Abstract

Iridescent structural colors in biology exhibit sophisticated spatially-varying reflectance properties that depend on both the illumination and viewing angles. The classification of such spectral and spatial information in iridescent structurally colored surfaces is important to elucidate the functional role of irregularity and to improve understanding of color pattern formation at different length scales. In this study, we propose a non-invasive method for the spectral classification of spatial reflectance patterns at the micron scale based on the multispectral imaging technique and the principal component analysis similarity factor (PCASF). We demonstrate the effectiveness of this approach and its component methods by detailing its use in the study of the angle-dependent reflectance properties of Pavo cristatus (the common peacock) feathers, a species of peafowl very well known to exhibit bright and saturated iridescent colors. We show that multispectral reflectance imaging and PCASF approaches can be used as effective tools for spectral recognition of iridescent patterns in the visible spectrum and provide meaningful information for spectral classification of the irregularity of the microstructure in iridescent plumage.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measuring and modeling the inconspicuous iridescence of Formosan blue magpie’s feather (Urocissacaerulea)

Shih-Fang Liao, Chun-Yang Yao, and Cheng-Chung Lee
Appl. Opt. 54(16) 4979-4983 (2015)

Fast model-based multispectral imaging using nonnegative principal component analysis

Moon-Hyun Lee, Hanhoon Park, In Ryu, and Jong-Il Park
Opt. Lett. 37(11) 1937-1939 (2012)

Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy

Hein L. Leertouwer, Bodo D. Wilts, and Doekele G. Stavenga
Opt. Express 19(24) 24061-24066 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
    [Crossref]
  2. R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
    [Crossref]
  3. R. O. Prum, R. Torres, S. Williamson, and J. Dyck, “Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs,” Proc. R. Soc. Lond. B Biol. Sci. 266(1414), 13–22 (1999).
    [Crossref]
  4. R. O. Prum and R. H. Torres, “A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures,” Integr. Comp. Biol. 43(4), 591–602 (2003).
    [Crossref] [PubMed]
  5. H. Durrer, “Schillerfarben beim Pfau (Pavo cristatus L.),” Verh. Naturf. Ges. Basel 73, 204–224 (1962).
  6. C. W. Mason, “Structural colors in feathers II,” J. Phys. Chem. 27(5), 401–448 (1922).
    [Crossref]
  7. J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
    [Crossref] [PubMed]
  8. Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi, “Structural origin of the brown color of barbules in male peacock tail feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 010902 (2005).
    [Crossref] [PubMed]
  9. S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma 17, 169–181 (2002).
  10. S. C. Burgess, A. King, and R. Hyde, “An analysis of optimal structural features in the peacock tail feather,” Opt. Lasers Eng. 38(4-6), 329–334 (2006).
    [Crossref]
  11. V. E. Johansen, “Optical role of randomness for structured surfaces,” Appl. Opt. 53(11), 2405–2415 (2014).
    [Crossref] [PubMed]
  12. A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
    [Crossref]
  13. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009).
    [PubMed]
  14. D. Osorio and A. D. Ham, “Spectral reflectance and directional properties of structural coloration in bird plumage,” J. Exp. Biol. 205(Pt 14), 2017–2027 (2002).
    [PubMed]
  15. D. J. Brink and N. G. Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004).
    [Crossref]
  16. H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
    [Crossref] [PubMed]
  17. M. C. Stoddard and R. O. Prum, “Evolution of avian plumage color in a tetrahedral color space: A phylogenetic analysis of new world buntings,” Am. Nat. 171(6), 755–776 (2008).
    [Crossref] [PubMed]
  18. D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci. 278(1715), 2098–2104 (2011).
    [Crossref] [PubMed]
  19. M. Meadows, N. Morehouse, R. Rutowski, J. Douglas, and K. McGraw, “Quantifying iridescent coloration in animals: a method for improving repeatability,” Behav. Ecol. Sociobiol. 65(6), 1317–1327 (2011).
    [Crossref]
  20. M. C. Stoddard and R. O. Prum, “How colorful are birds? Evolution of the avian plumage color gamut,” Behav. Ecol. 22(5), 1042–1052 (2011).
    [Crossref]
  21. D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express 17(1), 193–202 (2009).
    [Crossref] [PubMed]
  22. M. H. Kim, H. Rushmeier, J. Dorsey, T. A. Harvey, R. O. Prum, D. S. Kittle, and D. J. Brady, “3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects,” ACM Trans. Graph. 31, 1–11 (2012).
  23. T. A. Harvey, K. S. Bostwick, and S. Marschner, “Measuring spatially- and directionally-varying light scattering from biological material,” J. Vis. Exp. 75(75), e50254 (2013).
    [PubMed]
  24. T. A. Harvey, K. S. Bostwick, and S. Marschner, “Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus,” J. R. Soc. Interface 10(86), 20130391 (2013).
    [Crossref] [PubMed]
  25. M. Brydegaard, P. Samuelsson, M. W. Kudenov, and S. Svanberg, “On the exploitation of mid-infrared iridescence of plumage for remote classification of nocturnal migrating birds,” Appl. Spectrosc. 67(5), 477–490 (2013).
    [Crossref] [PubMed]
  26. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. 50(8), 1170–1185 (2011).
    [Crossref] [PubMed]
  27. M. W. Kudenov and E. L. Dereniak, “Compact snapshot real-time imaging spectrometer,” Proc. SPIE 8186, 81860W (2011).
    [Crossref]
  28. M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50(15), 2283–2293 (2011).
    [Crossref] [PubMed]
  29. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [Crossref]
  30. H. F. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image Analysis (John Wiley & Sons, 2007).
  31. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
    [Crossref] [PubMed]
  32. M. Ottavian, P. Facco, L. Fasolato, and M. Barolo, “Multispectral data classification using similarity factors,” Chemometr. Intell. Lab. 118, 13–23 (2012).
    [Crossref]
  33. A. Singhal and D. E. Seborg, “Matching patterns from historical data using PCA and distance similarity factors,” in Proceedings of the American Control Conference, (IEEE, 2001), pp. 1759–1764.
    [Crossref]
  34. W. J. Krzanowski, “Between groups comparison of principal components,” JASA 74(367), 703–707 (1979).
    [Crossref]
  35. M. C. Johannesmeyer, A. Singhal, and D. E. Seborg, “Pattern matching in historical data,” AIChE J. 48(9), 2022–2038 (2002).
    [Crossref]
  36. C. C. Chiao, T. W. Cronin, and D. Osorio, “Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants,” J. Opt. Soc. Am. A 17(2), 218–224 (2000).
    [Crossref] [PubMed]
  37. P. Bajorski, Statistics for Imaging, Optics, and Photonics (John Wiley & Sons, 2012).
  38. J. M. Lopez-Alonso and J. Alda, “Characterization of scenarios for multiband and hyperspectral imagers,” Proc. SPIE 5439, 140–149 (2004).
    [Crossref]
  39. J. M. Lopez-Alonso and J. Alda, “Characterization of hyperspectral imagers and scenes: background and equipment artifacts,” Proc. SPIE 5612, 265–274 (2004).
    [Crossref]
  40. D. Y. Tzeng and R. S. Berns, “A review of principal component analysis and its applications to color technology,” Color Res. Appl. 30(2), 84–98 (2005).
    [Crossref]
  41. J. M. Medina, “Linear basis for metallic and iridescent colors,” Appl. Opt. 47(30), 5644–5653 (2008).
    [Crossref] [PubMed]
  42. I. T. Jolliffe, Principal Component Analysis, Second ed., Springer Series in Statistics (Springer-Verlag, 2002).
  43. A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision - behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78(1), 81–118 (2003).
    [Crossref] [PubMed]
  44. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (John Wiley & Sons, 1982).
  45. I. M. Weiss and H. O. K. Kirchner, “The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) I. structure, mechanics, and chemistry of the tail feather coverts,” J. Exp. Zool. A Ecol. Genet. Physiol. 313A, 690–703 (2010).
  46. S. Pabisch, S. Puchegger, H. O. K. Kirchner, I. M. Weiss, and H. Peterlik, “Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba,” J. Struct. Biol. 172(3), 270–275 (2010).
    [Crossref] [PubMed]
  47. P. Simonis, M. Rattal, M. Oualim, A. Mouhse, and J.-P. Vigneron, “Radiative contribution to thermal conductance in animal furs and other woolly insulators,” Opt. Express 22(2), 1940–1951 (2014).
    [Crossref] [PubMed]
  48. M. Mishra, “Transformation of colourful pattern of eyespot in peacock wing,” Curr. Sci. 107, 186–188 (2014).
  49. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567–578 (2001).
    [Crossref] [PubMed]
  50. A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of BRDF models,” in Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques, (Eurographics Association, 2005), pp. 117–126.
  51. R. Shimada and Y. Kawaguchi, “Spectral BRDF creation for structural colors,” in Proceedings of the ACM SIGGRAPH 2005, (ACM Press, 2005), p. 48.
  52. R. Shimada and Y. Kawaguchi, “BRDF estimation system for structural colors,” in Proceedings of the 2005 International Conference on Augmented Tele-Existence, (ACM Press, 2005), pp. 16–21.
    [Crossref]
  53. Y. Sun, “Rendering biological iridescences with RGB-based renderers,” ACM Trans. Graph. 25(1), 100–129 (2006).
    [Crossref]
  54. H. Li, S.-C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2006).
  55. D. B. Kim, M. K. Seo, K. Y. Kim, and K. H. Lee, “Acquisition and representation of pearlescent paints using an image-based goniospectrophotometer,” Opt. Eng. 49(4), 043604 (2010).
    [Crossref]
  56. N. Okada, D. Zhu, D. Cai, J. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42(1), 25–36 (2013).
    [Crossref]
  57. F.- Wu and C.- Zheng, “Microfacet-based interference simulation for multilayer films,” Graph. Models 78, 26–35 (2015).
    [Crossref]
  58. J. M. Medina, J. A. Díaz, E. Valero, J. L. Nieves, and P. Vukusic, “Detailed experimental characterization of reflectance spectra of Sasakia charonda butterfly using multispectral optical imaging,” Opt. Eng. 53(3), 033111 (2014).
    [Crossref]
  59. M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, “Proposal for a standard default color space for the Internet - sRGB,” in Proceedings of the IS&T/SID Fourth Color Imaging Conference: Color Science, Systems and Applications, (The Society for Imaging Science and Technology, 1996), pp. 238–245.
  60. K. R. Millington, “Diffuse reflectance spectroscopy of fibrous proteins,” Amino Acids 43(3), 1277–1285 (2012).
    [Crossref] [PubMed]

2015 (1)

F.- Wu and C.- Zheng, “Microfacet-based interference simulation for multilayer films,” Graph. Models 78, 26–35 (2015).
[Crossref]

2014 (4)

J. M. Medina, J. A. Díaz, E. Valero, J. L. Nieves, and P. Vukusic, “Detailed experimental characterization of reflectance spectra of Sasakia charonda butterfly using multispectral optical imaging,” Opt. Eng. 53(3), 033111 (2014).
[Crossref]

M. Mishra, “Transformation of colourful pattern of eyespot in peacock wing,” Curr. Sci. 107, 186–188 (2014).

P. Simonis, M. Rattal, M. Oualim, A. Mouhse, and J.-P. Vigneron, “Radiative contribution to thermal conductance in animal furs and other woolly insulators,” Opt. Express 22(2), 1940–1951 (2014).
[Crossref] [PubMed]

V. E. Johansen, “Optical role of randomness for structured surfaces,” Appl. Opt. 53(11), 2405–2415 (2014).
[Crossref] [PubMed]

2013 (4)

M. Brydegaard, P. Samuelsson, M. W. Kudenov, and S. Svanberg, “On the exploitation of mid-infrared iridescence of plumage for remote classification of nocturnal migrating birds,” Appl. Spectrosc. 67(5), 477–490 (2013).
[Crossref] [PubMed]

N. Okada, D. Zhu, D. Cai, J. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42(1), 25–36 (2013).
[Crossref]

T. A. Harvey, K. S. Bostwick, and S. Marschner, “Measuring spatially- and directionally-varying light scattering from biological material,” J. Vis. Exp. 75(75), e50254 (2013).
[PubMed]

T. A. Harvey, K. S. Bostwick, and S. Marschner, “Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus,” J. R. Soc. Interface 10(86), 20130391 (2013).
[Crossref] [PubMed]

2012 (3)

M. H. Kim, H. Rushmeier, J. Dorsey, T. A. Harvey, R. O. Prum, D. S. Kittle, and D. J. Brady, “3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects,” ACM Trans. Graph. 31, 1–11 (2012).

M. Ottavian, P. Facco, L. Fasolato, and M. Barolo, “Multispectral data classification using similarity factors,” Chemometr. Intell. Lab. 118, 13–23 (2012).
[Crossref]

K. R. Millington, “Diffuse reflectance spectroscopy of fibrous proteins,” Amino Acids 43(3), 1277–1285 (2012).
[Crossref] [PubMed]

2011 (6)

J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. 50(8), 1170–1185 (2011).
[Crossref] [PubMed]

M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50(15), 2283–2293 (2011).
[Crossref] [PubMed]

M. W. Kudenov and E. L. Dereniak, “Compact snapshot real-time imaging spectrometer,” Proc. SPIE 8186, 81860W (2011).
[Crossref]

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci. 278(1715), 2098–2104 (2011).
[Crossref] [PubMed]

M. Meadows, N. Morehouse, R. Rutowski, J. Douglas, and K. McGraw, “Quantifying iridescent coloration in animals: a method for improving repeatability,” Behav. Ecol. Sociobiol. 65(6), 1317–1327 (2011).
[Crossref]

M. C. Stoddard and R. O. Prum, “How colorful are birds? Evolution of the avian plumage color gamut,” Behav. Ecol. 22(5), 1042–1052 (2011).
[Crossref]

2010 (3)

I. M. Weiss and H. O. K. Kirchner, “The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) I. structure, mechanics, and chemistry of the tail feather coverts,” J. Exp. Zool. A Ecol. Genet. Physiol. 313A, 690–703 (2010).

S. Pabisch, S. Puchegger, H. O. K. Kirchner, I. M. Weiss, and H. Peterlik, “Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba,” J. Struct. Biol. 172(3), 270–275 (2010).
[Crossref] [PubMed]

D. B. Kim, M. K. Seo, K. Y. Kim, and K. H. Lee, “Acquisition and representation of pearlescent paints using an image-based goniospectrophotometer,” Opt. Eng. 49(4), 043604 (2010).
[Crossref]

2009 (2)

D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express 17(1), 193–202 (2009).
[Crossref] [PubMed]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009).
[PubMed]

2008 (3)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[Crossref]

M. C. Stoddard and R. O. Prum, “Evolution of avian plumage color in a tetrahedral color space: A phylogenetic analysis of new world buntings,” Am. Nat. 171(6), 755–776 (2008).
[Crossref] [PubMed]

J. M. Medina, “Linear basis for metallic and iridescent colors,” Appl. Opt. 47(30), 5644–5653 (2008).
[Crossref] [PubMed]

2007 (1)

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
[Crossref]

2006 (4)

S. C. Burgess, A. King, and R. Hyde, “An analysis of optimal structural features in the peacock tail feather,” Opt. Lasers Eng. 38(4-6), 329–334 (2006).
[Crossref]

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Y. Sun, “Rendering biological iridescences with RGB-based renderers,” ACM Trans. Graph. 25(1), 100–129 (2006).
[Crossref]

H. Li, S.-C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2006).

2005 (2)

Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi, “Structural origin of the brown color of barbules in male peacock tail feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 010902 (2005).
[Crossref] [PubMed]

D. Y. Tzeng and R. S. Berns, “A review of principal component analysis and its applications to color technology,” Color Res. Appl. 30(2), 84–98 (2005).
[Crossref]

2004 (3)

J. M. Lopez-Alonso and J. Alda, “Characterization of scenarios for multiband and hyperspectral imagers,” Proc. SPIE 5439, 140–149 (2004).
[Crossref]

J. M. Lopez-Alonso and J. Alda, “Characterization of hyperspectral imagers and scenes: background and equipment artifacts,” Proc. SPIE 5612, 265–274 (2004).
[Crossref]

D. J. Brink and N. G. Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004).
[Crossref]

2003 (3)

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[Crossref] [PubMed]

R. O. Prum and R. H. Torres, “A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures,” Integr. Comp. Biol. 43(4), 591–602 (2003).
[Crossref] [PubMed]

A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision - behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78(1), 81–118 (2003).
[Crossref] [PubMed]

2002 (3)

M. C. Johannesmeyer, A. Singhal, and D. E. Seborg, “Pattern matching in historical data,” AIChE J. 48(9), 2022–2038 (2002).
[Crossref]

S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma 17, 169–181 (2002).

D. Osorio and A. D. Ham, “Spectral reflectance and directional properties of structural coloration in bird plumage,” J. Exp. Biol. 205(Pt 14), 2017–2027 (2002).
[PubMed]

2001 (1)

2000 (2)

1999 (1)

R. O. Prum, R. Torres, S. Williamson, and J. Dyck, “Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs,” Proc. R. Soc. Lond. B Biol. Sci. 266(1414), 13–22 (1999).
[Crossref]

1998 (1)

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

1985 (1)

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

1979 (1)

W. J. Krzanowski, “Between groups comparison of principal components,” JASA 74(367), 703–707 (1979).
[Crossref]

1962 (1)

H. Durrer, “Schillerfarben beim Pfau (Pavo cristatus L.),” Verh. Naturf. Ges. Basel 73, 204–224 (1962).

1922 (1)

C. W. Mason, “Structural colors in feathers II,” J. Phys. Chem. 27(5), 401–448 (1922).
[Crossref]

Alda, J.

J. M. Lopez-Alonso and J. Alda, “Characterization of scenarios for multiband and hyperspectral imagers,” Proc. SPIE 5439, 140–149 (2004).
[Crossref]

J. M. Lopez-Alonso and J. Alda, “Characterization of hyperspectral imagers and scenes: background and equipment artifacts,” Proc. SPIE 5612, 265–274 (2004).
[Crossref]

Barolo, M.

M. Ottavian, P. Facco, L. Fasolato, and M. Barolo, “Multispectral data classification using similarity factors,” Chemometr. Intell. Lab. 118, 13–23 (2012).
[Crossref]

Bennett, A. T. D.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
[Crossref]

Berg, N. G.

D. J. Brink and N. G. Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004).
[Crossref]

Berns, R. S.

D. Y. Tzeng and R. S. Berns, “A review of principal component analysis and its applications to color technology,” Color Res. Appl. 30(2), 84–98 (2005).
[Crossref]

Bostwick, K. S.

T. A. Harvey, K. S. Bostwick, and S. Marschner, “Measuring spatially- and directionally-varying light scattering from biological material,” J. Vis. Exp. 75(75), e50254 (2013).
[PubMed]

T. A. Harvey, K. S. Bostwick, and S. Marschner, “Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus,” J. R. Soc. Interface 10(86), 20130391 (2013).
[Crossref] [PubMed]

Brady, D. J.

M. H. Kim, H. Rushmeier, J. Dorsey, T. A. Harvey, R. O. Prum, D. S. Kittle, and D. J. Brady, “3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects,” ACM Trans. Graph. 31, 1–11 (2012).

Brink, D. J.

D. J. Brink and N. G. Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004).
[Crossref]

Brydegaard, M.

Burgess, S. C.

S. C. Burgess, A. King, and R. Hyde, “An analysis of optimal structural features in the peacock tail feather,” Opt. Lasers Eng. 38(4-6), 329–334 (2006).
[Crossref]

Cai, D.

N. Okada, D. Zhu, D. Cai, J. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42(1), 25–36 (2013).
[Crossref]

Chiao, C. C.

Cole, J.

N. Okada, D. Zhu, D. Cai, J. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42(1), 25–36 (2013).
[Crossref]

Craven-Jones, J.

Cronin, T. W.

Dereniak, E. L.

Díaz, J. A.

J. M. Medina, J. A. Díaz, E. Valero, J. L. Nieves, and P. Vukusic, “Detailed experimental characterization of reflectance spectra of Sasakia charonda butterfly using multispectral optical imaging,” Opt. Eng. 53(3), 033111 (2014).
[Crossref]

Dong, B.

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Dorsey, J.

M. H. Kim, H. Rushmeier, J. Dorsey, T. A. Harvey, R. O. Prum, D. S. Kittle, and D. J. Brady, “3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects,” ACM Trans. Graph. 31, 1–11 (2012).

Douglas, J.

M. Meadows, N. Morehouse, R. Rutowski, J. Douglas, and K. McGraw, “Quantifying iridescent coloration in animals: a method for improving repeatability,” Behav. Ecol. Sociobiol. 65(6), 1317–1327 (2011).
[Crossref]

Durrer, H.

H. Durrer, “Schillerfarben beim Pfau (Pavo cristatus L.),” Verh. Naturf. Ges. Basel 73, 204–224 (1962).

Dyck, J.

R. O. Prum, R. Torres, S. Williamson, and J. Dyck, “Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs,” Proc. R. Soc. Lond. B Biol. Sci. 266(1414), 13–22 (1999).
[Crossref]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

Enoch, S.

Escuti, M. J.

Facco, P.

M. Ottavian, P. Facco, L. Fasolato, and M. Barolo, “Multispectral data classification using similarity factors,” Chemometr. Intell. Lab. 118, 13–23 (2012).
[Crossref]

Fasolato, L.

M. Ottavian, P. Facco, L. Fasolato, and M. Barolo, “Multispectral data classification using similarity factors,” Chemometr. Intell. Lab. 118, 13–23 (2012).
[Crossref]

Foo, S.-C.

H. Li, S.-C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2006).

Fu, R.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[Crossref] [PubMed]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Goetz, A. F. H.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

Gomez, D.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
[Crossref]

Gralak, B.

Ham, A. D.

D. Osorio and A. D. Ham, “Spectral reflectance and directional properties of structural coloration in bird plumage,” J. Exp. Biol. 205(Pt 14), 2017–2027 (2002).
[PubMed]

Hart, N. S.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
[Crossref]

Harvey, T. A.

T. A. Harvey, K. S. Bostwick, and S. Marschner, “Measuring spatially- and directionally-varying light scattering from biological material,” J. Vis. Exp. 75(75), e50254 (2013).
[PubMed]

T. A. Harvey, K. S. Bostwick, and S. Marschner, “Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus,” J. R. Soc. Interface 10(86), 20130391 (2013).
[Crossref] [PubMed]

M. H. Kim, H. Rushmeier, J. Dorsey, T. A. Harvey, R. O. Prum, D. S. Kittle, and D. J. Brady, “3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects,” ACM Trans. Graph. 31, 1–11 (2012).

Hu, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[Crossref] [PubMed]

Hyde, R.

S. C. Burgess, A. King, and R. Hyde, “An analysis of optimal structural features in the peacock tail feather,” Opt. Lasers Eng. 38(4-6), 329–334 (2006).
[Crossref]

Jalme, M. S.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
[Crossref]

Johannesmeyer, M. C.

M. C. Johannesmeyer, A. Singhal, and D. E. Seborg, “Pattern matching in historical data,” AIChE J. 48(9), 2022–2038 (2002).
[Crossref]

Johansen, V. E.

Kambe, M.

N. Okada, D. Zhu, D. Cai, J. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42(1), 25–36 (2013).
[Crossref]

Kelber, A.

A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision - behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78(1), 81–118 (2003).
[Crossref] [PubMed]

Kim, D. B.

D. B. Kim, M. K. Seo, K. Y. Kim, and K. H. Lee, “Acquisition and representation of pearlescent paints using an image-based goniospectrophotometer,” Opt. Eng. 49(4), 043604 (2010).
[Crossref]

Kim, K. Y.

D. B. Kim, M. K. Seo, K. Y. Kim, and K. H. Lee, “Acquisition and representation of pearlescent paints using an image-based goniospectrophotometer,” Opt. Eng. 49(4), 043604 (2010).
[Crossref]

Kim, M. H.

M. H. Kim, H. Rushmeier, J. Dorsey, T. A. Harvey, R. O. Prum, D. S. Kittle, and D. J. Brady, “3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects,” ACM Trans. Graph. 31, 1–11 (2012).

King, A.

S. C. Burgess, A. King, and R. Hyde, “An analysis of optimal structural features in the peacock tail feather,” Opt. Lasers Eng. 38(4-6), 329–334 (2006).
[Crossref]

Kinoshita, S.

N. Okada, D. Zhu, D. Cai, J. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42(1), 25–36 (2013).
[Crossref]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[Crossref]

S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma 17, 169–181 (2002).

Kirchner, H. O. K.

I. M. Weiss and H. O. K. Kirchner, “The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) I. structure, mechanics, and chemistry of the tail feather coverts,” J. Exp. Zool. A Ecol. Genet. Physiol. 313A, 690–703 (2010).

S. Pabisch, S. Puchegger, H. O. K. Kirchner, I. M. Weiss, and H. Peterlik, “Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba,” J. Struct. Biol. 172(3), 270–275 (2010).
[Crossref] [PubMed]

Kittle, D. S.

M. H. Kim, H. Rushmeier, J. Dorsey, T. A. Harvey, R. O. Prum, D. S. Kittle, and D. J. Brady, “3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects,” ACM Trans. Graph. 31, 1–11 (2012).

Krzanowski, W. J.

W. J. Krzanowski, “Between groups comparison of principal components,” JASA 74(367), 703–707 (1979).
[Crossref]

Kudenov, M. W.

Lee, K. H.

D. B. Kim, M. K. Seo, K. Y. Kim, and K. H. Lee, “Acquisition and representation of pearlescent paints using an image-based goniospectrophotometer,” Opt. Eng. 49(4), 043604 (2010).
[Crossref]

Leertouwer, H. L.

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci. 278(1715), 2098–2104 (2011).
[Crossref] [PubMed]

D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express 17(1), 193–202 (2009).
[Crossref] [PubMed]

Li, H.

H. Li, S.-C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2006).

Li, Y.

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi, “Structural origin of the brown color of barbules in male peacock tail feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 010902 (2005).
[Crossref] [PubMed]

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[Crossref] [PubMed]

Liu, X.

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi, “Structural origin of the brown color of barbules in male peacock tail feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 010902 (2005).
[Crossref] [PubMed]

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[Crossref] [PubMed]

Lopez-Alonso, J. M.

J. M. Lopez-Alonso and J. Alda, “Characterization of hyperspectral imagers and scenes: background and equipment artifacts,” Proc. SPIE 5612, 265–274 (2004).
[Crossref]

J. M. Lopez-Alonso and J. Alda, “Characterization of scenarios for multiband and hyperspectral imagers,” Proc. SPIE 5439, 140–149 (2004).
[Crossref]

Loyau, A.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
[Crossref]

Lu, Z.

Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi, “Structural origin of the brown color of barbules in male peacock tail feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 010902 (2005).
[Crossref] [PubMed]

Marschner, S.

T. A. Harvey, K. S. Bostwick, and S. Marschner, “Measuring spatially- and directionally-varying light scattering from biological material,” J. Vis. Exp. 75(75), e50254 (2013).
[PubMed]

T. A. Harvey, K. S. Bostwick, and S. Marschner, “Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus,” J. R. Soc. Interface 10(86), 20130391 (2013).
[Crossref] [PubMed]

Marshall, N. J.

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci. 278(1715), 2098–2104 (2011).
[Crossref] [PubMed]

Mason, C. W.

C. W. Mason, “Structural colors in feathers II,” J. Phys. Chem. 27(5), 401–448 (1922).
[Crossref]

McGraw, K.

M. Meadows, N. Morehouse, R. Rutowski, J. Douglas, and K. McGraw, “Quantifying iridescent coloration in animals: a method for improving repeatability,” Behav. Ecol. Sociobiol. 65(6), 1317–1327 (2011).
[Crossref]

Meadows, M.

M. Meadows, N. Morehouse, R. Rutowski, J. Douglas, and K. McGraw, “Quantifying iridescent coloration in animals: a method for improving repeatability,” Behav. Ecol. Sociobiol. 65(6), 1317–1327 (2011).
[Crossref]

Medina, J. M.

J. M. Medina, J. A. Díaz, E. Valero, J. L. Nieves, and P. Vukusic, “Detailed experimental characterization of reflectance spectra of Sasakia charonda butterfly using multispectral optical imaging,” Opt. Eng. 53(3), 033111 (2014).
[Crossref]

J. M. Medina, “Linear basis for metallic and iridescent colors,” Appl. Opt. 47(30), 5644–5653 (2008).
[Crossref] [PubMed]

Meyer, S.

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Millington, K. R.

K. R. Millington, “Diffuse reflectance spectroscopy of fibrous proteins,” Amino Acids 43(3), 1277–1285 (2012).
[Crossref] [PubMed]

Mishra, M.

M. Mishra, “Transformation of colourful pattern of eyespot in peacock wing,” Curr. Sci. 107, 186–188 (2014).

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[Crossref]

Morehouse, N.

M. Meadows, N. Morehouse, R. Rutowski, J. Douglas, and K. McGraw, “Quantifying iridescent coloration in animals: a method for improving repeatability,” Behav. Ecol. Sociobiol. 65(6), 1317–1327 (2011).
[Crossref]

Mouhse, A.

Moureau, B.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
[Crossref]

Nieves, J. L.

J. M. Medina, J. A. Díaz, E. Valero, J. L. Nieves, and P. Vukusic, “Detailed experimental characterization of reflectance spectra of Sasakia charonda butterfly using multispectral optical imaging,” Opt. Eng. 53(3), 033111 (2014).
[Crossref]

Oka, K.

Okada, N.

N. Okada, D. Zhu, D. Cai, J. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42(1), 25–36 (2013).
[Crossref]

Osorio, D.

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci. 278(1715), 2098–2104 (2011).
[Crossref] [PubMed]

A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision - behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78(1), 81–118 (2003).
[Crossref] [PubMed]

D. Osorio and A. D. Ham, “Spectral reflectance and directional properties of structural coloration in bird plumage,” J. Exp. Biol. 205(Pt 14), 2017–2027 (2002).
[PubMed]

C. C. Chiao, T. W. Cronin, and D. Osorio, “Color signals in natural scenes: characteristics of reflectance spectra and effects of natural illuminants,” J. Opt. Soc. Am. A 17(2), 218–224 (2000).
[Crossref] [PubMed]

Ottavian, M.

M. Ottavian, P. Facco, L. Fasolato, and M. Barolo, “Multispectral data classification using similarity factors,” Chemometr. Intell. Lab. 118, 13–23 (2012).
[Crossref]

Oualim, M.

Pabisch, S.

S. Pabisch, S. Puchegger, H. O. K. Kirchner, I. M. Weiss, and H. Peterlik, “Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba,” J. Struct. Biol. 172(3), 270–275 (2010).
[Crossref] [PubMed]

Peterlik, H.

S. Pabisch, S. Puchegger, H. O. K. Kirchner, I. M. Weiss, and H. Peterlik, “Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba,” J. Struct. Biol. 172(3), 270–275 (2010).
[Crossref] [PubMed]

Pirih, P.

Prum, R. O.

M. H. Kim, H. Rushmeier, J. Dorsey, T. A. Harvey, R. O. Prum, D. S. Kittle, and D. J. Brady, “3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects,” ACM Trans. Graph. 31, 1–11 (2012).

M. C. Stoddard and R. O. Prum, “How colorful are birds? Evolution of the avian plumage color gamut,” Behav. Ecol. 22(5), 1042–1052 (2011).
[Crossref]

M. C. Stoddard and R. O. Prum, “Evolution of avian plumage color in a tetrahedral color space: A phylogenetic analysis of new world buntings,” Am. Nat. 171(6), 755–776 (2008).
[Crossref] [PubMed]

R. O. Prum and R. H. Torres, “A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures,” Integr. Comp. Biol. 43(4), 591–602 (2003).
[Crossref] [PubMed]

R. O. Prum, R. Torres, S. Williamson, and J. Dyck, “Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs,” Proc. R. Soc. Lond. B Biol. Sci. 266(1414), 13–22 (1999).
[Crossref]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

Puchegger, S.

S. Pabisch, S. Puchegger, H. O. K. Kirchner, I. M. Weiss, and H. Peterlik, “Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba,” J. Struct. Biol. 172(3), 270–275 (2010).
[Crossref] [PubMed]

Qin, Y.

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Rattal, M.

Rock, B. N.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

Rushmeier, H.

M. H. Kim, H. Rushmeier, J. Dorsey, T. A. Harvey, R. O. Prum, D. S. Kittle, and D. J. Brady, “3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects,” ACM Trans. Graph. 31, 1–11 (2012).

Rutowski, R.

M. Meadows, N. Morehouse, R. Rutowski, J. Douglas, and K. McGraw, “Quantifying iridescent coloration in animals: a method for improving repeatability,” Behav. Ecol. Sociobiol. 65(6), 1317–1327 (2011).
[Crossref]

Samuelsson, P.

Seborg, D. E.

M. C. Johannesmeyer, A. Singhal, and D. E. Seborg, “Pattern matching in historical data,” AIChE J. 48(9), 2022–2038 (2002).
[Crossref]

A. Singhal and D. E. Seborg, “Matching patterns from historical data using PCA and distance similarity factors,” in Proceedings of the American Control Conference, (IEEE, 2001), pp. 1759–1764.
[Crossref]

Seo, M. K.

D. B. Kim, M. K. Seo, K. Y. Kim, and K. H. Lee, “Acquisition and representation of pearlescent paints using an image-based goniospectrophotometer,” Opt. Eng. 49(4), 043604 (2010).
[Crossref]

Sha, J.

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Shi, L.

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Simonis, P.

Singhal, A.

M. C. Johannesmeyer, A. Singhal, and D. E. Seborg, “Pattern matching in historical data,” AIChE J. 48(9), 2022–2038 (2002).
[Crossref]

A. Singhal and D. E. Seborg, “Matching patterns from historical data using PCA and distance similarity factors,” in Proceedings of the American Control Conference, (IEEE, 2001), pp. 1759–1764.
[Crossref]

Solomon, J. E.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

Sorci, G.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
[Crossref]

Stapelbroek, M. G.

Stavenga, D. G.

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci. 278(1715), 2098–2104 (2011).
[Crossref] [PubMed]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009).
[PubMed]

D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express 17(1), 193–202 (2009).
[Crossref] [PubMed]

Stoddard, M. C.

M. C. Stoddard and R. O. Prum, “How colorful are birds? Evolution of the avian plumage color gamut,” Behav. Ecol. 22(5), 1042–1052 (2011).
[Crossref]

M. C. Stoddard and R. O. Prum, “Evolution of avian plumage color in a tetrahedral color space: A phylogenetic analysis of new world buntings,” Am. Nat. 171(6), 755–776 (2008).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, “Rendering biological iridescences with RGB-based renderers,” ACM Trans. Graph. 25(1), 100–129 (2006).
[Crossref]

Svanberg, S.

Tayeb, G.

Théry, M.

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
[Crossref]

Torrance, K. E.

H. Li, S.-C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2006).

Torres, R.

R. O. Prum, R. Torres, S. Williamson, and J. Dyck, “Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs,” Proc. R. Soc. Lond. B Biol. Sci. 266(1414), 13–22 (1999).
[Crossref]

Torres, R. H.

R. O. Prum and R. H. Torres, “A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures,” Integr. Comp. Biol. 43(4), 591–602 (2003).
[Crossref] [PubMed]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

Tzeng, D. Y.

D. Y. Tzeng and R. S. Berns, “A review of principal component analysis and its applications to color technology,” Color Res. Appl. 30(2), 84–98 (2005).
[Crossref]

Valero, E.

J. M. Medina, J. A. Díaz, E. Valero, J. L. Nieves, and P. Vukusic, “Detailed experimental characterization of reflectance spectra of Sasakia charonda butterfly using multispectral optical imaging,” Opt. Eng. 53(3), 033111 (2014).
[Crossref]

Vane, G.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

Vigneron, J.-P.

Vorobyev, M.

A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision - behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78(1), 81–118 (2003).
[Crossref] [PubMed]

Vukusic, P.

J. M. Medina, J. A. Díaz, E. Valero, J. L. Nieves, and P. Vukusic, “Detailed experimental characterization of reflectance spectra of Sasakia charonda butterfly using multispectral optical imaging,” Opt. Eng. 53(3), 033111 (2014).
[Crossref]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009).
[PubMed]

Wang, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[Crossref] [PubMed]

Wehling, M. F.

Weiss, I. M.

I. M. Weiss and H. O. K. Kirchner, “The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) I. structure, mechanics, and chemistry of the tail feather coverts,” J. Exp. Zool. A Ecol. Genet. Physiol. 313A, 690–703 (2010).

S. Pabisch, S. Puchegger, H. O. K. Kirchner, I. M. Weiss, and H. Peterlik, “Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba,” J. Struct. Biol. 172(3), 270–275 (2010).
[Crossref] [PubMed]

Westin, S. H.

H. Li, S.-C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2006).

Williamson, S.

R. O. Prum, R. Torres, S. Williamson, and J. Dyck, “Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs,” Proc. R. Soc. Lond. B Biol. Sci. 266(1414), 13–22 (1999).
[Crossref]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

Wu, F.-

F.- Wu and C.- Zheng, “Microfacet-based interference simulation for multilayer films,” Graph. Models 78, 26–35 (2015).
[Crossref]

Xu, C.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[Crossref] [PubMed]

Yin, H.

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi, “Structural origin of the brown color of barbules in male peacock tail feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 010902 (2005).
[Crossref] [PubMed]

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[Crossref]

S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma 17, 169–181 (2002).

Yu, X.

Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi, “Structural origin of the brown color of barbules in male peacock tail feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 010902 (2005).
[Crossref] [PubMed]

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[Crossref] [PubMed]

Zhao, L.

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Zheng, C.-

F.- Wu and C.- Zheng, “Microfacet-based interference simulation for multilayer films,” Graph. Models 78, 26–35 (2015).
[Crossref]

Zhu, D.

N. Okada, D. Zhu, D. Cai, J. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42(1), 25–36 (2013).
[Crossref]

Zi, J.

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi, “Structural origin of the brown color of barbules in male peacock tail feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 010902 (2005).
[Crossref] [PubMed]

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[Crossref] [PubMed]

ACM Trans. Graph. (2)

M. H. Kim, H. Rushmeier, J. Dorsey, T. A. Harvey, R. O. Prum, D. S. Kittle, and D. J. Brady, “3D Imaging spectroscopy for measuring hyperspectral patterns on solid objects,” ACM Trans. Graph. 31, 1–11 (2012).

Y. Sun, “Rendering biological iridescences with RGB-based renderers,” ACM Trans. Graph. 25(1), 100–129 (2006).
[Crossref]

AIChE J. (1)

M. C. Johannesmeyer, A. Singhal, and D. E. Seborg, “Pattern matching in historical data,” AIChE J. 48(9), 2022–2038 (2002).
[Crossref]

Am. Nat. (1)

M. C. Stoddard and R. O. Prum, “Evolution of avian plumage color in a tetrahedral color space: A phylogenetic analysis of new world buntings,” Am. Nat. 171(6), 755–776 (2008).
[Crossref] [PubMed]

Amino Acids (1)

K. R. Millington, “Diffuse reflectance spectroscopy of fibrous proteins,” Amino Acids 43(3), 1277–1285 (2012).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Spectrosc. (1)

Behav. Ecol. (2)

M. C. Stoddard and R. O. Prum, “How colorful are birds? Evolution of the avian plumage color gamut,” Behav. Ecol. 22(5), 1042–1052 (2011).
[Crossref]

A. Loyau, D. Gomez, B. Moureau, M. Théry, N. S. Hart, M. S. Jalme, A. T. D. Bennett, and G. Sorci, “Iridescent structurally based coloration of eyespots correlates with mating success in the peacock,” Behav. Ecol. 18(6), 1123–1131 (2007).
[Crossref]

Behav. Ecol. Sociobiol. (1)

M. Meadows, N. Morehouse, R. Rutowski, J. Douglas, and K. McGraw, “Quantifying iridescent coloration in animals: a method for improving repeatability,” Behav. Ecol. Sociobiol. 65(6), 1317–1327 (2011).
[Crossref]

Biol. Rev. Camb. Philos. Soc. (1)

A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision - behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78(1), 81–118 (2003).
[Crossref] [PubMed]

Chemometr. Intell. Lab. (1)

M. Ottavian, P. Facco, L. Fasolato, and M. Barolo, “Multispectral data classification using similarity factors,” Chemometr. Intell. Lab. 118, 13–23 (2012).
[Crossref]

Color Res. Appl. (1)

D. Y. Tzeng and R. S. Berns, “A review of principal component analysis and its applications to color technology,” Color Res. Appl. 30(2), 84–98 (2005).
[Crossref]

Curr. Sci. (1)

M. Mishra, “Transformation of colourful pattern of eyespot in peacock wing,” Curr. Sci. 107, 186–188 (2014).

Forma (1)

S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma 17, 169–181 (2002).

Graph. Models (1)

F.- Wu and C.- Zheng, “Microfacet-based interference simulation for multilayer films,” Graph. Models 78, 26–35 (2015).
[Crossref]

Integr. Comp. Biol. (1)

R. O. Prum and R. H. Torres, “A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures,” Integr. Comp. Biol. 43(4), 591–602 (2003).
[Crossref] [PubMed]

J. Exp. Biol. (1)

D. Osorio and A. D. Ham, “Spectral reflectance and directional properties of structural coloration in bird plumage,” J. Exp. Biol. 205(Pt 14), 2017–2027 (2002).
[PubMed]

J. Exp. Zool. A Ecol. Genet. Physiol. (1)

I. M. Weiss and H. O. K. Kirchner, “The peacock's train (Pavo cristatus and Pavo cristatus mut. alba) I. structure, mechanics, and chemistry of the tail feather coverts,” J. Exp. Zool. A Ecol. Genet. Physiol. 313A, 690–703 (2010).

J. Opt. (1)

N. Okada, D. Zhu, D. Cai, J. Cole, M. Kambe, and S. Kinoshita, “Rendering Morpho butterflies based on high accuracy nano-optical simulation,” J. Opt. 42(1), 25–36 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

C. W. Mason, “Structural colors in feathers II,” J. Phys. Chem. 27(5), 401–448 (1922).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. J. Brink and N. G. Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004).
[Crossref]

J. R. Soc. Interface (2)

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6(Suppl 2), S133–S148 (2009).
[PubMed]

T. A. Harvey, K. S. Bostwick, and S. Marschner, “Directional reflectance and milli-scale feather morphology of the African Emerald Cuckoo, Chrysococcyx cupreus,” J. R. Soc. Interface 10(86), 20130391 (2013).
[Crossref] [PubMed]

J. Struct. Biol. (1)

S. Pabisch, S. Puchegger, H. O. K. Kirchner, I. M. Weiss, and H. Peterlik, “Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba,” J. Struct. Biol. 172(3), 270–275 (2010).
[Crossref] [PubMed]

J. Vis. Exp. (1)

T. A. Harvey, K. S. Bostwick, and S. Marschner, “Measuring spatially- and directionally-varying light scattering from biological material,” J. Vis. Exp. 75(75), e50254 (2013).
[PubMed]

JASA (1)

W. J. Krzanowski, “Between groups comparison of principal components,” JASA 74(367), 703–707 (1979).
[Crossref]

Nature (1)

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[Crossref]

Opt. Eng. (3)

H. Li, S.-C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Opt. Eng. 45, 043605 (2006).

D. B. Kim, M. K. Seo, K. Y. Kim, and K. H. Lee, “Acquisition and representation of pearlescent paints using an image-based goniospectrophotometer,” Opt. Eng. 49(4), 043604 (2010).
[Crossref]

J. M. Medina, J. A. Díaz, E. Valero, J. L. Nieves, and P. Vukusic, “Detailed experimental characterization of reflectance spectra of Sasakia charonda butterfly using multispectral optical imaging,” Opt. Eng. 53(3), 033111 (2014).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

S. C. Burgess, A. King, and R. Hyde, “An analysis of optimal structural features in the peacock tail feather,” Opt. Lasers Eng. 38(4-6), 329–334 (2006).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

H. Yin, L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, “Iridescence in the neck feathers of domestic pigeons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051916 (2006).
[Crossref] [PubMed]

Y. Li, Z. Lu, H. Yin, X. Yu, X. Liu, and J. Zi, “Structural origin of the brown color of barbules in male peacock tail feathers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 010902 (2005).
[Crossref] [PubMed]

Proc. Biol. Sci. (1)

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci. 278(1715), 2098–2104 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[Crossref] [PubMed]

Proc. R. Soc. Lond. B Biol. Sci. (1)

R. O. Prum, R. Torres, S. Williamson, and J. Dyck, “Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs,” Proc. R. Soc. Lond. B Biol. Sci. 266(1414), 13–22 (1999).
[Crossref]

Proc. SPIE (4)

M. W. Kudenov and E. L. Dereniak, “Compact snapshot real-time imaging spectrometer,” Proc. SPIE 8186, 81860W (2011).
[Crossref]

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

J. M. Lopez-Alonso and J. Alda, “Characterization of scenarios for multiband and hyperspectral imagers,” Proc. SPIE 5439, 140–149 (2004).
[Crossref]

J. M. Lopez-Alonso and J. Alda, “Characterization of hyperspectral imagers and scenes: background and equipment artifacts,” Proc. SPIE 5612, 265–274 (2004).
[Crossref]

Rep. Prog. Phys. (1)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[Crossref]

Science (1)

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

Verh. Naturf. Ges. Basel (1)

H. Durrer, “Schillerfarben beim Pfau (Pavo cristatus L.),” Verh. Naturf. Ges. Basel 73, 204–224 (1962).

Other (9)

H. F. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image Analysis (John Wiley & Sons, 2007).

P. Bajorski, Statistics for Imaging, Optics, and Photonics (John Wiley & Sons, 2012).

A. Singhal and D. E. Seborg, “Matching patterns from historical data using PCA and distance similarity factors,” in Proceedings of the American Control Conference, (IEEE, 2001), pp. 1759–1764.
[Crossref]

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (John Wiley & Sons, 1982).

I. T. Jolliffe, Principal Component Analysis, Second ed., Springer Series in Statistics (Springer-Verlag, 2002).

A. Ngan, F. Durand, and W. Matusik, “Experimental analysis of BRDF models,” in Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques, (Eurographics Association, 2005), pp. 117–126.

R. Shimada and Y. Kawaguchi, “Spectral BRDF creation for structural colors,” in Proceedings of the ACM SIGGRAPH 2005, (ACM Press, 2005), p. 48.

R. Shimada and Y. Kawaguchi, “BRDF estimation system for structural colors,” in Proceedings of the 2005 International Conference on Augmented Tele-Existence, (ACM Press, 2005), pp. 16–21.
[Crossref]

M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, “Proposal for a standard default color space for the Internet - sRGB,” in Proceedings of the IS&T/SID Fourth Color Imaging Conference: Color Science, Systems and Applications, (The Society for Imaging Science and Technology, 1996), pp. 238–245.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Structural characterization of peacock tail feathers. Color photographs. Panels (a-c-e) show the eye region of an adult peacock feather (P. cristatus), a young peacock feather (P. cristatus), and a white peacock feather (P. cristatus mut. alba), respectively. Transmission electron micrographs (TEM). Panels (b-d-f) show TEM images of the transverse cross section of a brown barbule (adult P. cristatus), a brown barbule (young P. cristatus), and a white barbule (P. cristatus mut. alba) in the eyespot, respectively. Scale bars (b-d-f) 1 µm.
Fig. 2
Fig. 2 Schematic representation of the multispectral imaging system. A liquid crystal tunable filter (LCTF) was placed in front of a zoom lens and attached to a monochrome charge-couple camera (CCD). The LCTF, zoom lens and CCD camera were in a fixed position and they were exactly aligned perpendicular to the sample. A light source module was connected to a light guide fiber. The fiber was mounted in a goniometric stage and was rotated at the illumination angle θ of 15 °, 45 ° and 75 °.
Fig. 3
Fig. 3 Spatial color maps of peacock tail feathers. The entire selected imaging areas (size 841 x 841 pixels) as a function of the illumination angle θ. For each color image, at each pixel position the spectral reflectance function was mapped to CIE XYZ tristimulus values and then converted to the sRGB color space for visualization. Panels (a), (b), and (c) (left column), (d), (e), and (f) (central column) and (g), (h) and (i) correspond to the white peacock (P. cristatus mut. alba), the adult iridescent peacock (P. cristatus) and the young iridescent peacock (P. cristatus) at the illumination angle θ of 15 °, 45 ° and 75 °, respectively. Open squares (size 101 x 101 pixels) labeled from “1” to “24” indicate different user-defined regions of interest. Squares in the left column labeled as “1”, “2”, “3” and “4”, “5” and “6” indicate a non-iridescent white area in the central eyespot and in the periphery of the eye region, respectively. Squares in the central column labeled as “7”, “8”, “9” and “10”, “11”, “12” and “13”, “14”, “15” indicate a blue iridescent area of the central eyespot and a green and a brown iridescent area in the periphery of the adult peacock feather, respectively. In the right column, squares labeled as “16”, “17”, “18” and “19”, “20”, “21” and “22”, “23”, “24” indicate a blue iridescent area of the central eyespot and a green and a brown iridescent area in the periphery of the young peacock feather, respectively.
Fig. 4
Fig. 4 . Mean reflectance factor of peacock tail feathers. Mean spectral reflectance factor as a function of the illumination angle. Panels (a) and (b), (left column), (c), (d) and (e) (central column) and (f), (g) and (h) correspond to a white peacock (P. cristatus mut. alba), an adult iridescent peacock (P. cristatus) and a young iridescent peacock (P. cristatus), respectively. Numbers in each curve labeled from “1” to “24” indicate the mean spectral reflectance factor of each selected region in Fig. 3. Each mean reflectance factor was obtained from the average of 10201 reflectances.
Fig. 5
Fig. 5 . Example of eigenimages in the sRGB color space. The first row indicates the original imaged surface. Numbers in orange indicate the selected region annotated in Fig. 3. The subsequent rows indicate the reconstruction of reflectance spectra that result by the linear combination of the mean reflectance factor (Fig. 4) and the first three eigenvectors separately. Panels (a) and (b) show green and brown iridescent feather barbs of the adult peacock (P. cristatus) at the illumination angle θ of 15° and 75°, respectively. For each eigenimage, numbers in white indicate the percentage of variance explained by each associated eigenvector.
Fig. 6
Fig. 6 PCA-based similarity factor in adult peacock feather barbs. (a) Example of PCASF between brown (P. cristatus) and white feather barbs as reference (P. cristatus mut. alba). The number of principal components varied to account at least 90%, 95% and 99% of total variance of reflectance spectra. Diamonds, down and left triangles indicate the PCASF at the illumination angle θ of 15 °, 45 ° and 75 °, respectively. Open symbols connected by dashed lines correspond to the standard PCASF. Solid symbols connected by solid lines correspond to the WPCASF. (b) WPCASF plots (95% of total variance) with the white and green iridescent feather barbs as reference. Grey, blue and orange symbols indicate the WPCASF of white non-iridescent, blue and brown iridescent feather barbs, respectively. Hexagons, diamonds and circles correspond with θ = 15 °; pentagons, down triangles and squares with θ = 45 ° and starts, up and right triangles with θ = 75 °. Dashed lines indicate the tolerance limit at 0.9.
Fig. 7
Fig. 7 PCA-based similarity factors in young peacock feather barbs. WPCASF (95% of total variance) with the blue, green and brown iridescent feather barbs from the adult peacock as reference. Spheres represent the WPCASF at different illuminant angles. Blue, green and brown spheres indicate the WPCASF of the blue, green and brown young iridescent feather barbs. Solid circles indicate the projection in the plane that corresponds with the blue and green WPCASF.

Tables (1)

Tables Icon

Table 1 Mean lattice constants a , a and the inter-distance between the two melanin arrays nearest to the cortex, d, of the 2D photonic structure of brown barbules in the young and adult peacock derived from TEM images [Figs. 1(d) and 1(b)]. The standard error of the mean ( ± 1SEM) is also shown.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R= R ¯ + i=1 30 α i S i
PCASF= i=1 k j=1 k cos 2 ϕ i,j = trace( M T L L T M ) k
WPCASF= i=1 k j=1 k β i L β j M cos 2 ϕ i,j i=1 k β i L β i M = trace( M W T L W L W T M W ) i=1 k β i L β i M

Metrics