Abstract

We experimentally investigate the local refractive index sensitivity of plasmonic gold nanodisks by applying small polymer dots to selected disk sites by means of two-step lithography. Measured sensitivity profiles obtained from tracking the polymer-induced spectral shift of the plasmon modes are in excellent agreement with numerical simulation of both spectral sensitivity and the electric near field of the nanodisks. Based on the nanodisk sensitivity profile we tailor a sensitive and spatially uniform plasmonic sensor by capping the disk with a dielectric layer, thus restricting analyte access to the disk rim.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

30 October 2015: A correction was made to Ref. 17.


OSA Recommended Articles
A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion

Tomasz J. Antosiewicz, S. Peter Apell, Virginia Claudio, and Mikael Käll
Opt. Express 20(1) 524-533 (2012)

Dual-order snapshot spectral imaging of plasmonic nanoparticles

Gregory J. Nusz, Stella M. Marinakos, Srinath Rangarajan, and Ashutosh Chilkoti
Appl. Opt. 50(21) 4198-4206 (2011)

Hybrid cavity-coupled plasmonic biosensors for low concentration, label-free and selective biomolecular detection.

Abraham Vázquez-Guardado, Alexandra Smith, Wade Wilson, Jeanette Ortega, J. Manuel Perez, and Debashis Chanda
Opt. Express 24(22) 25785-25796 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  2. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  3. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  4. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  5. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing - A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
    [Crossref] [PubMed]
  6. S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
    [Crossref] [PubMed]
  7. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  8. A. B. Dahlin, N. J. Wittenberg, F. Hook, and S.-H. Oh, “Promises and challenges of nanoplasmonic devices for refractometric biosensing,” Proc. Soc. Photo-Opt. Ins. 2(2), 83–101 (2013).
  9. M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Opt. Express 19(10), 9213–9220 (2011).
    [Crossref] [PubMed]
  10. I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12(2), 1092–1095 (2012).
    [Crossref] [PubMed]
  11. E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
    [Crossref] [PubMed]
  12. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
    [Crossref]
  13. T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
    [Crossref] [PubMed]
  14. D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).
  15. F. Ph. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
    [Crossref] [PubMed]
  16. T. J. Davis, D. E. Gómez, and K. C. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81(4), 045432 (2010).
    [Crossref]
  17. V. Claudio, A. B. Dahlin, and T. J. Antosiewicz, “Single-particle Plasmon sensing of discrete molecular events: binding position versus signal variations for different sensor geometries,” J. Phys. Chem. C 118(13), 6980–6988 (2014).
    [Crossref]
  18. T. Kalkbrenner, U. Hâkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4(12), 2309–2314 (2004).
    [Crossref]
  19. A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on Localized Surface Plasmon Resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
    [Crossref] [PubMed]
  20. U. Hohenester and A. Trügler, “A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
    [Crossref]
  21. F. J. Garcia de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65(11), 115418 (2002).
    [Crossref]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  23. T. J. Antosiewicz, S. P. Apell, V. Claudio, and M. Käll, “A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion,” Opt. Express 20(1), 524–533 (2012).
    [Crossref] [PubMed]
  24. W. A. Murray, J. R. Suckling, and W. L. Barnes, “Overlayers on silver nanotriangles: field confinement and spectral position of localized surface plasmon resonances,” Nano Lett. 6(8), 1772–1777 (2006).
    [Crossref] [PubMed]

2014 (1)

V. Claudio, A. B. Dahlin, and T. J. Antosiewicz, “Single-particle Plasmon sensing of discrete molecular events: binding position versus signal variations for different sensor geometries,” J. Phys. Chem. C 118(13), 6980–6988 (2014).
[Crossref]

2013 (1)

A. B. Dahlin, N. J. Wittenberg, F. Hook, and S.-H. Oh, “Promises and challenges of nanoplasmonic devices for refractometric biosensing,” Proc. Soc. Photo-Opt. Ins. 2(2), 83–101 (2013).

2012 (6)

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12(2), 1092–1095 (2012).
[Crossref] [PubMed]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
[Crossref] [PubMed]

F. Ph. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

U. Hohenester and A. Trügler, “A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

T. J. Antosiewicz, S. P. Apell, V. Claudio, and M. Käll, “A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion,” Opt. Express 20(1), 524–533 (2012).
[Crossref] [PubMed]

2011 (5)

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Opt. Express 19(10), 9213–9220 (2011).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing - A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
[Crossref] [PubMed]

2010 (1)

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81(4), 045432 (2010).
[Crossref]

2009 (1)

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

2006 (2)

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on Localized Surface Plasmon Resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

W. A. Murray, J. R. Suckling, and W. L. Barnes, “Overlayers on silver nanotriangles: field confinement and spectral position of localized surface plasmon resonances,” Nano Lett. 6(8), 1772–1777 (2006).
[Crossref] [PubMed]

2004 (2)

T. Kalkbrenner, U. Hâkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4(12), 2309–2314 (2004).
[Crossref]

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2002 (1)

F. J. Garcia de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65(11), 115418 (2002).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aizpurua, J.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Ament, I.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12(2), 1092–1095 (2012).
[Crossref] [PubMed]

Antosiewicz, T. J.

V. Claudio, A. B. Dahlin, and T. J. Antosiewicz, “Single-particle Plasmon sensing of discrete molecular events: binding position versus signal variations for different sensor geometries,” J. Phys. Chem. C 118(13), 6980–6988 (2014).
[Crossref]

T. J. Antosiewicz, S. P. Apell, V. Claudio, and M. Käll, “A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion,” Opt. Express 20(1), 524–533 (2012).
[Crossref] [PubMed]

Apell, S. P.

Aubard, J.

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

Aussenegg, F. R.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Barnes, W. L.

W. A. Murray, J. R. Suckling, and W. L. Barnes, “Overlayers on silver nanotriangles: field confinement and spectral position of localized surface plasmon resonances,” Nano Lett. 6(8), 1772–1777 (2006).
[Crossref] [PubMed]

Boneberg, J.

T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Charron, G.

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chung, T.

S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
[Crossref] [PubMed]

Claudio, V.

V. Claudio, A. B. Dahlin, and T. J. Antosiewicz, “Single-particle Plasmon sensing of discrete molecular events: binding position versus signal variations for different sensor geometries,” J. Phys. Chem. C 118(13), 6980–6988 (2014).
[Crossref]

T. J. Antosiewicz, S. P. Apell, V. Claudio, and M. Käll, “A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion,” Opt. Express 20(1), 524–533 (2012).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Crozier, K.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Dahlin, A. B.

V. Claudio, A. B. Dahlin, and T. J. Antosiewicz, “Single-particle Plasmon sensing of discrete molecular events: binding position versus signal variations for different sensor geometries,” J. Phys. Chem. C 118(13), 6980–6988 (2014).
[Crossref]

A. B. Dahlin, N. J. Wittenberg, F. Hook, and S.-H. Oh, “Promises and challenges of nanoplasmonic devices for refractometric biosensing,” Proc. Soc. Photo-Opt. Ins. 2(2), 83–101 (2013).

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on Localized Surface Plasmon Resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Davis, T. J.

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81(4), 045432 (2010).
[Crossref]

Ditlbacher, H.

F. Ph. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Etchegoin, P. G.

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

Félidj, N.

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

Galler, N.

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Opt. Express 19(10), 9213–9220 (2011).
[Crossref] [PubMed]

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Garcia de Abajo, F. J.

F. J. Garcia de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65(11), 115418 (2002).
[Crossref]

García-Etxarri, A.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Geldhauser, T.

T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
[Crossref] [PubMed]

Gómez, D. E.

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81(4), 045432 (2010).
[Crossref]

Grand, J.

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Hâkanson, U.

T. Kalkbrenner, U. Hâkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4(12), 2309–2314 (2004).
[Crossref]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Henkel, A.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12(2), 1092–1095 (2012).
[Crossref] [PubMed]

Hillenbrand, R.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Hofer, F.

F. Ph. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Hohenau, A.

F. Ph. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Hohenester, U.

F. Ph. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

U. Hohenester and A. Trügler, “A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Homola, J.

Hook, F.

A. B. Dahlin, N. J. Wittenberg, F. Hook, and S.-H. Oh, “Promises and challenges of nanoplasmonic devices for refractometric biosensing,” Proc. Soc. Photo-Opt. Ins. 2(2), 83–101 (2013).

Höök, F.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on Localized Surface Plasmon Resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Howie, A.

F. J. Garcia de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65(11), 115418 (2002).
[Crossref]

Huber, A. J.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kalkbrenner, T.

T. Kalkbrenner, U. Hâkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4(12), 2309–2314 (2004).
[Crossref]

Käll, M.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Koller, D. M.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Kolloch, A.

T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
[Crossref] [PubMed]

Krenn, J. R.

F. Ph. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Opt. Express 19(10), 9213–9220 (2011).
[Crossref] [PubMed]

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Krull, U. J.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing - A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Kvasnicka, P.

Le Ru, E. C.

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

Lee, B.

S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
[Crossref] [PubMed]

Leiderer, P.

T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
[Crossref] [PubMed]

Leitner, A.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Lévi, G.

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Misawa, H.

T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
[Crossref] [PubMed]

Murazawa, N.

T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
[Crossref] [PubMed]

Murray, W. A.

W. A. Murray, J. R. Suckling, and W. L. Barnes, “Overlayers on silver nanotriangles: field confinement and spectral position of localized surface plasmon resonances,” Nano Lett. 6(8), 1772–1777 (2006).
[Crossref] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Oh, S.-H.

A. B. Dahlin, N. J. Wittenberg, F. Hook, and S.-H. Oh, “Promises and challenges of nanoplasmonic devices for refractometric biosensing,” Proc. Soc. Photo-Opt. Ins. 2(2), 83–101 (2013).

Petryayeva, E.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing - A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Piliarik, M.

Prasad, J.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12(2), 1092–1095 (2012).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Reil, F.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Roh, S.

S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
[Crossref] [PubMed]

Sandoghdar, V.

T. Kalkbrenner, U. Hâkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4(12), 2309–2314 (2004).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Scheer, E.

T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
[Crossref] [PubMed]

Schmachtel, S.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12(2), 1092–1095 (2012).
[Crossref] [PubMed]

Schmidt, F. Ph.

F. Ph. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Schnell, M.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Somerville, W. R. C.

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

Sönnichsen, C.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12(2), 1092–1095 (2012).
[Crossref] [PubMed]

Sow, I.

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

Suckling, J. R.

W. A. Murray, J. R. Suckling, and W. L. Barnes, “Overlayers on silver nanotriangles: field confinement and spectral position of localized surface plasmon resonances,” Nano Lett. 6(8), 1772–1777 (2006).
[Crossref] [PubMed]

Tegenfeldt, J. O.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on Localized Surface Plasmon Resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Treguer-Delapierre, M.

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

Trügler, A.

U. Hohenester and A. Trügler, “A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Ueno, K.

T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
[Crossref] [PubMed]

Vernon, K. C.

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81(4), 045432 (2010).
[Crossref]

Wittenberg, N. J.

A. B. Dahlin, N. J. Wittenberg, F. Hook, and S.-H. Oh, “Promises and challenges of nanoplasmonic devices for refractometric biosensing,” Proc. Soc. Photo-Opt. Ins. 2(2), 83–101 (2013).

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Anal. Chem. (1)

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on Localized Surface Plasmon Resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing - A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Comput. Phys. Commun. (1)

U. Hohenester and A. Trügler, “A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Phys. Chem. C (1)

V. Claudio, A. B. Dahlin, and T. J. Antosiewicz, “Single-particle Plasmon sensing of discrete molecular events: binding position versus signal variations for different sensor geometries,” J. Phys. Chem. C 118(13), 6980–6988 (2014).
[Crossref]

Langmuir (1)

T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, and H. Misawa, “Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization,” Langmuir 28(24), 9041–9046 (2012).
[Crossref] [PubMed]

Nano Lett. (5)

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12(2), 1092–1095 (2012).
[Crossref] [PubMed]

E. C. Le Ru, J. Grand, I. Sow, W. R. C. Somerville, P. G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, and J. Aubard, “A Scheme for Detecting Every Single Target Molecule with Surface-Enhanced Raman Spectroscopy,” Nano Lett. 11(11), 5013–5019 (2011).
[Crossref] [PubMed]

T. Kalkbrenner, U. Hâkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4(12), 2309–2314 (2004).
[Crossref]

F. Ph. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

W. A. Murray, J. R. Suckling, and W. L. Barnes, “Overlayers on silver nanotriangles: field confinement and spectral position of localized surface plasmon resonances,” Nano Lett. 6(8), 1772–1777 (2006).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Opt. Express (2)

Phys. Rev. B (3)

F. J. Garcia de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65(11), 115418 (2002).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

T. J. Davis, D. E. Gómez, and K. C. Vernon, “Interaction of molecules with localized surface plasmons in metallic nanoparticles,” Phys. Rev. B 81(4), 045432 (2010).
[Crossref]

Phys. Rev. Lett. (1)

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution Moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104(14), 143901 (2004).

Proc. Soc. Photo-Opt. Ins. (1)

A. B. Dahlin, N. J. Wittenberg, F. Hook, and S.-H. Oh, “Promises and challenges of nanoplasmonic devices for refractometric biosensing,” Proc. Soc. Photo-Opt. Ins. 2(2), 83–101 (2013).

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Sensors (Basel) (1)

S. Roh, T. Chung, and B. Lee, “Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors,” Sensors (Basel) 11(12), 1565–1588 (2011).
[Crossref] [PubMed]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Overview of the row-based sample design. The central panel depicts an optical microscope dark field image of the two-dimensional arrangement of particle rows. The left and right panels show SEM images of rows of dotted and bare gold nanodisks, respectively, and sketches of the nanodisks (golden) and polymer dots (blue).
Fig. 2
Fig. 2 Polymer dots on gold nanodisks. Resonance wavelengths of nanodisk rows for (a) x- and (b) y- polarization, as defined in the insets. The disks of every second row (full red symbols) are modified with polymer dots. The full lines are linear fits to the bare reference rows (black symbols), and the open red symbols mark the reference redshift values at the position of the dotted disks. The dashed lines show the effective spectral shift in centroid position caused by the polymer dots, with d7 denoting exemplarily the shift caused by the polymer dots in row 7.
Fig. 3
Fig. 3 Experimental and simulated shift in resonance wavelength of gold nanodisks as a function of the off-center distance of the polymer dot. The error bars comprise the uncertainty of the linear fits shown in Fig. 2 and the noise of the measurement setup. The inset shows a SEM image of a dotted nanodisk.
Fig. 4
Fig. 4 Simulated plasmonic field intensities (logarithmically plotted) of dotted gold nanodisks. Shown for x-polarization (upper panels) and y-polarization (lower panels) for (a) 0 nm, (b) 37 nm and (c) 62 nm off-center distance of the polymer dot. The double arrows indicate the polarization direction.
Fig. 5
Fig. 5 Electric field and measured and simulated resonance shifts of a gold nanodisk for x-polarization. The experimental resonance shift values (symbols) were measured for positive off-center distances and plotted as well for negative coordinates due to the symmetry of the disk. The simulated spectral shift values (green line) were offset by 0.9 nm to fit to the experimental data. The profile of the electric near field intensity is shown as the dashed green line. The inset shows the disk geometry.
Fig. 6
Fig. 6 Fabrication procedure of top masked nanodisks. (a) Sketch of the fabrication process. (b) SEM image and (c) height profile (by atomic force microscopy) of a nanodisk with a SiO2 top mask with sketches of a masked particle.
Fig. 7
Fig. 7 Spectral shifts of masked nanodisk arrays. (a) Resonance wavelength of bare, top masked and fully SiO2 covered arrays of gold nanodisks with diameters as given in the legend. (b) Shift in resonance wavelengths due to successive evaporation of thin SiO2 layers on a bare and SiO2 top masked array of 145 nm diameter disks. The lines are linear fits to the measured data points. The left inset in (b) shows an enlarged view of the dashed box, the right insets show SEM images of a bare (upper panel) and a SiO2 top masked (lower panel) nanodisks array.

Metrics