Abstract

We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cross-correlation frequency-resolved optical gating and dynamics of temporal solitons in silicon nanowire waveguides

Jiali Liao, Matthew Marko, Xiujian Li, Hui Jia, Ju Liu, Yizhou Tan, Jiankun Yang, Yuanda Zhang, Wusheng Tang, Mingbin Yu, Guo-Qiang Lo, Dim-Lee Kwong, and Chee Wei Wong
Opt. Lett. 38(21) 4401-4404 (2013)

Soliton propagation with cross-phase modulation in silicon photonic crystal waveguides

Matthew Marko, Xiujian Li, and Jiangjun Zheng
J. Opt. Soc. Am. B 30(8) 2100-2106 (2013)

Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides

Christelle Monat, Bill Corcoran, Majid Ebnali-Heidari, Christian Grillet, Benjamin J. Eggleton, Thomas P. White, Liam O’Faolain, and Thomas. F. Krauss
Opt. Express 17(4) 2944-2953 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D. X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38(5), 706–708 (2013).
    [Crossref] [PubMed]
  2. K. Liu, W. Xu, Z. H. Zhu, W. M. Ye, X. D. Yuan, and C. Zeng, “Wave propagation in deep-subwavelength mode waveguides,” Opt. Lett. 37(14), 2826–2828 (2012).
    [Crossref] [PubMed]
  3. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  4. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
    [Crossref] [PubMed]
  5. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
    [Crossref] [PubMed]
  6. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [Crossref]
  7. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009).
    [Crossref] [PubMed]
  8. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [PubMed]
  9. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  10. A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
    [Crossref] [PubMed]
  11. D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1(8), 116 (2010).
    [Crossref] [PubMed]
  12. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
    [Crossref]
  13. J. F. McMillan, M. Yu, D. L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010).
    [Crossref] [PubMed]
  14. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
    [Crossref] [PubMed]
  15. D. W. Kim, S. H. Kim, S. H. Lee, H. S. Jong, J. M. Lee, H. Lee, and K. H. Kim, “Enhanced four-wave-mixing effects by large group indices of one-dimensional silicon photonic crystal waveguides,” Opt. Express 21(24), 30019–30029 (2013).
    [Crossref] [PubMed]
  16. J. Li, L. O’Faolain, and T. F. Krauss, “Four-wave mixing in slow light photonic crystal waveguides with very high group index,” Opt. Express 20(16), 17474–17479 (2012).
    [Crossref] [PubMed]
  17. S. Kocaman, M. S. Aras, N. C. Panoiu, M. Lu, and C. W. Wong, “On-chip optical filters with designable characteristics based on an interferometer with embedded silicon photonic structures,” Opt. Lett. 37(4), 665–667 (2012).
    [Crossref] [PubMed]
  18. R. Antos, V. Vozda, and M. Veis, “Plane wave expansion method used to engineer photonic crystal sensors with high efficiency,” Opt. Express 22(3), 2562–2577 (2014).
    [PubMed]
  19. J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
    [Crossref] [PubMed]
  20. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36(9), 1728–1730 (2011).
    [Crossref] [PubMed]
  21. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
    [Crossref] [PubMed]
  22. Y. Xu, C. Caer, D. Gao, E. Cassan, and X. Zhang, “High efficiency asymmetric directional coupler for slow light slot photonic crystal waveguides,” Opt. Express 22(9), 11021–11028 (2014).
    [Crossref] [PubMed]
  23. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
    [Crossref] [PubMed]
  24. T. Chen, J. Sun, and L. Li, “Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides,” Opt. Express 20(18), 20043–20058 (2012).
    [Crossref] [PubMed]
  25. M. D. Marko, X. Li, J. Zheng, J. Liao, M. Yu, G.-Q. Lo, D.-L. Kwong, C. A. Husko, and C. W. Wong, “Phase- resolved observations of temporal soliton pulse propagation in silicon nanowires,” Appl. Phys. Lett. 103, 021103 (2013).
    [Crossref]
  26. N. Tsurumachi, K. Hikosaka, X.-L. Wang, M. Ogura, N. Watanabe, and T. Hattori, “Observation of ultrashort pulse propagation anisotropy in a semiconductor quantum nanostructure optical waveguide by cross-correlation frequency resolved optical gating spectroscopy,” J. Appl. Phys. 94(4), 2616–2621 (2003).
    [Crossref]
  27. A. Efimov and A. J. Taylor, “Cross-correlation frequency-resolved optical gating for studying ultrashort-pulse nonlinear dynamics in arbitrary fibers,” Appl. Opt. 44(20), 4408–4411 (2005).
    [Crossref] [PubMed]
  28. J. Liao, M. Marko, X. Li, H. Jia, J. Liu, Y. Tan, J. Yang, Y. Zhang, W. Tang, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Cross-correlation frequency-resolved optical gating and dynamics of temporal solitons in silicon nanowire waveguides,” Opt. Lett. 38(21), 4401–4404 (2013).
    [Crossref] [PubMed]
  29. C. A. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett. 36(12), 2239–2241 (2011).
    [Crossref] [PubMed]
  30. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
    [Crossref] [PubMed]

2014 (4)

2013 (5)

2012 (4)

2011 (3)

2010 (5)

2009 (5)

2008 (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

2005 (1)

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

2003 (1)

N. Tsurumachi, K. Hikosaka, X.-L. Wang, M. Ogura, N. Watanabe, and T. Hattori, “Observation of ultrashort pulse propagation anisotropy in a semiconductor quantum nanostructure optical waveguide by cross-correlation frequency resolved optical gating spectroscopy,” J. Appl. Phys. 94(4), 2616–2621 (2003).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Antos, R.

Aras, M. S.

Asakawa, K.

Baba, T.

Baron, A.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Blanco-Redondo, A.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref] [PubMed]

Bock, P. J.

Bonneau, D.

Bowers, J. E.

Buchwald, W.

Caer, C.

Calvo, M. L.

Cassan, E.

Cheben, P.

Chen, T.

Clark, A. S.

Colman, P.

C. A. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett. 36(12), 2239–2241 (2011).
[Crossref] [PubMed]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Combrié, S.

Corcoran, B.

Dai, D.

De Rossi, A.

Delâge, A.

Delaye, P.

Dorenbos, S. N.

Dubreuil, N.

Eades, D.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref] [PubMed]

Ebnali-Heidari, M.

Efimov, A.

Eggleton, B. J.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref] [PubMed]

B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36(9), 1728–1730 (2011).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[Crossref] [PubMed]

Engin, E.

Ezaki, M.

Fainman, Y.

D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1(8), 116 (2010).
[Crossref] [PubMed]

Florjanczyk, M.

Frey, R.

Gao, D.

Grillet, C.

Hadfield, R. H.

Hamachi, Y.

Hattori, T.

N. Tsurumachi, K. Hikosaka, X.-L. Wang, M. Ogura, N. Watanabe, and T. Hattori, “Observation of ultrashort pulse propagation anisotropy in a semiconductor quantum nanostructure optical waveguide by cross-correlation frequency resolved optical gating spectroscopy,” J. Appl. Phys. 94(4), 2616–2621 (2003).
[Crossref]

Hendrickson, J.

Hikosaka, K.

N. Tsurumachi, K. Hikosaka, X.-L. Wang, M. Ogura, N. Watanabe, and T. Hattori, “Observation of ultrashort pulse propagation anisotropy in a semiconductor quantum nanostructure optical waveguide by cross-correlation frequency resolved optical gating spectroscopy,” J. Appl. Phys. 94(4), 2616–2621 (2003).
[Crossref]

Husko, C.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref] [PubMed]

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Husko, C. A.

M. D. Marko, X. Li, J. Zheng, J. Liao, M. Yu, G.-Q. Lo, D.-L. Kwong, C. A. Husko, and C. W. Wong, “Phase- resolved observations of temporal soliton pulse propagation in silicon nanowires,” Appl. Phys. Lett. 103, 021103 (2013).
[Crossref]

C. A. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett. 36(12), 2239–2241 (2011).
[Crossref] [PubMed]

Iizuka, N.

Ikeda, N.

Inoue, K.

Janz, S.

Jia, H.

Jong, H. S.

Kim, D. W.

Kim, K. H.

Kim, S. H.

Kocaman, S.

Krauss, T. F.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref] [PubMed]

J. Li, L. O’Faolain, and T. F. Krauss, “Four-wave mixing in slow light photonic crystal waveguides with very high group index,” Opt. Express 20(16), 17474–17479 (2012).
[Crossref] [PubMed]

B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36(9), 1728–1730 (2011).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[Crossref] [PubMed]

Kubo, S.

Kwong, D. L.

Kwong, D.-L.

M. D. Marko, X. Li, J. Zheng, J. Liao, M. Yu, G.-Q. Lo, D.-L. Kwong, C. A. Husko, and C. W. Wong, “Phase- resolved observations of temporal soliton pulse propagation in silicon nanowires,” Appl. Phys. Lett. 103, 021103 (2013).
[Crossref]

Lapointe, J.

Lee, H.

Lee, J. M.

Lee, S. H.

Li, J.

Li, L.

Li, X.

J. Liao, M. Marko, X. Li, H. Jia, J. Liu, Y. Tan, J. Yang, Y. Zhang, W. Tang, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Cross-correlation frequency-resolved optical gating and dynamics of temporal solitons in silicon nanowire waveguides,” Opt. Lett. 38(21), 4401–4404 (2013).
[Crossref] [PubMed]

M. D. Marko, X. Li, J. Zheng, J. Liao, M. Yu, G.-Q. Lo, D.-L. Kwong, C. A. Husko, and C. W. Wong, “Phase- resolved observations of temporal soliton pulse propagation in silicon nanowires,” Appl. Phys. Lett. 103, 021103 (2013).
[Crossref]

Liao, J.

M. D. Marko, X. Li, J. Zheng, J. Liao, M. Yu, G.-Q. Lo, D.-L. Kwong, C. A. Husko, and C. W. Wong, “Phase- resolved observations of temporal soliton pulse propagation in silicon nanowires,” Appl. Phys. Lett. 103, 021103 (2013).
[Crossref]

J. Liao, M. Marko, X. Li, H. Jia, J. Liu, Y. Tan, J. Yang, Y. Zhang, W. Tang, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Cross-correlation frequency-resolved optical gating and dynamics of temporal solitons in silicon nanowire waveguides,” Opt. Lett. 38(21), 4401–4404 (2013).
[Crossref] [PubMed]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Liu, J.

Liu, K.

Lo, G. Q.

Lo, G.-Q.

M. D. Marko, X. Li, J. Zheng, J. Liao, M. Yu, G.-Q. Lo, D.-L. Kwong, C. A. Husko, and C. W. Wong, “Phase- resolved observations of temporal soliton pulse propagation in silicon nanowires,” Appl. Phys. Lett. 103, 021103 (2013).
[Crossref]

Lu, M.

Marko, M.

Marko, M. D.

M. D. Marko, X. Li, J. Zheng, J. Liao, M. Yu, G.-Q. Lo, D.-L. Kwong, C. A. Husko, and C. W. Wong, “Phase- resolved observations of temporal soliton pulse propagation in silicon nanowires,” Appl. Phys. Lett. 103, 021103 (2013).
[Crossref]

McMillan, J. F.

Monat, C.

Moss, D. J.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Natarajan, C. M.

O’Brien, J. L.

O’Faolain, L.

J. Li, L. O’Faolain, and T. F. Krauss, “Four-wave mixing in slow light photonic crystal waveguides with very high group index,” Opt. Express 20(16), 17474–17479 (2012).
[Crossref] [PubMed]

B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36(9), 1728–1730 (2011).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[Crossref] [PubMed]

Oda, H.

Ogura, M.

N. Tsurumachi, K. Hikosaka, X.-L. Wang, M. Ogura, N. Watanabe, and T. Hattori, “Observation of ultrashort pulse propagation anisotropy in a semiconductor quantum nanostructure optical waveguide by cross-correlation frequency resolved optical gating spectroscopy,” J. Appl. Phys. 94(4), 2616–2621 (2003).
[Crossref]

Ohira, K.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Panoiu, N. C.

Pelusi, M.

Pelusi, M. D.

Roosen, G.

Ryasnyanskiy, A.

Sagnes, I.

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

Schmid, J. H.

Soref, R.

Sun, J.

Sun, P. C.

D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1(8), 116 (2010).
[Crossref] [PubMed]

Suzuki, N.

Sweet, J.

Tan, D. T. H.

D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1(8), 116 (2010).
[Crossref] [PubMed]

Tan, Y.

Tang, W.

Tanner, M. G.

Taylor, A. J.

Thompson, M. G.

Tsurumachi, N.

N. Tsurumachi, K. Hikosaka, X.-L. Wang, M. Ogura, N. Watanabe, and T. Hattori, “Observation of ultrashort pulse propagation anisotropy in a semiconductor quantum nanostructure optical waveguide by cross-correlation frequency resolved optical gating spectroscopy,” J. Appl. Phys. 94(4), 2616–2621 (2003).
[Crossref]

Vachon, M.

Veis, M.

Velasco, A. V.

Vozda, V.

Vy Tran, Q.

Wang, X.-L.

N. Tsurumachi, K. Hikosaka, X.-L. Wang, M. Ogura, N. Watanabe, and T. Hattori, “Observation of ultrashort pulse propagation anisotropy in a semiconductor quantum nanostructure optical waveguide by cross-correlation frequency resolved optical gating spectroscopy,” J. Appl. Phys. 94(4), 2616–2621 (2003).
[Crossref]

Watanabe, N.

N. Tsurumachi, K. Hikosaka, X.-L. Wang, M. Ogura, N. Watanabe, and T. Hattori, “Observation of ultrashort pulse propagation anisotropy in a semiconductor quantum nanostructure optical waveguide by cross-correlation frequency resolved optical gating spectroscopy,” J. Appl. Phys. 94(4), 2616–2621 (2003).
[Crossref]

White, T. P.

Wong, C. W.

Xu, D. X.

Xu, W.

Xu, Y.

Yang, J.

Ye, W. M.

Yoshida, H.

Yu, M.

Yuan, X. D.

Zeng, C.

Zhang, X.

Zhang, Y.

Zheng, J.

M. D. Marko, X. Li, J. Zheng, J. Liao, M. Yu, G.-Q. Lo, D.-L. Kwong, C. A. Husko, and C. W. Wong, “Phase- resolved observations of temporal soliton pulse propagation in silicon nanowires,” Appl. Phys. Lett. 103, 021103 (2013).
[Crossref]

Zhu, Z. H.

Zwiller, V.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. D. Marko, X. Li, J. Zheng, J. Liao, M. Yu, G.-Q. Lo, D.-L. Kwong, C. A. Husko, and C. W. Wong, “Phase- resolved observations of temporal soliton pulse propagation in silicon nanowires,” Appl. Phys. Lett. 103, 021103 (2013).
[Crossref]

J. Appl. Phys. (1)

N. Tsurumachi, K. Hikosaka, X.-L. Wang, M. Ogura, N. Watanabe, and T. Hattori, “Observation of ultrashort pulse propagation anisotropy in a semiconductor quantum nanostructure optical waveguide by cross-correlation frequency resolved optical gating spectroscopy,” J. Appl. Phys. 94(4), 2616–2621 (2003).
[Crossref]

Nat. Commun. (2)

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref] [PubMed]

D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1(8), 116 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4(12), 862–868 (2010).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (14)

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[Crossref] [PubMed]

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[PubMed]

J. F. McMillan, M. Yu, D. L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18(15), 15484–15497 (2010).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

D. W. Kim, S. H. Kim, S. H. Lee, H. S. Jong, J. M. Lee, H. Lee, and K. H. Kim, “Enhanced four-wave-mixing effects by large group indices of one-dimensional silicon photonic crystal waveguides,” Opt. Express 21(24), 30019–30029 (2013).
[Crossref] [PubMed]

J. Li, L. O’Faolain, and T. F. Krauss, “Four-wave mixing in slow light photonic crystal waveguides with very high group index,” Opt. Express 20(16), 17474–17479 (2012).
[Crossref] [PubMed]

R. Antos, V. Vozda, and M. Veis, “Plane wave expansion method used to engineer photonic crystal sensors with high efficiency,” Opt. Express 22(3), 2562–2577 (2014).
[PubMed]

J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
[Crossref] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[Crossref] [PubMed]

Y. Xu, C. Caer, D. Gao, E. Cassan, and X. Zhang, “High efficiency asymmetric directional coupler for slow light slot photonic crystal waveguides,” Opt. Express 22(9), 11021–11028 (2014).
[Crossref] [PubMed]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

T. Chen, J. Sun, and L. Li, “Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides,” Opt. Express 20(18), 20043–20058 (2012).
[Crossref] [PubMed]

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[Crossref] [PubMed]

Opt. Lett. (7)

J. Liao, M. Marko, X. Li, H. Jia, J. Liu, Y. Tan, J. Yang, Y. Zhang, W. Tang, M. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, “Cross-correlation frequency-resolved optical gating and dynamics of temporal solitons in silicon nanowire waveguides,” Opt. Lett. 38(21), 4401–4404 (2013).
[Crossref] [PubMed]

C. A. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett. 36(12), 2239–2241 (2011).
[Crossref] [PubMed]

B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36(9), 1728–1730 (2011).
[Crossref] [PubMed]

S. Kocaman, M. S. Aras, N. C. Panoiu, M. Lu, and C. W. Wong, “On-chip optical filters with designable characteristics based on an interferometer with embedded silicon photonic structures,” Opt. Lett. 37(4), 665–667 (2012).
[Crossref] [PubMed]

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
[Crossref] [PubMed]

A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D. X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38(5), 706–708 (2013).
[Crossref] [PubMed]

K. Liu, W. Xu, Z. H. Zhu, W. M. Ye, X. D. Yuan, and C. Zeng, “Wave propagation in deep-subwavelength mode waveguides,” Opt. Lett. 37(14), 2826–2828 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Experimental setup with combination of SFG-FROG and SFG-XFROG. MLL, mode-locked fiber laser; HWP, half waveplate; C, optical collimator; BS, beam splitter; P, polarizer; FL, focus lens; FM, flip mirror; OSA, optical spectrum analyzer; RF, reflector; FBS, flip beam splitter; DM, D-shape mirror; LMS, linear motorized stage; CL, bi-convex lens; BBO, barium borate crystal plate; SM, Spectrometer with CCD. The Scanning electron micrograph of the PhCWs in the angle of view at 45 degree (b) and 0 degree (c), with the marked main parameters of the PhCWs, including the waveguide thickness, the lattice constant and the hole diameter.

Fig. 2
Fig. 2

(a) The group indices n g of the utilized waveguide, with blue dot line and red solid line denoting the measured and the fitting n g respectively. (b) GVD coefficient β 2 and TOD coefficient β 3 of the utilized waveguide. The red and blue solid line denotes β 2 and β 3 respectively.

Fig. 3
Fig. 3

The temporal and spectral properties of the reference pulses provided by SHG-FROG and OSA measurements. (a), (b) 1550 nm; (c),(d) 1555nm. In sub-figure (a) and (c), the red and the blue solid line denote the retrieved temporal intensity distributions with minor peaks locating in the pulse tailing and head respectively, and the corresponding phase distributions are denoted by green dashed line and green dotted line. In sub-figure (b) and (d), the red and blue solid line denote the retrieved spectra respectively, with the OSA measured spectra denoted by the dark solid line.

Fig. 4
Fig. 4

The spectra of the output pulses from the PhCWs for SFG-XFROG retrieves, NLSE simulations, and OSA measurements. (a), (b) 1550 nm; (c),(d) 1555nm. The inset 8.6pJ and 12.9pJ denote the input pulse energies. For all sub-figures, the red and blue solid lines denote the spectra of the retrieved output pulses for the tailing case and the head case respectively, and green solid lines denote the spectra measured by the OSA.

Fig. 5
Fig. 5

The discrepancy parameter (DP) plots of the spectra retrieved from the SFG-XFROG measurements and the NLSE simulations at central wavelength 1550nm (a) and 1555 nm (b). The red line with squares and the green line with circles denote the DF of the SFG-XFROG retrieved spectra for tailing case and head case respectively. The blue line with upward triangles and the magenta line with downward triangles denote the DF of the NLSE simulation spectra for tailing case and head case respectively.

Fig. 6
Fig. 6

Temporal intensity with phase distribution and spectra profile of the output pulses at 8.6pJ and 4.1pJ input pulse energies for 1550nm and 1555nm respectively. (a) and (b)1550 nm; (c) and (d)1555nm. Red curves, experimental results; blue curves, simulation results; black dashed curve, input profiles; green dotted line, phase distribution from SFG-XFROG retrieved; green dashed dot line, phase distribution from NLSE simulation. The temporal duration of the input pulses are marked in (a) and (c). Insets in (b) and (d) are the SFG-XFROG retrieved traces.

Fig. 7
Fig. 7

Temporal and spectral intensity profiles of the output pulses for increasing coupled pulse energies from 68 fJ to 25.6 pJ. (a) Retrieved results from SFG-XFROG measurements; (b) Numerically predicted results from NLSE simulations. Input pulse profiles are also shown in black at the figure bottom. The central labels denote the input pulse energies.

Fig. 8
Fig. 8

The effects of slow light on the pulse dynamics by NLSE simulations and SFG-XFROG experiments. (a) The temporal and spectral intensity profiles for input pulse energy of 12pJ and 24pJ at 1550nm by NLSE simulation, the red curves denote considering slow light effects, while blue curves denote turning off the slow light effects. The pulse duration and the energy ratio of pulse center (b), the temporal pulse centroid (c) and the spectral blue shift (d) with respect to the increasing input pulse energy. The red solid lines and the blue solid lines denote the cases considering slow light enhancement for the central wavelength of 1550nm and 1555nm respectively, while the red dashed lines and the blue dashed line denote the cases turning off the slow light enhancement. The experimental measurements are denoted by blue data squares and red data triangles, and the energy ratios of the pulse center are denoted by red and blue stars for the 1550nm and 1555nm wavelength respectively.

Fig. 9
Fig. 9

The output pulse energy and transmission relative to increasing input pulse energy by experiment.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A z + i β 2 2 2 A t 2 α eff 2 A=i( γ eff α TPA.eff ) | A | 2 A+(i k 0 k c.eff σ eff 2 ) N c A
N c ( z,t ) t = α TPA.eff 2h ν 0 | A( z,t ) | 4 N c ( z,t ) τ c
DP= [ I α (λ)- I OSA (λ) ] 2 dλ I OSA 2 (λ) dλ

Metrics