref]

Proc. SPIE (1)

B. G. Mitchell, “Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique,” Proc. SPIE 1302, 137–148 (1990).
[Crossref]

Remote Sens. Environ. (7)

B. Lubac and H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007).
[Crossref]

S. E. Craig, C. T. Jones, W. K. W. Li, G. Lazin, E. Horne, C. Caverhill, and J. J. Cullen, “Deriving optical metrics of coastal phytoplankton biomass from ocean colour,” Remote Sens. Environ. 119, 72–83 (2012).
[Crossref]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[Crossref]

T. Hirata, J. Aiken, N. Hardman-Mountford, T. J. Smyth, and R. G. Barlow, “An absorption model to determine phytoplankton size classes from satellite ocean colour,” Remote Sens. Environ. 112(6), 3153–3159 (2008).
[Crossref]

R. J. Brewin, N. J. Hardman-Mountford, S. J. Lavender, D. E. Raitsos, T. Hirata, J. Uitz, E. Devred, A. Bricaud, A. Ciotti, and B. Gentili, “An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing,” Remote Sens. Environ. 115(2), 325–339 (2011).
[Crossref]

S. Roy, S. Sathyendranath, H. Bouman, and T. Platt, “The global distribution of phytoplankton size spectrum and size classes from their light-absorption spectra derived from satellite data,” Remote Sens. Environ. 139, 185–197 (2013).
[Crossref]

E. Devred, S. Sathyendranath, V. Stuart, and T. Platt, “A three component classification of phytoplankton absorption spectra: Application to ocean-color data,” Remote Sens. Environ. 115(9), 2255–2266 (2011).
[Crossref]

Other (2)

Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (QAA_v5),” http://www. ioccg.org/groups/Software OCA/QAA v5.pdf (2009).

D. W. Hosmer, Jr. and S. Lemeshow, Applied Logistic Regression (John Wiley & Sons, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Station locations in the ECS, TS, and IMB (a) and station locations of these samples combined with NOMAD samples used in this study (b).

Fig. 2
Fig. 2

Flow chart for procedures of model training and estimation. Model training is used to calibrate models for samples of full data set as shown in section 3.1, 3.2, 3.3 and 3.5 or for samples of training subset as shown in section 3.4 and 3.5. Model estimation is used to derive phytoplankton size fractions for samples of in section 3.1, 3.2, 3.3 and 3.5 for samples of full data set as shown in section 3.1, 3.2, 3.3 and 3.5 or for samples of validation subset as shown in section 3.4 and 3.5.

Fig. 3
Fig. 3

Spectra of aph*(λ) for samples from the ECS, TS, and IMB. Colors indicate the Tchl a fractions of micro- (a), nano- (b) and picophytoplankton (c).

Fig. 4
Fig. 4

Loading factors of mode 1 (a), mode 2 (b), mode 3 (c), and mode 4 (d) of the PCA of aph*(λ). CR represents the contribution rate of variance.

Fig. 5
Fig. 5

The aph*(λ)-derived versus HPLC-derived Tchl a fractions of micro- (fmicro) (a), nano- (fnano) (b), and picophytoplankton (fpico) (c) (N = 156). Black lines indicate the 1:1 line, and grey lines indicate the ± 0.2-fraction range relative to the 1:1 line.

Fig. 6
Fig. 6

Spectra of aphstd(λ) for samples from the ECS, TS, and IMB. Colors indicate Tchl a fractions of micro- (a), nano- (b), and picophytoplankton (c).

Fig. 7
Fig. 7

Loading factors of mode 1 (a), mode 2 (b), mode 3 (c), and mode 4 (d) of the PCA of aphstd(λ). CR stands for the contribution rate of variance.

Fig. 8
Fig. 8

R2 (a) and RMSE (b) of the aph(λ)-PCA approach performed on aphstd(λ) with different combinations of MODIS bands.

Fig. 9
Fig. 9

Jackknife R2 (R2_J) (left axis) and R2_J / R2 from full model (right axis) as a function of number of training points for estimating fractions of micro- (a), nano- (b) and picophytoplankton (c). Jackknife RMSE (RMSE_J) (left axis) and RMSE_J / RMSE from full model (right axis) as a function of number of training points for estimating fractions of micro- (d), nano- (e) and picophytoplankton (f).

Fig. 10
Fig. 10

Comparisons of Tchl a fractions of micro- (fmicro) (a), nano- (fnano) (b), and picophytoplankton (fpico) (c) modelled using aphstd(λ) derived from Rrs(λ) with HPLC-derived values (N = 54). Black lines indicate the 1:1 line, and grey lines represent the ± 0.2-fraction range relative to the 1:1 line.

Fig. 11
Fig. 11

Comparisons of weights Cj in Eq. (9) for aphstd(λ) at 10 MODIS bands obtained based on the ECS, TS and IMB data set (N = 156), NOMAD (N = 246), and the global data set (N = 197) combined from subsets of the ECS, TS and IMB data set and NOMAD. (a) and (b) indicates Cj of models for estimation of micro- and picopytoplankton fractions, respectively.

Fig. 12
Fig. 12

The aphstd(λ)-derived versus HPLC-derived Tchl a fractions of micro- (fmicro) (a), nano- (fnano) (b), and picophytoplankton (fpico) (c) in the global ocean (N = 205). Black lines indicate the 1:1 line, and grey dashed lines indicate the ± 0.2-fraction range relative to the 1:1 line.

Tables (3)

Tables Icon

Table 1 Correlations between f and PC scores depending on the normalizations of aph(λ)

Tables Icon

Table 2 Summary of the performance of the QAA (version 5) for estimation of aph(λ) in ECS, TS, and IMB (N = 76).

Tables Icon

Table 3 Models Parameters (β0 and Cj in Eq. (9)) for estimations of micro- and picopytoplankton fractions using aphstd(λ) respectively tuned based on the ECS, TS and IMB data set (N = 156), NOMAD (N = 246), and the combined global data set (N = 197) from subsets of the ECS, TS and IMB data set and NOMAD.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f micro =(1.41 Fuco + 1.41 Per)/DP
f nano =(0.60 Allo + 0.35 But-fuco + 1.01 Chl b + x×1.27 Hex-fuco)/DP
f pico =(y×1.27 Hex + 0.86 Zea)/DP,
DP=1.41 Fuco +1.41 Per +0.60 Allo +0.35 But-fuco + 1.27 Hex-fuco + 1.01 Chl b + 0.86 Zea;
R rs = L w (λ)/ E d (λ ,0 + ),
a ph * (λ)= a ph (λ)/Tchl a
a ph std (λ)=[ a ph (λ)mean( a ph (λ))]/std( a ph (λ)),
f= 1 1+exp[( β 0 + i=1 k β i S i )] ,
f= 1 1+exp[( β 0 + j=1 m C j N a ph ( λ j ) )] ,
f nano =1 f micro f pico ,

Metrics