Abstract

We report the inscription of a Bragg grating in an undoped polymethylmethacrylate based microstructured fiber in a time record. The fiber has been irradiated with a 248 nm ultraviolet radiation, through the phase mask technique using low fluence and low repetition rate. The experimental conditions were chosen to modify the core refractive index of the fiber at the incubation regime and avoiding polymer ablation. The peak reflection of the Bragg grating was centered in the infrared region with 20 dB reflection and 0.16 nm bandwidth. These spectral properties are well attractive for sensors and communications applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes

Ivan-Lazar Bundalo, Kristian Nielsen, Christos Markos, and Ole Bang
Opt. Express 22(5) 5270-5276 (2014)

Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers

Kyriacos Kalli, Alexander Argyros, Helen Dobb, David J. Webb, Maryanne C.J. Large, and Martijn A. van Eijkelenborg
Opt. Lett. 30(24) 3296-3298 (2005)

Polymer optical fiber Bragg grating inscription with a single UV laser pulse

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André
Opt. Express 25(8) 9028-9038 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Webb and K. Kalli, “Polymer Fiber Bragg Gratings” in Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, A. Cusano, A. Cutolo, and J. Albert, eds. (Bentham Science Publishers, 2012), pp. 292–312.
  2. O. Rodríguez, F. Fornasiero, A. Arce, C. J. Radke, and J. M. Prausnitz, “Solubilities and diffusivities of water vapor in poly(methylmethacrylate), poly(2-hydroxyethylmethacrylate), poly(N-vinyl-2-pyrrolidone) and poly(acrylonitrile),” Polymer (Guildf.) 44(20), 6323 (2003).
    [Crossref]
  3. D. Saez-Rodriguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into Uv inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10(7), 1169 (2010).
    [Crossref]
  4. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
    [Crossref] [PubMed]
  5. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” Photon. Technol. Lett. 11(3), 352 (1999).
    [Crossref]
  6. C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
    [Crossref] [PubMed]
  7. M. J. Bowden, E. A. Chandross, and I. P. Kaminow, “Mechanism of the photoinduced refractive index increase in polymethyl methacrylate,” Appl. Opt. 13(1), 112–117 (1974).
    [Crossref] [PubMed]
  8. D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39(12), 3421–3424 (2014).
    [Crossref] [PubMed]
  9. H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” Photon. Technol. Lett. 14(7), 935 (2002).
    [Crossref]
  10. C. A. F. Marques, L. Bilro, N. J. Alberto, D. J. Webb, and R. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
    [Crossref]
  11. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  12. G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242 (1999).
    [Crossref]
  13. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [Crossref] [PubMed]
  14. I. L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
    [Crossref] [PubMed]
  15. R. Oliveira, C. A. F. Marques, L. Bilro, and R. N. Nogueira, “Production and characterization of Bragg gratings in polymer optical fibers for sensors and optical communications,” Proc. SPIE 9157, 915794 (2014).
    [Crossref]
  16. S. Küper and M. Stuke, “UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: characterization of incubation sites with Fourier transform IR-and UV-spectroscopy,” Appl. Phys., A Mater. Sci. Process. 49, 211–215 (1989).
    [Crossref]
  17. R. Srinivasan, B. Braren, R. W. Dreyfus, L. Hadel, and D. E. Seeger, “Mechanism of the ultraviolet laser ablation of polymethyl methacrylate at 193 and 248 nm: laser-induced fluorescence analysis, chemical analysis, and doping studies,” J. Opt. Soc. Am. B 3(5), 785 (1986).
    [Crossref]
  18. A. K. Baker and P. E. Dyer, “Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 57(6), 543 (1993).
    [Crossref]
  19. C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
    [Crossref]
  20. H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Polymer optical fibre Bragg gratings based fibre laser,” Opt. Commun. 266(1), 132 (2006).
    [Crossref]
  21. H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4-6), 337 (2003).
    [Crossref]
  22. R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

2014 (4)

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref] [PubMed]

R. Oliveira, C. A. F. Marques, L. Bilro, and R. N. Nogueira, “Production and characterization of Bragg gratings in polymer optical fibers for sensors and optical communications,” Proc. SPIE 9157, 915794 (2014).
[Crossref]

I. L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39(12), 3421–3424 (2014).
[Crossref] [PubMed]

2013 (2)

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

C. A. F. Marques, L. Bilro, N. J. Alberto, D. J. Webb, and R. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

2011 (1)

2010 (1)

D. Saez-Rodriguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into Uv inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10(7), 1169 (2010).
[Crossref]

2006 (1)

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Polymer optical fibre Bragg gratings based fibre laser,” Opt. Commun. 266(1), 132 (2006).
[Crossref]

2005 (1)

2003 (2)

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4-6), 337 (2003).
[Crossref]

O. Rodríguez, F. Fornasiero, A. Arce, C. J. Radke, and J. M. Prausnitz, “Solubilities and diffusivities of water vapor in poly(methylmethacrylate), poly(2-hydroxyethylmethacrylate), poly(N-vinyl-2-pyrrolidone) and poly(acrylonitrile),” Polymer (Guildf.) 44(20), 6323 (2003).
[Crossref]

2002 (1)

H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” Photon. Technol. Lett. 14(7), 935 (2002).
[Crossref]

2000 (1)

C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
[Crossref]

1999 (2)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” Photon. Technol. Lett. 11(3), 352 (1999).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242 (1999).
[Crossref]

1993 (1)

A. K. Baker and P. E. Dyer, “Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 57(6), 543 (1993).
[Crossref]

1989 (1)

S. Küper and M. Stuke, “UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: characterization of incubation sites with Fourier transform IR-and UV-spectroscopy,” Appl. Phys., A Mater. Sci. Process. 49, 211–215 (1989).
[Crossref]

1986 (1)

1974 (1)

Alberto, N. J.

C. A. F. Marques, L. Bilro, N. J. Alberto, D. J. Webb, and R. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Arce, A.

O. Rodríguez, F. Fornasiero, A. Arce, C. J. Radke, and J. M. Prausnitz, “Solubilities and diffusivities of water vapor in poly(methylmethacrylate), poly(2-hydroxyethylmethacrylate), poly(N-vinyl-2-pyrrolidone) and poly(acrylonitrile),” Polymer (Guildf.) 44(20), 6323 (2003).
[Crossref]

Argyros, A.

D. Saez-Rodriguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into Uv inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10(7), 1169 (2010).
[Crossref]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Baker, A. K.

A. K. Baker and P. E. Dyer, “Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 57(6), 543 (1993).
[Crossref]

Bang, O.

Bilro, L.

R. Oliveira, C. A. F. Marques, L. Bilro, and R. N. Nogueira, “Production and characterization of Bragg gratings in polymer optical fibers for sensors and optical communications,” Proc. SPIE 9157, 915794 (2014).
[Crossref]

C. A. F. Marques, L. Bilro, N. J. Alberto, D. J. Webb, and R. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Bowden, M. J.

Braren, B.

Bundalo, I. L.

Chandross, E. A.

Chu, P. L.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Polymer optical fibre Bragg gratings based fibre laser,” Opt. Commun. 266(1), 132 (2006).
[Crossref]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4-6), 337 (2003).
[Crossref]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” Photon. Technol. Lett. 14(7), 935 (2002).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” Photon. Technol. Lett. 11(3), 352 (1999).
[Crossref]

Cruz, J. L.

D. Saez-Rodriguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into Uv inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10(7), 1169 (2010).
[Crossref]

Dobb, H.

Dreyfus, R. W.

Dyer, P. E.

A. K. Baker and P. E. Dyer, “Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 57(6), 543 (1993).
[Crossref]

Fornasiero, F.

O. Rodríguez, F. Fornasiero, A. Arce, C. J. Radke, and J. M. Prausnitz, “Solubilities and diffusivities of water vapor in poly(methylmethacrylate), poly(2-hydroxyethylmethacrylate), poly(N-vinyl-2-pyrrolidone) and poly(acrylonitrile),” Polymer (Guildf.) 44(20), 6323 (2003).
[Crossref]

Hadel, L.

Johnson, I.

D. Saez-Rodriguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into Uv inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10(7), 1169 (2010).
[Crossref]

Kalli, K.

Kaminow, I. P.

Kubat, I.

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref] [PubMed]

Küper, S.

S. Küper and M. Stuke, “UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: characterization of incubation sites with Fourier transform IR-and UV-spectroscopy,” Appl. Phys., A Mater. Sci. Process. 49, 211–215 (1989).
[Crossref]

Large, M. C. J.

D. Saez-Rodriguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into Uv inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10(7), 1169 (2010).
[Crossref]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Liu, H. B.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Polymer optical fibre Bragg gratings based fibre laser,” Opt. Commun. 266(1), 132 (2006).
[Crossref]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4-6), 337 (2003).
[Crossref]

Liu, H. Y.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Polymer optical fibre Bragg gratings based fibre laser,” Opt. Commun. 266(1), 132 (2006).
[Crossref]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4-6), 337 (2003).
[Crossref]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” Photon. Technol. Lett. 14(7), 935 (2002).
[Crossref]

Markos, C.

Marques, C. A. F.

R. Oliveira, C. A. F. Marques, L. Bilro, and R. N. Nogueira, “Production and characterization of Bragg gratings in polymer optical fibers for sensors and optical communications,” Proc. SPIE 9157, 915794 (2014).
[Crossref]

C. A. F. Marques, L. Bilro, N. J. Alberto, D. J. Webb, and R. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Metev, S.

C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
[Crossref]

Nielsen, K.

Nogueira, R.

C. A. F. Marques, L. Bilro, N. J. Alberto, D. J. Webb, and R. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Nogueira, R. N.

R. Oliveira, C. A. F. Marques, L. Bilro, and R. N. Nogueira, “Production and characterization of Bragg gratings in polymer optical fibers for sensors and optical communications,” Proc. SPIE 9157, 915794 (2014).
[Crossref]

Oliveira, R.

R. Oliveira, C. A. F. Marques, L. Bilro, and R. N. Nogueira, “Production and characterization of Bragg gratings in polymer optical fibers for sensors and optical communications,” Proc. SPIE 9157, 915794 (2014).
[Crossref]

Peng, G. D.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Polymer optical fibre Bragg gratings based fibre laser,” Opt. Commun. 266(1), 132 (2006).
[Crossref]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4-6), 337 (2003).
[Crossref]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” Photon. Technol. Lett. 14(7), 935 (2002).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” Photon. Technol. Lett. 11(3), 352 (1999).
[Crossref]

Prausnitz, J. M.

O. Rodríguez, F. Fornasiero, A. Arce, C. J. Radke, and J. M. Prausnitz, “Solubilities and diffusivities of water vapor in poly(methylmethacrylate), poly(2-hydroxyethylmethacrylate), poly(N-vinyl-2-pyrrolidone) and poly(acrylonitrile),” Polymer (Guildf.) 44(20), 6323 (2003).
[Crossref]

Radke, C. J.

O. Rodríguez, F. Fornasiero, A. Arce, C. J. Radke, and J. M. Prausnitz, “Solubilities and diffusivities of water vapor in poly(methylmethacrylate), poly(2-hydroxyethylmethacrylate), poly(N-vinyl-2-pyrrolidone) and poly(acrylonitrile),” Polymer (Guildf.) 44(20), 6323 (2003).
[Crossref]

Rasmussen, H. K.

Rodríguez, O.

O. Rodríguez, F. Fornasiero, A. Arce, C. J. Radke, and J. M. Prausnitz, “Solubilities and diffusivities of water vapor in poly(methylmethacrylate), poly(2-hydroxyethylmethacrylate), poly(N-vinyl-2-pyrrolidone) and poly(acrylonitrile),” Polymer (Guildf.) 44(20), 6323 (2003).
[Crossref]

Saez-Rodriguez, D.

D. Saez-Rodriguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into Uv inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10(7), 1169 (2010).
[Crossref]

Sáez-Rodríguez, D.

Seeger, D. E.

Sepold, G.

C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
[Crossref]

Srinivasan, R.

Stefani, A.

Stuke, M.

S. Küper and M. Stuke, “UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: characterization of incubation sites with Fourier transform IR-and UV-spectroscopy,” Appl. Phys., A Mater. Sci. Process. 49, 211–215 (1989).
[Crossref]

Town, G. E.

van Eijkelenborg, M. A.

Vlachos, K.

Webb, D. J.

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39(12), 3421–3424 (2014).
[Crossref] [PubMed]

C. A. F. Marques, L. Bilro, N. J. Alberto, D. J. Webb, and R. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

D. Saez-Rodriguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into Uv inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10(7), 1169 (2010).
[Crossref]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Wochnowski, C.

C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
[Crossref]

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” Photon. Technol. Lett. 11(3), 352 (1999).
[Crossref]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” Photon. Technol. Lett. 11(3), 352 (1999).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242 (1999).
[Crossref]

Yuan, W.

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (2)

S. Küper and M. Stuke, “UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: characterization of incubation sites with Fourier transform IR-and UV-spectroscopy,” Appl. Phys., A Mater. Sci. Process. 49, 211–215 (1989).
[Crossref]

A. K. Baker and P. E. Dyer, “Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 57(6), 543 (1993).
[Crossref]

Appl. Surf. Sci. (1)

C. Wochnowski, S. Metev, and G. Sepold, “UV–laser-assisted modification of the optical properties of polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 706–711 (2000).
[Crossref]

IEEE Sens. J. (1)

D. Saez-Rodriguez, J. L. Cruz, I. Johnson, D. J. Webb, M. C. J. Large, and A. Argyros, “Water diffusion into Uv inscripted long period grating in microstructured polymer fiber,” IEEE Sens. J. 10(7), 1169 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

C. A. F. Marques, L. Bilro, N. J. Alberto, D. J. Webb, and R. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Polymer optical fibre Bragg gratings based fibre laser,” Opt. Commun. 266(1), 132 (2006).
[Crossref]

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, “Observation of type I and type II gratings behavior in polymer optical fiber,” Opt. Commun. 220(4-6), 337 (2003).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242 (1999).
[Crossref]

Opt. Lett. (2)

Photon. Technol. Lett. (2)

H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” Photon. Technol. Lett. 14(7), 935 (2002).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” Photon. Technol. Lett. 11(3), 352 (1999).
[Crossref]

Polymer (Guildf.) (1)

O. Rodríguez, F. Fornasiero, A. Arce, C. J. Radke, and J. M. Prausnitz, “Solubilities and diffusivities of water vapor in poly(methylmethacrylate), poly(2-hydroxyethylmethacrylate), poly(N-vinyl-2-pyrrolidone) and poly(acrylonitrile),” Polymer (Guildf.) 44(20), 6323 (2003).
[Crossref]

Proc. SPIE (1)

R. Oliveira, C. A. F. Marques, L. Bilro, and R. N. Nogueira, “Production and characterization of Bragg gratings in polymer optical fibers for sensors and optical communications,” Proc. SPIE 9157, 915794 (2014).
[Crossref]

Sci. Rep. (1)

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref] [PubMed]

Other (2)

D. Webb and K. Kalli, “Polymer Fiber Bragg Gratings” in Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation, A. Cusano, A. Cutolo, and J. Albert, eds. (Bentham Science Publishers, 2012), pp. 292–312.

R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 End face of the polished FM mPOF used for the inscription process.
Fig. 2
Fig. 2 Setup used for the inscription of Bragg gratings in real time in an mPOF by the phase mask technique.
Fig. 3
Fig. 3 Microscope images of the FM mPOF surface, exposed to 248 nm UV light with the phase mask technique, when R was changed from 5 Hz (a) to 1 Hz (b), with the same fluence (I = 33 mJ/cm2, and exposure time (t = 60 seconds). The image in (a), clearly shows surface ablation.
Fig. 4
Fig. 4 Inscription of a Bragg grating in a FM mPOF during time, (each spectra was taken with a period of 1s). Inscription parameters: L = 4.5 mm, Λ = 1023 nm, R = 1 Hz, I = 33 mJ/cm2, and N 20 pulses.
Fig. 5
Fig. 5 Evolution of the, (a) peak wavelength and (b) peak power, of the grating inscribed 3 cm away from the polymer fiber end face, with L = 4.5 mm, Λ = 1023 nm, R = 1 Hz, I = 33 mJ/cm2, and N 20 pulses.
Fig. 6
Fig. 6 Bragg wavelength shift obtained from the inscribed PFBG under different strains.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff = n eff .δλ 2. λ B 0

Metrics