Abstract

A high-power efficient monolithic Nd:YAG 946-nm laser is demonstrated at the cryogenic temperature. By exploring the absorption and the fluorescence spectra of the Nd:YAG crystal, it reveals the fact that the absorption bandwidth at 808 nm is narrowing and the fluorescence intensity at 1061 nm is significant enhanced when the temperature is decreased. The temperature dependence of the lasing threshold at 946 nm is found to display a minimum value near a temperature of 170 K. At an incident pump power of 34.5 W, the local heating leads the optimum temperature to be approximately 120 K and the maximum output power can reach 24.4 W with the conversion efficiency of 71% as well as the slope efficiency up to 75%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of the optimal temperature for the cryogenic monolithic Nd:YAG laser at 946-nm

C. Y. Cho, T. L. Huang, H. P. Cheng, K. F. Huang, and Y. F. Chen
Opt. Express 24(1) 1-8 (2016)

Cryogenically cooled 946nm Nd:YAG laser

S. J. Yoon and J. I. Mackenzie
Opt. Express 22(7) 8069-8075 (2014)

Nd:YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm

C. Y. Cho, T. L. Huang, S. M. Wen, Y. J. Huang, K. F. Huang, and Y. F. Chen
Opt. Express 22(21) 25318-25323 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006), Chap. 2.
  2. T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
    [Crossref]
  3. W. P. Risk and W. Lenth, “Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm,” Opt. Lett. 12(12), 993–995 (1987).
    [Crossref] [PubMed]
  4. T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
    [Crossref]
  5. C. Czeranowsky, E. Heumann, and G. Huber, “All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm,” Opt. Lett. 28(6), 432–434 (2003).
    [Crossref] [PubMed]
  6. R. Zhou, T. Zhang, E. Li, X. Ding, Z. Cai, B. Zhang, W. Wen, P. Wang, and J. Yao, “8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946-nm,” Opt. Express 13(25), 10115–10119 (2005).
    [Crossref] [PubMed]
  7. R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, “Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm,” Opt. Lett. 31(12), 1869–1871 (2006).
    [Crossref] [PubMed]
  8. H. Y. Zhou, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
    [Crossref]
  9. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
    [Crossref] [PubMed]
  10. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [Crossref]
  11. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
    [Crossref]
  12. J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenchin in highly doped Nd3+:YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
    [Crossref]
  13. J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).
  14. J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
    [Crossref]
  15. L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
    [Crossref] [PubMed]
  16. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
    [Crossref]
  17. D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, “Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG,” Opt. Lett. 36(3), 340–342 (2011).
    [Crossref] [PubMed]
  18. N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, “Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser,” Opt. Laser Technol. 45, 74–78 (2013).
    [Crossref]
  19. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [Crossref]
  20. D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications,” Opt. Mater. Express 1(3), 434–450 (2011).
    [Crossref]
  21. R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μ line in Nd3+:YAG,” Appl. Phys. Lett. 15(4), 111–112 (1969).
    [Crossref]
  22. S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
    [Crossref] [PubMed]
  23. S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
    [Crossref]
  24. A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd ed. (Springer-Verlag, 1990), Chap. 6.
  25. A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
    [Crossref]
  26. C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
    [Crossref]
  27. N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission - application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
    [Crossref]

2014 (2)

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref] [PubMed]

2013 (3)

N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, “Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser,” Opt. Laser Technol. 45, 74–78 (2013).
[Crossref]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

H. Y. Zhou, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

2011 (2)

2010 (3)

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref] [PubMed]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[Crossref]

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

2009 (1)

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

2007 (1)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

2006 (1)

2005 (5)

R. Zhou, T. Zhang, E. Li, X. Ding, Z. Cai, B. Zhang, W. Wen, P. Wang, and J. Yao, “8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946-nm,” Opt. Express 13(25), 10115–10119 (2005).
[Crossref] [PubMed]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenchin in highly doped Nd3+:YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[Crossref]

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

2004 (1)

2003 (1)

1999 (1)

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission - application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

1997 (1)

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
[Crossref]

1987 (2)

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

W. P. Risk and W. Lenth, “Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm,” Opt. Lett. 12(12), 993–995 (1987).
[Crossref] [PubMed]

1969 (1)

R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μ line in Nd3+:YAG,” Appl. Phys. Lett. 15(4), 111–112 (1969).
[Crossref]

Adnan, N. N.

N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, “Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser,” Opt. Laser Technol. 45, 74–78 (2013).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[Crossref] [PubMed]

Ahmad, M. F. S.

N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, “Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser,” Opt. Laser Technol. 45, 74–78 (2013).
[Crossref]

Bagaev, S. N.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Bakhtiar, H.

N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, “Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser,” Opt. Laser Technol. 45, 74–78 (2013).
[Crossref]

Barnes, N. P.

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission - application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

Bass, M.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenchin in highly doped Nd3+:YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[Crossref]

Bidin, N.

N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, “Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser,” Opt. Laser Technol. 45, 74–78 (2013).
[Crossref]

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Cai, Z.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Chen, Y. F.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Cho, C. Y.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Czeranowsky, C.

Ding, X.

Dong, J.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenchin in highly doped Nd3+:YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[Crossref]

Duan, Y. M.

H. Y. Zhou, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Fan, T. Y.

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications,” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, “Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG,” Opt. Lett. 36(3), 340–342 (2011).
[Crossref] [PubMed]

L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF4 lasers,” Opt. Lett. 35(11), 1854–1856 (2010).
[Crossref] [PubMed]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[Crossref] [PubMed]

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

Fujita, M.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Harris, S. E.

R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μ line in Nd3+:YAG,” Appl. Phys. Lett. 15(4), 111–112 (1969).
[Crossref]

Hawes, S.

Heine, F.

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
[Crossref]

Heumann, E.

Huang, K. F.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Huber, G.

C. Czeranowsky, E. Heumann, and G. Huber, “All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm,” Opt. Lett. 28(6), 432–434 (2003).
[Crossref] [PubMed]

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
[Crossref]

Hybl, J. D.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[Crossref]

Izawa, Y.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Kaminskii, A. A.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Kan, H.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Kawanaka, J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Kawashima, T.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Kellner, T.

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
[Crossref]

Khrisnan, G.

N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, “Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser,” Opt. Laser Technol. 45, 74–78 (2013).
[Crossref]

Lenth, W.

Li, E.

Li, H.

Lundquist, P.

Luo, D. W.

H. Y. Zhou, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Mackenzie, J. I.

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref] [PubMed]

Manni, J. G.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[Crossref]

Martin, H.

Miller, D.

Nishioka, H.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Ochoa, J. R.

D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, “Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG,” Opt. Lett. 36(3), 340–342 (2011).
[Crossref] [PubMed]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[Crossref] [PubMed]

Pearce, S. J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Pipin, D. J.

J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[Crossref]

Pourmand, S. E.

N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, “Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser,” Opt. Laser Technol. 45, 74–78 (2013).
[Crossref]

Rand, D.

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications,” Opt. Mater. Express 1(3), 434–450 (2011).
[Crossref]

J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[Crossref]

Rand, D. A.

Rapaport, A.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenchin in highly doped Nd3+:YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[Crossref]

Ripin, D. J.

Risk, W. P.

Sarkisyan, S.

Shaw, S. E. J.

Shirakawa, A.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Szipocs, F.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenchin in highly doped Nd3+:YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[Crossref]

Taib, N. A. M.

N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, “Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser,” Opt. Laser Technol. 45, 74–78 (2013).
[Crossref]

Takeuchi, Y.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Tang, D. Y.

H. Y. Zhou, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Taylor, A.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Tokita, S.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Tokurakawa, T.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Tuan, P. H.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Ueda, K.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenchin in highly doped Nd3+:YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[Crossref]

Wallace, R. W.

R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μ line in Nd3+:YAG,” Appl. Phys. Lett. 15(4), 111–112 (1969).
[Crossref]

Walsh, B. M.

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission - application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

Wang, P.

Wen, W.

Wilson, E.

Xu, C. W.

H. Y. Zhou, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Yagi, H.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Yamakawa, K.

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Yanagitany, T.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

Yao, J.

Yasuhara, R.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Yoon, S. J.

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

S. J. Yoon and J. I. Mackenzie, “Cryogenically cooled 946nm Nd:YAG laser,” Opt. Express 22(7), 8069–8075 (2014).
[Crossref] [PubMed]

Yoshida, A.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

Yu, Y. T.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Zapata, L. E.

Zhang, B.

Zhang, J.

Zhang, T.

Zhou, H. Y.

H. Y. Zhou, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

Zhou, R.

Appl. Phys. B (1)

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
[Crossref]

Appl. Phys. Lett. (1)

R. W. Wallace and S. E. Harris, “Oscillation and doubling of the 0.946-μ line in Nd3+:YAG,” Appl. Phys. Lett. 15(4), 111–112 (1969).
[Crossref]

IEEE J. Quantum Electron. (4)

J. G. Manni, J. D. Hybl, D. Rand, D. J. Pipin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[Crossref]

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[Crossref]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[Crossref]

N. P. Barnes and B. M. Walsh, “Amplified spontaneous emission - application to Nd:YAG lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[Crossref]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[Crossref]

Laser Phys. (2)

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[Crossref]

J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, “Dramatically improved laser characteristics of diode-pumped Yb-doped materials at low temperature,” Laser Phys. 15(9), 1306–1312 (2005).

Laser Phys. Lett. (3)

H. Y. Zhou, C. W. Xu, J. Zhang, D. Y. Tang, D. W. Luo, and Y. M. Duan, “Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm,” Laser Phys. Lett. 10(7), 075802 (2013).
[Crossref]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, A. Shirakawa, T. Tokurakawa, H. Yagi, T. Yanagitany, and J. Dong, “Stimulated-emission spectroscopy of fine-grained ‘garnet’ ceramics Nd:3+:Y3Al5O12 in a wide temperature range between 77 and 650 K,” Laser Phys. Lett. 6(9), 682–687 (2009).
[Crossref]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

N. Bidin, S. E. Pourmand, M. F. S. Ahmad, G. Khrisnan, N. A. M. Taib, N. N. Adnan, and H. Bakhtiar, “Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser,” Opt. Laser Technol. 45, 74–78 (2013).
[Crossref]

Opt. Lett. (6)

Opt. Mater. Express (1)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenchin in highly doped Nd3+:YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[Crossref]

Proc. SPIE (1)

S. J. Yoon and J. I. Mackenzie, “Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm,” Proc. SPIE 9135, 913503 (2014).
[Crossref]

Other (2)

A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 2nd ed. (Springer-Verlag, 1990), Chap. 6.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for the cryogenically cooled Nd:YAG laser.

Fig. 2
Fig. 2

(a) The absorption spectra and the spontaneous fluorescence spectra of the Nd:YAG crystal for (b) the 4F3/2 to 4I9/2 transition and (c) the 4F3/2 to 4I11/2 transition at 290 K, 230 K, 170 K, 110 K and 90 K.

Fig. 3
Fig. 3

The temperature dependence of the threshold pump power for the monolithic Nd:YAG laser at 946 nm.

Fig. 4
Fig. 4

Output powers of the 946-nm Nd:YAG laser with respected to the cooling temperature for fixed pump powers of 17 W, 13 W, 10 W, 7 W and 3 W.

Fig. 5
Fig. 5

Transverse distributions of the 946-nm Nd:YAG laser at the incident pump power of 17.3 W with temperature of (a) 290 K and (b) 150 K.

Fig. 6
Fig. 6

Output powers with respected to the absorbed pump power and incident pump power for the 946-nm Nd:YAG laser at a cooling temperature of 120 K with a 35-W pump diode. The inset: the emission spectrum for the Nd:YAG 946-nm laser.

Metrics