L. J. Salazar-Serrano, A. Valencia, and J. P. Torres, “Tunable beam displacer,” Rev. Sci. Instrum. 86, 033109 (2015).

[Crossref]
[PubMed]

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[Crossref]

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).

M. Feldman, A. El-Amawy, A. Srivastava, and R. Vaidyanathan, “Adjustable Wollaston-like prisms,” Rev. Sci. Instrum. 77, 066109 (2006).

[Crossref]

I. M. Duck, P. M. Stevenson, and E. C. G. Sudarhshan, “The sense in which a “weak measurement” of a spin 1/2 particle’s spin component yields a value of 100,” Phys. Rev. D 40, 2112 (1989).

[Crossref]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).

[Crossref]
[PubMed]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).

[Crossref]
[PubMed]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).

[Crossref]
[PubMed]

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[Crossref]

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[Crossref]

I. M. Duck, P. M. Stevenson, and E. C. G. Sudarhshan, “The sense in which a “weak measurement” of a spin 1/2 particle’s spin component yields a value of 100,” Phys. Rev. D 40, 2112 (1989).

[Crossref]

M. Feldman, A. El-Amawy, A. Srivastava, and R. Vaidyanathan, “Adjustable Wollaston-like prisms,” Rev. Sci. Instrum. 77, 066109 (2006).

[Crossref]

M. Feldman, A. El-Amawy, A. Srivastava, and R. Vaidyanathan, “Adjustable Wollaston-like prisms,” Rev. Sci. Instrum. 77, 066109 (2006).

[Crossref]

G. R. Fowles, Introduction to Modern Optics (Dover, 1975).

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[Crossref]

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[Crossref]

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[Crossref]

L. J. Salazar-Serrano, A. Valencia, and J. P. Torres, “Tunable beam displacer,” Rev. Sci. Instrum. 86, 033109 (2015).

[Crossref]
[PubMed]

J. P. Torres, G. Puentes, N. Hermosa, and L. J. Salazar-Serrano, “Weak interference in the high-signal regime,” Opt. Express 20, 18869–18875 (2012).

[Crossref]
[PubMed]

M. Feldman, A. El-Amawy, A. Srivastava, and R. Vaidyanathan, “Adjustable Wollaston-like prisms,” Rev. Sci. Instrum. 77, 066109 (2006).

[Crossref]

I. M. Duck, P. M. Stevenson, and E. C. G. Sudarhshan, “The sense in which a “weak measurement” of a spin 1/2 particle’s spin component yields a value of 100,” Phys. Rev. D 40, 2112 (1989).

[Crossref]

I. M. Duck, P. M. Stevenson, and E. C. G. Sudarhshan, “The sense in which a “weak measurement” of a spin 1/2 particle’s spin component yields a value of 100,” Phys. Rev. D 40, 2112 (1989).

[Crossref]

L. J. Salazar-Serrano, A. Valencia, and J. P. Torres, “Tunable beam displacer,” Rev. Sci. Instrum. 86, 033109 (2015).

[Crossref]
[PubMed]

J. P. Torres, G. Puentes, N. Hermosa, and L. J. Salazar-Serrano, “Weak interference in the high-signal regime,” Opt. Express 20, 18869–18875 (2012).

[Crossref]
[PubMed]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).

[Crossref]
[PubMed]

M. Feldman, A. El-Amawy, A. Srivastava, and R. Vaidyanathan, “Adjustable Wollaston-like prisms,” Rev. Sci. Instrum. 77, 066109 (2006).

[Crossref]

L. J. Salazar-Serrano, A. Valencia, and J. P. Torres, “Tunable beam displacer,” Rev. Sci. Instrum. 86, 033109 (2015).

[Crossref]
[PubMed]

I. M. Duck, P. M. Stevenson, and E. C. G. Sudarhshan, “The sense in which a “weak measurement” of a spin 1/2 particle’s spin component yields a value of 100,” Phys. Rev. D 40, 2112 (1989).

[Crossref]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a 1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).

[Crossref]
[PubMed]

A. N. Jordan, J. Martínez-Rincón, and J. C. Howell, “Technical advantages for weak-value amplification: when less is more,” Phys. Rev. X 4, 011031 (2014).

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, “Colloquium: understanding quantum weak values: basics and applications,” Rev. Mod. Phys. 86, 307 (2014).

[Crossref]

M. Feldman, A. El-Amawy, A. Srivastava, and R. Vaidyanathan, “Adjustable Wollaston-like prisms,” Rev. Sci. Instrum. 77, 066109 (2006).

[Crossref]

L. J. Salazar-Serrano, A. Valencia, and J. P. Torres, “Tunable beam displacer,” Rev. Sci. Instrum. 86, 033109 (2015).

[Crossref]
[PubMed]

For example, the tweaker plate from Thorlabs model XYT-A is a 2. 5mm thick plane-parallel plate that allows sub-mm level precision beam displacement.

II-VI UK LTD offers thin film polarizers made of either ZnSe or Ge that can be used to split or combine an input beam into two components with orthogonal polarizations.

For instance, Edmund Optics plate beam splitter model #49-684 is a 3mm thick N-BK7 splitter that transmits 70% of the input power and operates in the visible regime.

G. R. Fowles, Introduction to Modern Optics (Dover, 1975).