Abstract

In the last 10 years, Optical Coherence Tomography (OCT) has been successfully applied to art conservation, history and archaeology. OCT has the potential to become a routine non-invasive tool in museums allowing cross-section imaging anywhere on an intact object where there are no other methods of obtaining subsurface information. While current commercial OCTs have shown potential in this field, they are still limited in depth resolution (> 4 μm in paint and varnish) compared to conventional microscopic examination of sampled paint cross-sections (~1 μm). An ultra-high resolution fiber-based Fourier domain optical coherence tomography system with a constant axial resolution of 1.2 μm in varnish or paint throughout a depth range of 1.5 mm has been developed. While Fourier domain OCT of similar resolution has been demonstrated recently, the sensitivity roll-off of some of these systems are still significant. In contrast, this current system achieved a sensitivity roll-off that is less than 2 dB over a 1.2 mm depth range with an incident power of ~1 mW on the sample. The high resolution and sensitivity of the system makes it convenient to image thin varnish and glaze layers with unprecedented contrast. The non-invasive ‘virtual’ cross-section images obtained with the system show the thin varnish layers with similar resolution in the depth direction but superior clarity in the layer interfaces when compared with conventional optical microscope images of actual paint sample cross-sections obtained micro-destructively.

© 2015 Optical Society of America

Full Article  |  PDF Article
Related Articles
En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation

Haida Liang, Marta Gomez Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, Justin Pedro, and David Saunders
Opt. Express 13(16) 6133-6144 (2005)

Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies

Desmond C. Adler, Jens Stenger, Iwona Gorczynska, Henry Lie, Teri Hensick, Ron Spronk, Stephan Wolohojian, Narayan Khandekar, James Y. Jiang, Scott Barry, Alex E. Cable, Robert Huber, and James G. Fujimoto
Opt. Express 15(24) 15972-15986 (2007)

TeraHertz imaging of hidden paint layers on canvas

Aurèle J. L. Adam, Paul C. M. Planken, Sabrina Meloni, and Joris Dik
Opt. Express 17(5) 3407-3416 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [Crossref]
  3. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
    [Crossref]
  4. P. Targowski and M. Iwanicka, “Optical Coherence Tomography for structural examination of cultural heritage objects and monitoring of restoration processes – a review,” Appl. Phys., A Mater. Sci. Process. 106, 265–277 (2012).
    [Crossref]
  5. H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – a new emerging field,” Proc. SPIE 7139, 713915 (2008).
    [Crossref]
  6. H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face Optical Coherence Tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
    [Crossref] [PubMed]
  7. S. Lawman and H. Liang, “High precision dynamic multi-interface profilometry with optical coherence tomography,” Appl. Opt. 50(32), 6039–6048 (2011).
    [Crossref] [PubMed]
  8. P. Targowski, R. Ostrowski, M. Marczak, M. Sylwestrzak, and E. A. Kwiatkowska, “Picosecond laser ablation system with process control by optical coherence tomography,” Proc. SPIE 7391, 73910G (2009).
    [Crossref]
  9. P. Targowski, M. Góra, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Łękawa-Wysłouch, and L. Tymińska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 93658 (2006).
    [Crossref]
  10. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
    [Crossref] [PubMed]
  11. G. Latour, J. P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48(33), 6485–6491 (2009).
    [Crossref] [PubMed]
  12. H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
    [Crossref]
  13. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
    [Crossref] [PubMed]
  14. K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-microm axial resolution optical coherence tomography in the 1300-nm wavelength region,” Opt. Lett. 28(9), 707–709 (2003).
    [Crossref] [PubMed]
  15. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
    [Crossref] [PubMed]
  16. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  17. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  18. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  19. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [Crossref] [PubMed]
  20. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  21. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
    [Crossref] [PubMed]
  22. B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).
    [Crossref] [PubMed]
  23. S. Kray, F. Spöler, M. Först, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34(13), 1970–1972 (2009).
    [Crossref] [PubMed]
  24. V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In Vivo Functional Imaging of Intrinsic Scattering Changes in the Human Retina with High-Speed Ultrahigh Resolution OCT,” Opt. Express 17(5), 3861–3877 (2009).
    [Crossref] [PubMed]
  25. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009).
    [Crossref] [PubMed]
  26. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009).
    [Crossref] [PubMed]
  27. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
    [PubMed]
  28. Z. Zhi, J. Qin, L. An, and R. K. Wang, “Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds,” Opt. Lett. 36(16), 3169–3171 (2011).
    [Crossref] [PubMed]
  29. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [Crossref] [PubMed]
  30. R. Yadav, K. S. Lee, J. P. Rolland, J. M. Zavislan, J. V. Aquavella, and G. Yoon, “Micrometer axial resolution OCT for corneal imaging,” Biomed. Opt. Express 2(11), 3037–3046 (2011).
    [Crossref] [PubMed]
  31. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [Crossref] [PubMed]
  32. C. S. Cheung and H. Liang, “Ultra-high resolution Fourier domain optical coherence tomography for resolving thin layers in painted works of art,” Proc. SPIE 8790, 87900M (2013).
    [Crossref]
  33. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
    [Crossref] [PubMed]
  34. W. J. Brown, S. Kim, and A. Wax, “Noise characterization of supercontinuum sources for low-coherence interferometry applications,” J. Opt. Soc. Am. A 31(12), 2703–2710 (2014).
    [Crossref] [PubMed]
  35. C. S. Cheung, J. M. O. Daniels, M. Tokurakawa, W. A. Clarkson Wa, and H. Liang, “Optical coherence tomography in the two-micron wavelength regime for paint and other high opacity material,” Opt. Lett. 39, 6509–6512 (2014).
  36. C. S. Cheung, J. M. O. Daniels, M. Tokurakawa, W. A. Clarkson Wa, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).

2015 (1)

2014 (2)

2013 (2)

C. S. Cheung and H. Liang, “Ultra-high resolution Fourier domain optical coherence tomography for resolving thin layers in painted works of art,” Proc. SPIE 8790, 87900M (2013).
[Crossref]

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

2012 (1)

P. Targowski and M. Iwanicka, “Optical Coherence Tomography for structural examination of cultural heritage objects and monitoring of restoration processes – a review,” Appl. Phys., A Mater. Sci. Process. 106, 265–277 (2012).
[Crossref]

2011 (4)

2009 (7)

S. Kray, F. Spöler, M. Först, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34(13), 1970–1972 (2009).
[Crossref] [PubMed]

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In Vivo Functional Imaging of Intrinsic Scattering Changes in the Human Retina with High-Speed Ultrahigh Resolution OCT,” Opt. Express 17(5), 3861–3877 (2009).
[Crossref] [PubMed]

B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009).
[Crossref] [PubMed]

P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[PubMed]

P. Targowski, R. Ostrowski, M. Marczak, M. Sylwestrzak, and E. A. Kwiatkowska, “Picosecond laser ablation system with process control by optical coherence tomography,” Proc. SPIE 7391, 73910G (2009).
[Crossref]

G. Latour, J. P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48(33), 6485–6491 (2009).
[Crossref] [PubMed]

2008 (2)

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

2007 (2)

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

2006 (1)

P. Targowski, M. Góra, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Łękawa-Wysłouch, and L. Tymińska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 93658 (2006).
[Crossref]

2005 (1)

2004 (4)

2003 (4)

2002 (3)

1995 (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

An, L.

Apolonski, A.

Aquavella, J. V.

Bajraszewski, T.

P. Targowski, M. Góra, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Łękawa-Wysłouch, and L. Tymińska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 93658 (2006).
[Crossref]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Baumann, B.

Bizheva, K.

Boccara, A. C.

Bouma, B.

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

Brown, J. M.

Brown, W. J.

Cable, A.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, T.

Chen, T. C.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

Chen, Y.

Cheung, C. S.

Choma, M. A.

Cid, M. G.

Cimalla, P.

Clarkson Wa, W. A.

Cucu, R. G.

Cuevas, M.

Daniels, J. M. O.

de Boer, J.

de Boer, J. F.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

Dobre, G. M.

Drexler, W.

Dubois, A.

Duker, J.

Duker, J. S.

Echard, J. P.

Elias, M.

El-Zaiat, S.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Emond, I.

Fercher, A.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Först, M.

Fujimoto, J.

Fujimoto, J. G.

Gao, W.

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Góra, M.

P. Targowski, M. Góra, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Łękawa-Wysłouch, and L. Tymińska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 93658 (2006).
[Crossref]

Gorczynska, I.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hermann, B.

Hitzenberger, C.

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Hitzenberger, C. K.

Hoelzenbein, T.

Holzwarth, R.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hughes, M.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Iwanicka, M.

P. Targowski and M. Iwanicka, “Optical Coherence Tomography for structural examination of cultural heritage objects and monitoring of restoration processes – a review,” Appl. Phys., A Mater. Sci. Process. 106, 265–277 (2012).
[Crossref]

Izatt, J. A.

Jiang, J.

Jonnal, R. S.

Kamp, G.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Kim, S.

Knight, J. C.

Ko, T.

Kocaoglu, O. P.

Koch, E.

Koperda, E.

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Kray, S.

Kurz, H.

Kwiatkowska, E. A.

P. Targowski, R. Ostrowski, M. Marczak, M. Sylwestrzak, and E. A. Kwiatkowska, “Picosecond laser ablation system with process control by optical coherence tomography,” Proc. SPIE 7391, 73910G (2009).
[Crossref]

Lange, R.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Latour, G.

Lawman, S.

Le, T.

Lee, K. S.

Leitgeb, R.

Lekawa-Wyslouch, T.

P. Targowski, M. Góra, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Łękawa-Wysłouch, and L. Tymińska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 93658 (2006).
[Crossref]

Liang, H.

C. S. Cheung, J. M. O. Daniels, M. Tokurakawa, W. A. Clarkson Wa, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).

C. S. Cheung, J. M. O. Daniels, M. Tokurakawa, W. A. Clarkson Wa, and H. Liang, “Optical coherence tomography in the two-micron wavelength regime for paint and other high opacity material,” Opt. Lett. 39, 6509–6512 (2014).

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

C. S. Cheung and H. Liang, “Ultra-high resolution Fourier domain optical coherence tomography for resolving thin layers in painted works of art,” Proc. SPIE 8790, 87900M (2013).
[Crossref]

S. Lawman and H. Liang, “High precision dynamic multi-interface profilometry with optical coherence tomography,” Appl. Opt. 50(32), 6039–6048 (2011).
[Crossref] [PubMed]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face Optical Coherence Tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Marczak, M.

P. Targowski, R. Ostrowski, M. Marczak, M. Sylwestrzak, and E. A. Kwiatkowska, “Picosecond laser ablation system with process control by optical coherence tomography,” Proc. SPIE 7391, 73910G (2009).
[Crossref]

Mehner, M.

Mei, M.

Miller, D. T.

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Nassif, N.

Ostrowski, R.

P. Targowski, R. Ostrowski, M. Marczak, M. Sylwestrzak, and E. A. Kwiatkowska, “Picosecond laser ablation system with process control by optical coherence tomography,” Proc. SPIE 7391, 73910G (2009).
[Crossref]

Park, B.

Park, B. H.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

Pedro, J.

Pehamberger, H.

Peric, B.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Pierce, M.

Pierce, M. C.

Pircher, M.

Podoleanu, A.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face Optical Coherence Tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
[Crossref] [PubMed]

Potsaid, B.

Povazay, B.

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qin, J.

Roehrs, S.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Rolland, J. P.

Rouba, B.

P. Targowski, M. Góra, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Łękawa-Wysłouch, and L. Tymińska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 93658 (2006).
[Crossref]

Russell, P. S.

Sarunic, M. V.

Sattmann, H.

Saunders, D.

Scherzer, E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Soulier, B.

Spöler, F.

Spring, M.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Srinivasan, V.

Srinivasan, V. J.

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sylwestrzak, M.

P. Targowski, R. Ostrowski, M. Marczak, M. Sylwestrzak, and E. A. Kwiatkowska, “Picosecond laser ablation system with process control by optical coherence tomography,” Proc. SPIE 7391, 73910G (2009).
[Crossref]

Szkulmowski, M.

P. Targowski, M. Góra, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Łękawa-Wysłouch, and L. Tymińska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 93658 (2006).
[Crossref]

Targowski, P.

P. Targowski and M. Iwanicka, “Optical Coherence Tomography for structural examination of cultural heritage objects and monitoring of restoration processes – a review,” Appl. Phys., A Mater. Sci. Process. 106, 265–277 (2012).
[Crossref]

P. Targowski, R. Ostrowski, M. Marczak, M. Sylwestrzak, and E. A. Kwiatkowska, “Picosecond laser ablation system with process control by optical coherence tomography,” Proc. SPIE 7391, 73910G (2009).
[Crossref]

P. Targowski, M. Góra, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Łękawa-Wysłouch, and L. Tymińska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 93658 (2006).
[Crossref]

Tearney, G.

Tearney, G. J.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

Tokurakawa, M.

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Tyminska-Widmer, L.

P. Targowski, M. Góra, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Łękawa-Wysłouch, and L. Tymińska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 93658 (2006).
[Crossref]

Unterhuber, A.

Vabre, L.

Vaiedelich, S.

Vetterlein, M.

Wacheck, V.

Wadsworth, W. J.

Walther, J.

Wang, R. K.

Wax, A.

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

Yadav, R.

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Yang, C. H.

Yoon, G.

Yun, S. H.

Zavislan, J. M.

Zhi, Z.

Appl. Opt. (2)

Appl. Phys. B (2)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

P. Targowski and M. Iwanicka, “Optical Coherence Tomography for structural examination of cultural heritage objects and monitoring of restoration processes – a review,” Appl. Phys., A Mater. Sci. Process. 106, 265–277 (2012).
[Crossref]

Biomed. Opt. Express (1)

J. Biomed. Opt. (3)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[Crossref] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Laser Chem. (1)

P. Targowski, M. Góra, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Łękawa-Wysłouch, and L. Tymińska-Widmer, “Optical coherence tomography for tracking canvas deformation,” Laser Chem. 2006, 93658 (2006).
[Crossref]

Nat. Med. (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Opt. Express (12)

P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004).
[Crossref] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).
[Crossref] [PubMed]

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face Optical Coherence Tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
[Crossref] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In Vivo Functional Imaging of Intrinsic Scattering Changes in the Human Retina with High-Speed Ultrahigh Resolution OCT,” Opt. Express 17(5), 3861–3877 (2009).
[Crossref] [PubMed]

B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009).
[Crossref] [PubMed]

C. S. Cheung, J. M. O. Daniels, M. Tokurakawa, W. A. Clarkson Wa, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).

Opt. Lett. (7)

S. Kray, F. Spöler, M. Först, and H. Kurz, “High-resolution simultaneous dual-band spectral domain optical coherence tomography,” Opt. Lett. 34(13), 1970–1972 (2009).
[Crossref] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

Z. Zhi, J. Qin, L. An, and R. K. Wang, “Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds,” Opt. Lett. 36(16), 3169–3171 (2011).
[Crossref] [PubMed]

C. S. Cheung, J. M. O. Daniels, M. Tokurakawa, W. A. Clarkson Wa, and H. Liang, “Optical coherence tomography in the two-micron wavelength regime for paint and other high opacity material,” Opt. Lett. 39, 6509–6512 (2014).

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
[Crossref] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
[Crossref] [PubMed]

K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-microm axial resolution optical coherence tomography in the 1300-nm wavelength region,” Opt. Lett. 28(9), 707–709 (2003).
[Crossref] [PubMed]

Proc. SPIE (3)

C. S. Cheung and H. Liang, “Ultra-high resolution Fourier domain optical coherence tomography for resolving thin layers in painted works of art,” Proc. SPIE 8790, 87900M (2013).
[Crossref]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

P. Targowski, R. Ostrowski, M. Marczak, M. Sylwestrzak, and E. A. Kwiatkowska, “Picosecond laser ablation system with process control by optical coherence tomography,” Proc. SPIE 7391, 73910G (2009).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Supplementary Material (2)

» Media 1: AVI (3316 KB)     
» Media 2: AVI (3569 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the ultra-high resolution 810 nm spectral domain OCT using the NKT supercontinuum light source with a 1200 l/mm grating, a 4096 pixels linear CCD detector array.

Fig. 2
Fig. 2

Residual of fit to 31 Argon and Neon arc lines using the grating equation (red) and a 5th order polynomial (blue).

Fig. 3
Fig. 3

Axial resolution of the UHR OCT. a) Spectrum of NKT SuperK Versa after spectral shaping at 810 nm (red), the spectrum of the CCD response (blue) and the source spectrum modified by the CCD spectral response (black); b) PSF simulated using the source spectrum and the CCD response (red cross) and the actual measured PSF using a glass slide (blue circle). The simulated spectrum was processed in the same way as the actual measured data.

Fig. 4
Fig. 4

UHR OCT imaging of a layer of UV-cured epoxy resin 2-3 microns (measured with a mechanical profilometer) deposited on a piece of glass. a) ultra-high resolution OCT cross-section image of the sample; b) depth profile (without any windowing function such as Hann window) showing the optical thickness of the resin to be 4 microns which corresponds to 2.6 microns in physical thickness (refractive index of the resin is ~1.53) consistent with the profilometer measured thickness of 2-3 microns.

Fig. 5
Fig. 5

Axial resolution as a function of depth using the 5th order polynomial (blue circles) and using the grating equation (red crosses) for wavelength calibration.

Fig. 6
Fig. 6

Measurements of the UHR OCT sensitivity using a 6 mm thick glass slide: a) signal-to-noise measured as a function of depth while keeping the objective focus fixed on the sample surface (sensitivity roll-off) in blue crosses compared with the noise-free theoretical values (black curve) shifted down by 50 dB for clarity; b) noise with the sample removed as a function of depth calculated from 500 repeat measurements; c) a single A-scan (blue) compared with an average of 1000 A-scans (averaging was done in linear scale before converting to dB) shifted down by 100 dB for clarity (pink); d) noise measured at a depth of 500-520 µm (with the sample removed) as a function of the number of averaged A-scans (red circles) compared with expected shot noise behavior (black curve).

Fig. 7
Fig. 7

Comparison of UHR OCT and commercial OCT images of roughly the same area on an old master painting. a) UHR OCT in situ imaging of The Madonna and Child (NG929, after Raphael, probably before 1600) in the conservation studio of the National Gallery London; b) 930nm commercial OCT cross-section image of the Virgin’s cloak; c) UHR OCT cross-section image at roughly the same position as a). The red bars to the right of the image indicates the top two varnish layers 1 and 2. The OCT images in b) and c) are of the same scale (3 mm wide by 0.228 mm deep).

Fig. 8
Fig. 8

Comparison between UHR OCT ‘virtual’ cross-section image and microscope images of a sample taken from a nearby position on the painting in Fig. 6a. a) UHR OCT cross-section image of the background curtain, next to the position where a sample was taken (sample hole to the right of the image); two videos of an image cube around this region are given in Media 1 and Media 2; b-g) a paint sample from the curtain prepared as a cross-section and imaged under the optical microscope in visible and UV light and with SEM-EDX of the backscattered electron, oxygen, copper and lead (the scales of these images are identical). The vertical scale of the OCT image is ~130 microns after converting to physical thickness by assuming refractive indices of 1.5 for varnish and paint layers. The OCT image size is 3.7 mm in width which is different from the microscope images which are 0.24 mm in width. The microscope images in b-g have a 1:1 aspect ratio. The OCT image has been rotated to the same orientation as the microscope images (the optical axis was 4.5 degrees from the surface normal) and the bright diagonal stripes are artefacts because of the huge reflection from the shiny varnish at points where the varnish surface normal is exactly aligned with the optical axis.

Tables (1)

Tables Icon

Table 1 Layer thicknesses measured by OCT, Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) a

Metrics