Abstract

The dependence of lasing threshold on the output transmission is numerically analyzed to find the condition for the gain-to-loss balance for the orthogonal Np and Nm polarizations with a Ng-cut Yb:KGW laser crystal. With the numerical analysis, an orthogonally polarized dual-comb self-mode-locked operation is experimentally achieved with a coated Yb:KGW crystal to form a monolithic cavity. At a pump power of 5.2 W, the average output power, the pulse repetition rate, and the pulse duration are measured to be 0.24 (0.6) W, 25.8 (25.3) GHz, and 1.06 (1.12) ps for the output along the Np (Nm) polarization.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen
Opt. Lett. 38(14) 2596-2599 (2013)

Exploiting birefringent thermal lensing effect to manipulate polarization states of an Nd:YVO4 self-mode-locked laser

P. H. Tuan, M. C. Tsai, and Y. F. Chen
Opt. Express 25(23) 29000-29009 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
    [Crossref] [PubMed]
  2. A. A. Sirotkin, S. V. Garnov, V. I. Vlasov, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Two-frequency vanadate lasers with mutually parallel and orthogonal polarizations of radiation,” Quantum Electron. 42(5), 420–426 (2012).
    [Crossref]
  3. A. Brenier, Y. Wu, P. Fu, J. Zhang, and Y. Zu, “Diode-pumped laser properties of Nd3+-doped La2CaB10O19 crystal including two-frequency generation with 4.6 THz separation,” Opt. Express 17(21), 18730–18737 (2009).
    [PubMed]
  4. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
    [Crossref] [PubMed]
  5. Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013).
    [Crossref]
  6. Y. Zhao, S. Zhuang, X. Xu, J. Xu, H. Yu, Z. Wang, and X. Xu, “Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO,” Opt. Express 22(3), 2228–2235 (2014).
    [Crossref] [PubMed]
  7. J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
    [Crossref] [PubMed]
  8. S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
    [Crossref] [PubMed]
  9. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
    [Crossref]
  10. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [Crossref] [PubMed]
  11. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  12. B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  13. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
    [Crossref] [PubMed]
  14. Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 1–4 (2012).
  15. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
    [Crossref] [PubMed]
  16. A. Lagatsky, C. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12(17), 3928–3933 (2004).
    [Crossref] [PubMed]
  17. W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
    [Crossref] [PubMed]
  18. A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
    [Crossref]
  19. F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
    [Crossref] [PubMed]
  20. M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
    [Crossref]
  21. J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2–3), 367–376 (2007).
    [Crossref]
  22. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36(9), 1867–1874 (1997).
    [Crossref] [PubMed]
  23. V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, and N. V. Kuleshov, “Luminescence lifetime measurements in Yb3+-doped KY(WO4)2 and KGd (WO4)2,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WB7.
    [Crossref]
  24. W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B 102(4), 775–779 (2011).
    [Crossref]

2014 (1)

2013 (2)

Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013).
[Crossref]

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

2012 (4)

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 1–4 (2012).

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
[Crossref] [PubMed]

A. A. Sirotkin, S. V. Garnov, V. I. Vlasov, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Two-frequency vanadate lasers with mutually parallel and orthogonal polarizations of radiation,” Quantum Electron. 42(5), 420–426 (2012).
[Crossref]

Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
[Crossref] [PubMed]

2011 (3)

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[Crossref] [PubMed]

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
[Crossref]

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B 102(4), 775–779 (2011).
[Crossref]

2010 (2)

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

2009 (3)

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2007 (3)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[Crossref] [PubMed]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2–3), 367–376 (2007).
[Crossref]

2005 (1)

2004 (1)

1997 (1)

1991 (1)

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Brabec, T.

Brehm, M.

Brenier, A.

Brown, C.

Byer, R. L.

Cao, D. X.

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Chang, M. T.

Chen, T.

Chen, Y. F.

Chen, Y. J.

Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013).
[Crossref]

Cho, C. Y.

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Dan, D.

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Dong, J.

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2–3), 367–376 (2007).
[Crossref]

Duan, T.

Fu, P.

Gao, P.

Garnov, S. V.

A. A. Sirotkin, S. V. Garnov, V. I. Vlasov, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Two-frequency vanadate lasers with mutually parallel and orthogonal polarizations of radiation,” Quantum Electron. 42(5), 420–426 (2012).
[Crossref]

Gong, X. H.

Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013).
[Crossref]

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Guo, R.

Hänsch, T.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Huang, G. W.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 1–4 (2012).

Huang, J. H.

Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013).
[Crossref]

Huang, Y. D.

Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013).
[Crossref]

Huang, Y. J.

Huang, Y. P.

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Jaquet, P.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jiang, P.

Kaminskii, A. A.

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2–3), 367–376 (2007).
[Crossref]

Kang, J. U.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[Crossref] [PubMed]

Keilmann, F.

Kim, C. S.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[Crossref] [PubMed]

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Kong, J.

Krausz, F.

Kutovoi, S. A.

A. A. Sirotkin, S. V. Garnov, V. I. Vlasov, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Two-frequency vanadate lasers with mutually parallel and orthogonal polarizations of radiation,” Quantum Electron. 42(5), 420–426 (2012).
[Crossref]

Lagatsky, A.

Lei, M.

Li, Y.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Liang, H. C.

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 1–4 (2012).

Lin, Y. F.

Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013).
[Crossref]

Luo, Y. M.

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Luo, Z. D.

Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013).
[Crossref]

Ma, B.

Min, J.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Piqué, N.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Qian, L. J.

Schliesser, A.

Shcherbakov, I. A.

A. A. Sirotkin, S. V. Garnov, V. I. Vlasov, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Two-frequency vanadate lasers with mutually parallel and orthogonal polarizations of radiation,” Quantum Electron. 42(5), 420–426 (2012).
[Crossref]

Shen, Y.

Shirakawa, A.

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2–3), 367–376 (2007).
[Crossref]

Sibbett, W.

Sirotkin, A. A.

A. A. Sirotkin, S. V. Garnov, V. I. Vlasov, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Two-frequency vanadate lasers with mutually parallel and orthogonal polarizations of radiation,” Quantum Electron. 42(5), 420–426 (2012).
[Crossref]

Son, S. N.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[Crossref] [PubMed]

Song, J. J.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[Crossref] [PubMed]

Spielmann, C.

Su, K. W.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 1–4 (2012).

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Taira, T.

Tan, W. D.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B 102(4), 775–779 (2011).
[Crossref]

Tan, Y. D.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Tang, D. Y.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B 102(4), 775–779 (2011).
[Crossref]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[Crossref] [PubMed]

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Tulloch, W. M.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Ueda, K.

Ueda, K. I.

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2–3), 367–376 (2007).
[Crossref]

van der Weide, D.

Vlasov, V. I.

A. A. Sirotkin, S. V. Garnov, V. I. Vlasov, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Two-frequency vanadate lasers with mutually parallel and orthogonal polarizations of radiation,” Quantum Electron. 42(5), 420–426 (2012).
[Crossref]

Wang, M. Z.

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Wang, X. F.

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Wang, Z.

Wu, B.

Wu, Y.

Xie, G. Q.

Xu, C. W.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B 102(4), 775–779 (2011).
[Crossref]

Xu, J.

Xu, X.

Yan, S.

Yang, D.

Yang, Y.

Yao, B.

Ye, T.

Yu, H.

Yu, H. H.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B 102(4), 775–779 (2011).
[Crossref]

Zagumennyi, A. I.

A. A. Sirotkin, S. V. Garnov, V. I. Vlasov, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Two-frequency vanadate lasers with mutually parallel and orthogonal polarizations of radiation,” Quantum Electron. 42(5), 420–426 (2012).
[Crossref]

Zavartsev, Y. D.

A. A. Sirotkin, S. V. Garnov, V. I. Vlasov, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Two-frequency vanadate lasers with mutually parallel and orthogonal polarizations of radiation,” Quantum Electron. 42(5), 420–426 (2012).
[Crossref]

Zhang, H. J.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B 102(4), 775–779 (2011).
[Crossref]

Zhang, J.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B 102(4), 775–779 (2011).
[Crossref]

A. Brenier, Y. Wu, P. Fu, J. Zhang, and Y. Zu, “Diode-pumped laser properties of Nd3+-doped La2CaB10O19 crystal including two-frequency generation with 4.6 THz separation,” Opt. Express 17(21), 18730–18737 (2009).
[PubMed]

Zhang, S. L.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Zhao, L. M.

Zhao, Y.

Zheng, J.

Zhou, M.

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Zhuang, S.

Zhuang, W. Z.

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 1–4 (2012).

Zu, Y.

Appl. Opt. (2)

Appl. Phys. B (3)

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B 102(4), 775–779 (2011).
[Crossref]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2–3), 367–376 (2007).
[Crossref]

Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron. 47(3), 279–284 (2011).
[Crossref]

Laser Phys. Lett. (1)

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 1–4 (2012).

Meas. Sci. Technol. (1)

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21(5), 054016 (2010).
[Crossref]

Nat. Photonics (1)

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Opt. Commun. (1)

M. Zhou, D. X. Cao, M. Z. Wang, X. F. Wang, and Y. M. Luo, “Polarized fluorescence spectra analysis of Yb3+:KGd(WO4)2,” Opt. Commun. 282(20), 4109–4113 (2009).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Quantum Electron. (1)

A. A. Sirotkin, S. V. Garnov, V. I. Vlasov, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Two-frequency vanadate lasers with mutually parallel and orthogonal polarizations of radiation,” Quantum Electron. 42(5), 420–426 (2012).
[Crossref]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Sensors (Basel) (1)

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors (Basel) 11(12), 6125–6130 (2011).
[Crossref] [PubMed]

Other (1)

V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, and N. V. Kuleshov, “Luminescence lifetime measurements in Yb3+-doped KY(WO4)2 and KGd (WO4)2,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper WB7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental results for the (a) absorption and (b) emission cross sections of the Ng-cut Yb:KGW crystal along the Nm and Np principal axes. The inset is the energy levels.
Fig. 2
Fig. 2 Calculated results for the dependence of the threshold pump power on the laser wavelength of the Yb:KGW crystal for output coupling of (a) T = 5% and (b) T = 1.5%.
Fig. 3
Fig. 3 (a) Schematic of the experimental cavity setup for the dual-comb self-mode-locked monolithic Yb:KGW laser. (b) Dependence of the average output power on the incident pump power with different polarizations.
Fig. 4
Fig. 4 Experimental optical spectrum of the dual-comb orthogonally polarized Yb:KGW laser.
Fig. 5
Fig. 5 Experimental traces of the temporal behavior of first-order autocorrelation for polarization direction along (a) Np axis and (b) Nm axis.
Fig. 6
Fig. 6 FWHM width of a single pulse of the second-order autocorrelations for polarization direction along (a) Np axis and (b) Nm axis.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

(κ P i ) th > 1 ln(m) T r T c
P th = πh v p ( ω p 2 + ω c 2 ) 4τ( σ e + σ a )( f 1 + f 2 ) [ T+L+2( 1 e σ a N 1 l c ) ]

Metrics