Abstract

Polarizer-free high contrast-ratio organic light-emitting diodes (OLEDs) are explored with a structure involving a semi-reflective Cr-based bottom electrode and a dielectric-capped thin Ag top electrode. Their efficiency is shown to be improved significantly with little sacrifice in luminous reflectance by adopting low-refractive-index injection layers that can increase the effective reflectance from the bottom electrode and simultaneously reduce the loss owing to surface plasmon polariton modes. OLEDs employing a low-refractive-index injection layer exhibit improved current efficiency by up to ca. 27.4% than those using index-matched injection layers, with luminous reflectance maintained at as low as 4%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards highly efficient and highly transparent OLEDs: advanced considerations for emission zone coupled with capping layer design

Jin Chung, Hyunsu Cho, Tae-Wook Koh, Jonghee Lee, Eunhye Kim, Jaeho Lee, Jeong-Ik Lee, and Seunghyup Yoo
Opt. Express 23(21) 27306-27314 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
    [Crossref] [PubMed]
  2. B. D. Lee, Y.-H. Cho, M. H. Oh, S. Y. Lee, S. Y. Lee, J. H. Lee, and D. S. Zang, “Characteristics of contrast of active-matrix organic light-emitting diodes containing a black matrix and antireflection layers,” Mater. Chem. Phys. 112(3), 734–737 (2008).
    [Crossref]
  3. V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, “Improving the Brightness and Daylight Contrast of Organic Light-Emitting Diodes,” Adv. Funct. Mater. 15(1), 138–142 (2005).
    [Crossref]
  4. D. Poitras, C.-C. Kuo, and C. Py, “Design of high-contrast OLEDs with microcavity effect,” Opt. Express 16(11), 8003–8015 (2008).
    [Crossref] [PubMed]
  5. R. Singh, K. N. N. Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
    [Crossref]
  6. T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
    [Crossref]
  7. L.-S. Hung and J. Madathil, “Reduction of ambient light reflection in organic light-emitting diodes,” Adv. Mater. 13(23), 1787–1790 (2001).
    [Crossref]
  8. A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80(20), 3853–3855 (2002).
    [Crossref]
  9. X. D. Feng, R. Khangura, and Z. H. Lu, “Metal–organic–metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–499 (2004).
    [Crossref]
  10. C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87(14), 143507 (2005).
    [Crossref]
  11. H. Cho and S. Yoo, “Polarizer-free, high-contrast inverted top-emitting organic light emitting diodes: effect of the electrode structure,” Opt. Express 20(2), 1816–1824 (2012).
    [Crossref] [PubMed]
  12. S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13(5), 826–832 (2012).
    [Crossref]
  13. J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
    [Crossref]
  14. T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
    [Crossref]
  15. S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors,” Nanotechnology 16(9), 1482–1485 (2005).
    [Crossref]
  16. T.-W. Lee and Y. Chung, “Control of the surface composition of a conducting-polymer complex film to tune the work function,” Adv. Funct. Mater. 18(15), 2246–2252 (2008).
    [Crossref]
  17. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
    [Crossref]
  18. Y.-K. Kim, J. W. Kim, and Y. Park, “Energy level alignment at a charge generation interface between 4,4’-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile,” Appl. Phys. Lett. 94(6), 063305 (2009).
    [Crossref]
  19. R. Liu, C. Xu, R. Biswas, J. Shinar, and R. Shinar, “MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor,” Appl. Phys. Lett. 99(9), 093305 (2011).
    [Crossref]
  20. H. You, Y. Dai, Z. Zhang, and D. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
    [Crossref]
  21. M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B 85(11), 115205 (2012).
    [Crossref]
  22. C. Fuchs, T. Schwab, M. Wieczorek, M. C. Gather, S. Hofmann, K. Leo, and R. Scholz, “Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling,” Proc. SPIE 9183, 91831Z (2014).
    [Crossref]

2014 (1)

C. Fuchs, T. Schwab, M. Wieczorek, M. C. Gather, S. Hofmann, K. Leo, and R. Scholz, “Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling,” Proc. SPIE 9183, 91831Z (2014).
[Crossref]

2013 (2)

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

2012 (4)

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B 85(11), 115205 (2012).
[Crossref]

R. Singh, K. N. N. Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13(5), 826–832 (2012).
[Crossref]

H. Cho and S. Yoo, “Polarizer-free, high-contrast inverted top-emitting organic light emitting diodes: effect of the electrode structure,” Opt. Express 20(2), 1816–1824 (2012).
[Crossref] [PubMed]

2011 (2)

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

R. Liu, C. Xu, R. Biswas, J. Shinar, and R. Shinar, “MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor,” Appl. Phys. Lett. 99(9), 093305 (2011).
[Crossref]

2009 (2)

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Y.-K. Kim, J. W. Kim, and Y. Park, “Energy level alignment at a charge generation interface between 4,4’-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile,” Appl. Phys. Lett. 94(6), 063305 (2009).
[Crossref]

2008 (3)

T.-W. Lee and Y. Chung, “Control of the surface composition of a conducting-polymer complex film to tune the work function,” Adv. Funct. Mater. 18(15), 2246–2252 (2008).
[Crossref]

B. D. Lee, Y.-H. Cho, M. H. Oh, S. Y. Lee, S. Y. Lee, J. H. Lee, and D. S. Zang, “Characteristics of contrast of active-matrix organic light-emitting diodes containing a black matrix and antireflection layers,” Mater. Chem. Phys. 112(3), 734–737 (2008).
[Crossref]

D. Poitras, C.-C. Kuo, and C. Py, “Design of high-contrast OLEDs with microcavity effect,” Opt. Express 16(11), 8003–8015 (2008).
[Crossref] [PubMed]

2007 (1)

H. You, Y. Dai, Z. Zhang, and D. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]

2006 (1)

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

2005 (3)

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, “Improving the Brightness and Daylight Contrast of Organic Light-Emitting Diodes,” Adv. Funct. Mater. 15(1), 138–142 (2005).
[Crossref]

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87(14), 143507 (2005).
[Crossref]

S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors,” Nanotechnology 16(9), 1482–1485 (2005).
[Crossref]

2004 (1)

X. D. Feng, R. Khangura, and Z. H. Lu, “Metal–organic–metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–499 (2004).
[Crossref]

2002 (1)

A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80(20), 3853–3855 (2002).
[Crossref]

2001 (1)

L.-S. Hung and J. Madathil, “Reduction of ambient light reflection in organic light-emitting diodes,” Adv. Mater. 13(23), 1787–1790 (2001).
[Crossref]

Bastiaansen, C. W. M.

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, “Improving the Brightness and Daylight Contrast of Organic Light-Emitting Diodes,” Adv. Funct. Mater. 15(1), 138–142 (2005).
[Crossref]

Biswas, R.

R. Liu, C. Xu, R. Biswas, J. Shinar, and R. Shinar, “MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor,” Appl. Phys. Lett. 99(9), 093305 (2011).
[Crossref]

Broer, D. J.

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, “Improving the Brightness and Daylight Contrast of Organic Light-Emitting Diodes,” Adv. Funct. Mater. 15(1), 138–142 (2005).
[Crossref]

Chen, T.-H.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87(14), 143507 (2005).
[Crossref]

Cheng, C.-C.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87(14), 143507 (2005).
[Crossref]

Cho, D.-H.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Cho, H.

Cho, Y.-H.

B. D. Lee, Y.-H. Cho, M. H. Oh, S. Y. Lee, S. Y. Lee, J. H. Lee, and D. S. Zang, “Characteristics of contrast of active-matrix organic light-emitting diodes containing a black matrix and antireflection layers,” Mater. Chem. Phys. 112(3), 734–737 (2008).
[Crossref]

Choi, W.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Chu, H. Y.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Chun, Y.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Chung, Y.

T.-W. Lee and Y. Chung, “Control of the surface composition of a conducting-polymer complex film to tune the work function,” Adv. Funct. Mater. 18(15), 2246–2252 (2008).
[Crossref]

Dai, Y.

H. You, Y. Dai, Z. Zhang, and D. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]

Edelstein, M. D.

S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors,” Nanotechnology 16(9), 1482–1485 (2005).
[Crossref]

Feng, X. D.

X. D. Feng, R. Khangura, and Z. H. Lu, “Metal–organic–metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–499 (2004).
[Crossref]

Fröbel, M.

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

Fuchs, C.

C. Fuchs, T. Schwab, M. Wieczorek, M. C. Gather, S. Hofmann, K. Leo, and R. Scholz, “Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling,” Proc. SPIE 9183, 91831Z (2014).
[Crossref]

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

Furno, M.

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B 85(11), 115205 (2012).
[Crossref]

Gather, M. C.

C. Fuchs, T. Schwab, M. Wieczorek, M. C. Gather, S. Hofmann, K. Leo, and R. Scholz, “Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling,” Proc. SPIE 9183, 91831Z (2014).
[Crossref]

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

Hamwi, S.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Han, D.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Han, J.-H.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Hirano, T.

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

Hofmann, S.

C. Fuchs, T. Schwab, M. Wieczorek, M. C. Gather, S. Hofmann, K. Leo, and R. Scholz, “Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling,” Proc. SPIE 9183, 91831Z (2014).
[Crossref]

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B 85(11), 115205 (2012).
[Crossref]

Huh, J. W.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Hung, L.-S.

L.-S. Hung and J. Madathil, “Reduction of ambient light reflection in organic light-emitting diodes,” Adv. Mater. 13(23), 1787–1790 (2001).
[Crossref]

Hwang, J.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Ishibashi, T.

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

Iwase, Y.

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

Joo, C. W.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Kahn, A.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Kee, I.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Khangura, R.

X. D. Feng, R. Khangura, and Z. H. Lu, “Metal–organic–metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–499 (2004).
[Crossref]

Kim, J. W.

Y.-K. Kim, J. W. Kim, and Y. Park, “Energy level alignment at a charge generation interface between 4,4’-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile,” Appl. Phys. Lett. 94(6), 063305 (2009).
[Crossref]

Kim, J.-J.

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13(5), 826–832 (2012).
[Crossref]

Kim, S.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Kim, S.-Y.

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13(5), 826–832 (2012).
[Crossref]

Kim, Y.-K.

Y.-K. Kim, J. W. Kim, and Y. Park, “Energy level alignment at a charge generation interface between 4,4’-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile,” Appl. Phys. Lett. 94(6), 063305 (2009).
[Crossref]

Koo, S.-M.

S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors,” Nanotechnology 16(9), 1482–1485 (2005).
[Crossref]

Kowalsky, W.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Krasnov, A. N.

A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80(20), 3853–3855 (2002).
[Crossref]

Kröger, M.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Kuo, C.-C.

Kuo, Y.-H.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87(14), 143507 (2005).
[Crossref]

Kwack, J.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Kwon, H.-J.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Lee, B. D.

B. D. Lee, Y.-H. Cho, M. H. Oh, S. Y. Lee, S. Y. Lee, J. H. Lee, and D. S. Zang, “Characteristics of contrast of active-matrix organic light-emitting diodes containing a black matrix and antireflection layers,” Mater. Chem. Phys. 112(3), 734–737 (2008).
[Crossref]

Lee, J.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Lee, J. H.

B. D. Lee, Y.-H. Cho, M. H. Oh, S. Y. Lee, S. Y. Lee, J. H. Lee, and D. S. Zang, “Characteristics of contrast of active-matrix organic light-emitting diodes containing a black matrix and antireflection layers,” Mater. Chem. Phys. 112(3), 734–737 (2008).
[Crossref]

Lee, J. W.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Lee, J.-H.

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13(5), 826–832 (2012).
[Crossref]

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13(5), 826–832 (2012).
[Crossref]

Lee, J.-I.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Lee, S.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Lee, S. Y.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

B. D. Lee, Y.-H. Cho, M. H. Oh, S. Y. Lee, S. Y. Lee, J. H. Lee, and D. S. Zang, “Characteristics of contrast of active-matrix organic light-emitting diodes containing a black matrix and antireflection layers,” Mater. Chem. Phys. 112(3), 734–737 (2008).
[Crossref]

B. D. Lee, Y.-H. Cho, M. H. Oh, S. Y. Lee, S. Y. Lee, J. H. Lee, and D. S. Zang, “Characteristics of contrast of active-matrix organic light-emitting diodes containing a black matrix and antireflection layers,” Mater. Chem. Phys. 112(3), 734–737 (2008).
[Crossref]

Lee, T.-W.

T.-W. Lee and Y. Chung, “Control of the surface composition of a conducting-polymer complex film to tune the work function,” Adv. Funct. Mater. 18(15), 2246–2252 (2008).
[Crossref]

Leo, K.

C. Fuchs, T. Schwab, M. Wieczorek, M. C. Gather, S. Hofmann, K. Leo, and R. Scholz, “Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling,” Proc. SPIE 9183, 91831Z (2014).
[Crossref]

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B 85(11), 115205 (2012).
[Crossref]

Li, Q.

S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors,” Nanotechnology 16(9), 1482–1485 (2005).
[Crossref]

Lin, C.-L.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87(14), 143507 (2005).
[Crossref]

Liu, R.

R. Liu, C. Xu, R. Biswas, J. Shinar, and R. Shinar, “MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor,” Appl. Phys. Lett. 99(9), 093305 (2011).
[Crossref]

Lu, Z. H.

X. D. Feng, R. Khangura, and Z. H. Lu, “Metal–organic–metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–499 (2004).
[Crossref]

Lub, J.

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, “Improving the Brightness and Daylight Contrast of Organic Light-Emitting Diodes,” Adv. Funct. Mater. 15(1), 138–142 (2005).
[Crossref]

Lüssem, B.

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B 85(11), 115205 (2012).
[Crossref]

Ma, D.

H. You, Y. Dai, Z. Zhang, and D. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]

Madathil, J.

L.-S. Hung and J. Madathil, “Reduction of ambient light reflection in organic light-emitting diodes,” Adv. Mater. 13(23), 1787–1790 (2001).
[Crossref]

Meerheim, R.

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B 85(11), 115205 (2012).
[Crossref]

Meyer, J.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Mohammadi, S.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Moon, J.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Müller-Meskamp, L.

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

Nakagawa, R.

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

Oh, M. H.

B. D. Lee, Y.-H. Cho, M. H. Oh, S. Y. Lee, S. Y. Lee, J. H. Lee, and D. S. Zang, “Characteristics of contrast of active-matrix organic light-emitting diodes containing a black matrix and antireflection layers,” Mater. Chem. Phys. 112(3), 734–737 (2008).
[Crossref]

Park, Y.

Y.-K. Kim, J. W. Kim, and Y. Park, “Energy level alignment at a charge generation interface between 4,4’-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile,” Appl. Phys. Lett. 94(6), 063305 (2009).
[Crossref]

Poitras, D.

Py, C.

Richter, C. A.

S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors,” Nanotechnology 16(9), 1482–1485 (2005).
[Crossref]

Riedl, T.

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Sasaoka, T.

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

Sato, Y.

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

Scholz, R.

C. Fuchs, T. Schwab, M. Wieczorek, M. C. Gather, S. Hofmann, K. Leo, and R. Scholz, “Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling,” Proc. SPIE 9183, 91831Z (2014).
[Crossref]

Schubert, S.

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

Schwab, T.

C. Fuchs, T. Schwab, M. Wieczorek, M. C. Gather, S. Hofmann, K. Leo, and R. Scholz, “Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling,” Proc. SPIE 9183, 91831Z (2014).
[Crossref]

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

Sekiya, M.

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

Shim, H.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Shin, J.-W.

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Shinar, J.

R. Liu, C. Xu, R. Biswas, J. Shinar, and R. Shinar, “MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor,” Appl. Phys. Lett. 99(9), 093305 (2011).
[Crossref]

Shinar, R.

R. Liu, C. Xu, R. Biswas, J. Shinar, and R. Shinar, “MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor,” Appl. Phys. Lett. 99(9), 093305 (2011).
[Crossref]

Singh, R.

R. Singh, K. N. N. Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Solanki, A.

R. Singh, K. N. N. Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Song, M.

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

Teunissen, J.-P.

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, “Improving the Brightness and Daylight Contrast of Organic Light-Emitting Diodes,” Adv. Funct. Mater. 15(1), 138–142 (2005).
[Crossref]

Thomschke, M.

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

Unni, K. N. N.

R. Singh, K. N. N. Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Urabe, T.

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

Vaenkatesan, V.

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, “Improving the Brightness and Daylight Contrast of Organic Light-Emitting Diodes,” Adv. Funct. Mater. 15(1), 138–142 (2005).
[Crossref]

Vogel, E. M.

S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors,” Nanotechnology 16(9), 1482–1485 (2005).
[Crossref]

Wegh, R. T.

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, “Improving the Brightness and Daylight Contrast of Organic Light-Emitting Diodes,” Adv. Funct. Mater. 15(1), 138–142 (2005).
[Crossref]

Wieczorek, M.

C. Fuchs, T. Schwab, M. Wieczorek, M. C. Gather, S. Hofmann, K. Leo, and R. Scholz, “Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling,” Proc. SPIE 9183, 91831Z (2014).
[Crossref]

Wu, C.-C.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87(14), 143507 (2005).
[Crossref]

Xu, C.

R. Liu, C. Xu, R. Biswas, J. Shinar, and R. Shinar, “MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor,” Appl. Phys. Lett. 99(9), 093305 (2011).
[Crossref]

Yamada, J.

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

Yang, C.-J.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87(14), 143507 (2005).
[Crossref]

Yeh, Y.-H.

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87(14), 143507 (2005).
[Crossref]

Yoo, S.

You, H.

H. You, Y. Dai, Z. Zhang, and D. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]

Zang, D. S.

B. D. Lee, Y.-H. Cho, M. H. Oh, S. Y. Lee, S. Y. Lee, J. H. Lee, and D. S. Zang, “Characteristics of contrast of active-matrix organic light-emitting diodes containing a black matrix and antireflection layers,” Mater. Chem. Phys. 112(3), 734–737 (2008).
[Crossref]

Zhang, Z.

H. You, Y. Dai, Z. Zhang, and D. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]

Adv. Funct. Mater. (2)

V. Vaenkatesan, R. T. Wegh, J.-P. Teunissen, J. Lub, C. W. M. Bastiaansen, and D. J. Broer, “Improving the Brightness and Daylight Contrast of Organic Light-Emitting Diodes,” Adv. Funct. Mater. 15(1), 138–142 (2005).
[Crossref]

T.-W. Lee and Y. Chung, “Control of the surface composition of a conducting-polymer complex film to tune the work function,” Adv. Funct. Mater. 18(15), 2246–2252 (2008).
[Crossref]

Adv. Mater. (2)

S. Kim, H.-J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, “Low-power flexible organic light-emitting diode display device,” Adv. Mater. 23(31), 3511–3516 (2011).
[Crossref] [PubMed]

L.-S. Hung and J. Madathil, “Reduction of ambient light reflection in organic light-emitting diodes,” Adv. Mater. 13(23), 1787–1790 (2001).
[Crossref]

Adv. Opt. Mater. (1)

T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 707–7013 (2013).
[Crossref]

Appl. Phys. Lett. (6)

M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films,” Appl. Phys. Lett. 95(12), 123301 (2009).
[Crossref]

Y.-K. Kim, J. W. Kim, and Y. Park, “Energy level alignment at a charge generation interface between 4,4’-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile,” Appl. Phys. Lett. 94(6), 063305 (2009).
[Crossref]

R. Liu, C. Xu, R. Biswas, J. Shinar, and R. Shinar, “MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor,” Appl. Phys. Lett. 99(9), 093305 (2011).
[Crossref]

A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett. 80(20), 3853–3855 (2002).
[Crossref]

X. D. Feng, R. Khangura, and Z. H. Lu, “Metal–organic–metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–499 (2004).
[Crossref]

C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87(14), 143507 (2005).
[Crossref]

J. Appl. Phys. (1)

H. You, Y. Dai, Z. Zhang, and D. Ma, “Improved performances of organic light-emitting diodes with metal oxide as anode buffer,” J. Appl. Phys. 101(2), 026105 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Ishibashi, J. Yamada, T. Hirano, Y. Iwase, Y. Sato, R. Nakagawa, M. Sekiya, T. Sasaoka, and T. Urabe, “Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Jpn. J. Appl. Phys. 45(5B), 4392–4395 (2006).
[Crossref]

Mater. Chem. Phys. (1)

B. D. Lee, Y.-H. Cho, M. H. Oh, S. Y. Lee, S. Y. Lee, J. H. Lee, and D. S. Zang, “Characteristics of contrast of active-matrix organic light-emitting diodes containing a black matrix and antireflection layers,” Mater. Chem. Phys. 112(3), 734–737 (2008).
[Crossref]

Nanotechnology (1)

S.-M. Koo, M. D. Edelstein, Q. Li, C. A. Richter, and E. M. Vogel, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors,” Nanotechnology 16(9), 1482–1485 (2005).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

R. Singh, K. N. N. Unni, and A. Solanki, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Org. Electron. (2)

S.-Y. Kim, J.-H. Lee, J.-H. Lee, and J.-J. Kim, “High contrast flexible organic light emitting diodes under ambient light without sacrificing luminous efficiency,” Org. Electron. 13(5), 826–832 (2012).
[Crossref]

J. W. Huh, J. Moon, J. W. Lee, J. Lee, D.-H. Cho, J.-W. Shin, J.-H. Han, J. Hwang, C. W. Joo, J.-I. Lee, and H. Y. Chu, “Organic/metal hybrid cathode for transparent organic light-emitting diodes,” Org. Electron. 14(8), 2039–2045 (2013).
[Crossref]

Phys. Rev. B (1)

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B 85(11), 115205 (2012).
[Crossref]

Proc. SPIE (1)

C. Fuchs, T. Schwab, M. Wieczorek, M. C. Gather, S. Hofmann, K. Leo, and R. Scholz, “Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling,” Proc. SPIE 9183, 91831Z (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagrams of OLED structures under study: (b) Measured reflectance spectra of OLEDs (ROLED) under study. Inset: photograph of the proposed OLED device. The white line in the photograph is a guide to eye indicating the active region. Luminous reflectance values of the OLED devices ROLED(L) are also shown for each case.
Fig. 2
Fig. 2 Device performance of high CR OLEDs with PEDOT:PSS (circle; blue), HAT-CN (square; black), and MoO3 (triangle; red) injection layers: (a) Current density (J)-voltage (V)-luminance (L) characteristics; (b) current efficiency (CE) - L characteristics.
Fig. 3
Fig. 3 Optical simulation results for proposed bottom electrodes and high CR OLED structures. (a) (left) The reflectance of bottom electrode (Rbot) vs. HIL thickness (d) for HILs with refractive indices (n) of 1.5, 1.8, and 2.0 at λ of 520 nm. (right) Rbot spectra obtained for HILs under study. (b) Scaling behavior of the reflectance (ROLED) and output intensity (IOLED) of OLEDs vs. Rbot assuming that the transmittance and the reflectance of top electrode combination (Alq3 capped Ag) for light incident from organic layers are 70% and 15%, respectively. (c) Schematic diagram illustrating the definition of various reflectance and transmittance terms.
Fig. 4
Fig. 4 (a) Angular intensity characteristics of high CR OLEDs with HAT-CN, PEDOT:PSS, and MoO3. (b) Measured intensity spectra of OLEDs with PEDOT:PSS as HIL under study for several viewing angles.
Fig. 5
Fig. 5 Power dissipation spectra weighted with the emitter spectrum (arbitrary units) per unit normalized in-plane wavevector (u) and unit wavelength of OLEDs with (a) PEDOT:PSS, (b) HAT-CN, and (c) MoO3. (d) Power dissipation spectra at the wavelength of 520 nm. Wavelength dependence of the power spectra calculated for the same OLED device; (e) outcoupled power U(λ), (f) total radiated power F(λ), also called “Purcell factor,” and (g) U(λ)/ F(λ), which is proportional to the outcoupling efficiency at λ.
Fig. 6
Fig. 6 (a) Outcoupling efficiency calculated by Model 2 and (b) ROLED(L) vs. capping (Alq3) layer thickness (dAlq3) and PEDOT:PSS thickness (dPEDOT:PSS). The cross point corresponds to the present device structure. The thickness of the organic HTL was chosen such that the overall optical thickness including HIL remained constant.

Tables (1)

Tables Icon

Table 1 Efficiency comparison of the proposed high CR OLEDs

Metrics