Abstract

A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at μs resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking into account the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 × 10−5, 8.14 × 10−5, and 9.51 × 10−5 m2/s. These results agree well with the reference value of 8.66 × 10−5 m2/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement

Tianyu Wang, Shen Xu, David H. Hurley, Yanan Yue, and Xinwei Wang
Opt. Lett. 41(1) 80-83 (2016)

Thermal probing in single microparticle and microfiber induced near-field laser focusing

Xiaoduan Tang, Shen Xu, and Xinwei Wang
Opt. Express 21(12) 14303-14315 (2013)

Sub-wavelength temperature probing in near-field laser heating by particles

Xiaoduan Tang, Yanan Yue, Xiangwen Chen, and Xinwei Wang
Opt. Express 20(13) 14152-14167 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. E. Beechem and J. R. Serrane, “Raman Thermometry of Microdevices: Comparing Methods to Minimize Error,” Spectroscopy 26(11), 36–44 (2011).
  2. Y. N. Yue and X. W. Wang, “Review on Raman-based Thermal Characterization and Analysis,” Journal of Shanghai Second Polytechnic University 28(3), 183–191 (2011).
  3. L. Song, W. J. Ma, Y. Ren, W. Y. Zhou, S. S. Xie, P. H. Tan, and L. F. Sun, “Temperature Dependence of Raman Spectra in Single-walled Carbon Nanotube Rings,” Appl. Phys. Lett. 92(12), 121905 (2008).
    [Crossref]
  4. T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices using Micro-Raman Spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
    [Crossref] [PubMed]
  5. N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
    [Crossref] [PubMed]
  6. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett. 8(3), 902–907 (2008).
    [Crossref] [PubMed]
  7. S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
    [Crossref] [PubMed]
  8. Q. Li, C. Liu, X. Wang, and S. Fan, “Measuring the Thermal Conductivity of Individual Carbon Nanotubes by the Raman Shift Method,” Nanotechnology 20(14), 145702 (2009).
    [Crossref] [PubMed]
  9. E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
    [Crossref]
  10. Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
    [Crossref]
  11. S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, “Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2,” J. Phys. Chem. C 117(17), 9042–9047 (2013).
    [Crossref]
  12. Y. Yue, J. Zhang, and X. Wang, “Micro/Nanoscale Spatial Resolution Temperature Probing for the Interfacial Thermal Characterization of Epitaxial Graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
    [Crossref] [PubMed]
  13. X. Tang, S. Xu, and X. Wang, “Corrugated Epitaxial Graphene/SiC Interfaces: Photon Excitation and Probing,” Nanoscale 6(15), 8822–8830 (2014).
    [Crossref] [PubMed]
  14. X. Tang, S. Xu, J. Zhang, and X. Wang, “Five Orders of Magnitude Reduction in Energy Coupling across Corrugated Graphene/Substrate Interfaces,” ACS Appl. Mater. Interfaces 6(4), 2809–2818 (2014).
    [Crossref] [PubMed]
  15. X. Tang, S. Xu, and X. Wang, “Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating,” PLoS ONE 8(3), e58030 (2013).
    [Crossref] [PubMed]
  16. X. Tang, S. Xu, and X. Wang, “Thermal Probing in Single Microparticle and Microfiber Induced Near-field Laser Focusing,” Opt. Express 21(12), 14303–14315 (2013).
    [Crossref] [PubMed]
  17. X. Tang, Y. Yue, X. Chen, and X. Wang, “Sub-wavelength Temperature Probing in Near-field Laser Heating by Particles,” Opt. Express 20(13), 14152–14167 (2012).
    [Crossref] [PubMed]
  18. Y. Yue, X. Chen, and X. Wang, “Noncontact Sub-10 nm Temperature Measurement in Near-Field Laser Heating,” ACS Nano 5(6), 4466–4475 (2011).
    [Crossref] [PubMed]
  19. S. Xu, X. D. Tang, Y. N. Yue, and X. W. Wang, “Sub-micron Imaging of Sub-surface Nanocrystalline Structure in Silicon,” J Raman Spectrosc 44(11), 1523–1528 (2013).
    [Crossref]
  20. J. Q. Guo, X. W. Wang, and T. Wang, “Thermal Characterization of Microscale Conductive and Nonconductive Wires using Transient Electrothermal Technique,” J. Appl. Phys. 101(6), 063537 (2007).
    [Crossref]
  21. H. Lin, S. Xu, X. Wang, and N. Mei, “Significantly Reduced Thermal Diffusivity of Free-standing Two-layer Graphene in Graphene Foam,” Nanotechnology 24(41), 415706 (2013).
    [Crossref] [PubMed]
  22. G. Liu, S. Xu, T. T. Cao, H. Lin, X. Tang, Y. Q. Zhang, and X. Wang, “Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks,” Biopolymers 101(10), 1029–1037 (2014).
    [Crossref] [PubMed]
  23. Z. L. Xu, S. Xu, X. D. Tang, and X. W. Wang, “Energy Transport in Crystalline DNA Composites,” Aip Adv 4(1), 017131 (2014).
    [Crossref]
  24. D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition) ed. (Taylor and Francis, Boca Raton, FL, 2007).
  25. G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of Thermal Transport in One-dimensional Solid Materials,” J. Vis. Exp. 83: e51144 (2014).
    [PubMed]
  26. P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, and C. Casiraghi, “Raman Scattering Efficiency of Graphene,” Phys. Rev. B 87(20), 205435 (2013).
    [Crossref]
  27. M. Cardona, Light Scattering in Solids II, Topics in Applied Physics (Springer, Berlin, 1982), Vol. 50.

2014 (6)

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

X. Tang, S. Xu, and X. Wang, “Corrugated Epitaxial Graphene/SiC Interfaces: Photon Excitation and Probing,” Nanoscale 6(15), 8822–8830 (2014).
[Crossref] [PubMed]

X. Tang, S. Xu, J. Zhang, and X. Wang, “Five Orders of Magnitude Reduction in Energy Coupling across Corrugated Graphene/Substrate Interfaces,” ACS Appl. Mater. Interfaces 6(4), 2809–2818 (2014).
[Crossref] [PubMed]

G. Liu, S. Xu, T. T. Cao, H. Lin, X. Tang, Y. Q. Zhang, and X. Wang, “Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks,” Biopolymers 101(10), 1029–1037 (2014).
[Crossref] [PubMed]

Z. L. Xu, S. Xu, X. D. Tang, and X. W. Wang, “Energy Transport in Crystalline DNA Composites,” Aip Adv 4(1), 017131 (2014).
[Crossref]

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of Thermal Transport in One-dimensional Solid Materials,” J. Vis. Exp. 83: e51144 (2014).
[PubMed]

2013 (8)

P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, and C. Casiraghi, “Raman Scattering Efficiency of Graphene,” Phys. Rev. B 87(20), 205435 (2013).
[Crossref]

S. Xu, X. D. Tang, Y. N. Yue, and X. W. Wang, “Sub-micron Imaging of Sub-surface Nanocrystalline Structure in Silicon,” J Raman Spectrosc 44(11), 1523–1528 (2013).
[Crossref]

H. Lin, S. Xu, X. Wang, and N. Mei, “Significantly Reduced Thermal Diffusivity of Free-standing Two-layer Graphene in Graphene Foam,” Nanotechnology 24(41), 415706 (2013).
[Crossref] [PubMed]

X. Tang, S. Xu, and X. Wang, “Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating,” PLoS ONE 8(3), e58030 (2013).
[Crossref] [PubMed]

X. Tang, S. Xu, and X. Wang, “Thermal Probing in Single Microparticle and Microfiber Induced Near-field Laser Focusing,” Opt. Express 21(12), 14303–14315 (2013).
[Crossref] [PubMed]

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, “Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2,” J. Phys. Chem. C 117(17), 9042–9047 (2013).
[Crossref]

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

2012 (2)

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

X. Tang, Y. Yue, X. Chen, and X. Wang, “Sub-wavelength Temperature Probing in Near-field Laser Heating by Particles,” Opt. Express 20(13), 14152–14167 (2012).
[Crossref] [PubMed]

2011 (4)

Y. Yue, X. Chen, and X. Wang, “Noncontact Sub-10 nm Temperature Measurement in Near-Field Laser Heating,” ACS Nano 5(6), 4466–4475 (2011).
[Crossref] [PubMed]

Y. Yue, J. Zhang, and X. Wang, “Micro/Nanoscale Spatial Resolution Temperature Probing for the Interfacial Thermal Characterization of Epitaxial Graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
[Crossref] [PubMed]

T. E. Beechem and J. R. Serrane, “Raman Thermometry of Microdevices: Comparing Methods to Minimize Error,” Spectroscopy 26(11), 36–44 (2011).

Y. N. Yue and X. W. Wang, “Review on Raman-based Thermal Characterization and Analysis,” Journal of Shanghai Second Polytechnic University 28(3), 183–191 (2011).

2009 (1)

Q. Li, C. Liu, X. Wang, and S. Fan, “Measuring the Thermal Conductivity of Individual Carbon Nanotubes by the Raman Shift Method,” Nanotechnology 20(14), 145702 (2009).
[Crossref] [PubMed]

2008 (2)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

L. Song, W. J. Ma, Y. Ren, W. Y. Zhou, S. S. Xie, P. H. Tan, and L. F. Sun, “Temperature Dependence of Raman Spectra in Single-walled Carbon Nanotube Rings,” Appl. Phys. Lett. 92(12), 121905 (2008).
[Crossref]

2007 (2)

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices using Micro-Raman Spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[Crossref] [PubMed]

J. Q. Guo, X. W. Wang, and T. Wang, “Thermal Characterization of Microscale Conductive and Nonconductive Wires using Transient Electrothermal Technique,” J. Appl. Phys. 101(6), 063537 (2007).
[Crossref]

Ahmadi, M.

S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, “Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2,” J. Phys. Chem. C 117(17), 9042–9047 (2013).
[Crossref]

Ahopelto, J.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Alzina, F.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Anastasi, P. A. F.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Balandin, A. A.

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Baldasseroni, C.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Beechem, T.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices using Micro-Raman Spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[Crossref] [PubMed]

Beechem, T. E.

T. E. Beechem and J. R. Serrane, “Raman Thermometry of Microdevices: Comparing Methods to Minimize Error,” Spectroscopy 26(11), 36–44 (2011).

Bergler, K.

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of Thermal Transport in One-dimensional Solid Materials,” J. Vis. Exp. 83: e51144 (2014).
[PubMed]

Cai, W.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Cao, T. T.

G. Liu, S. Xu, T. T. Cao, H. Lin, X. Tang, Y. Q. Zhang, and X. Wang, “Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks,” Biopolymers 101(10), 1029–1037 (2014).
[Crossref] [PubMed]

Casiraghi, C.

P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, and C. Casiraghi, “Raman Scattering Efficiency of Graphene,” Phys. Rev. B 87(20), 205435 (2013).
[Crossref]

Ceballos, A.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Chávez-Ángel, E.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Chen, S.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Chen, X.

X. Tang, Y. Yue, X. Chen, and X. Wang, “Sub-wavelength Temperature Probing in Near-field Laser Heating by Particles,” Opt. Express 20(13), 14152–14167 (2012).
[Crossref] [PubMed]

Y. Yue, X. Chen, and X. Wang, “Noncontact Sub-10 nm Temperature Measurement in Near-Field Laser Heating,” ACS Nano 5(6), 4466–4475 (2011).
[Crossref] [PubMed]

Cho, K.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Cox, M.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Cuffe, J.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Eckmann, A.

P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, and C. Casiraghi, “Raman Scattering Efficiency of Graphene,” Phys. Rev. B 87(20), 205435 (2013).
[Crossref]

Fan, S.

Q. Li, C. Liu, X. Wang, and S. Fan, “Measuring the Thermal Conductivity of Individual Carbon Nanotubes by the Raman Shift Method,” Nanotechnology 20(14), 145702 (2009).
[Crossref] [PubMed]

Ferrari, A. C.

P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, and C. Casiraghi, “Raman Scattering Efficiency of Graphene,” Phys. Rev. B 87(20), 205435 (2013).
[Crossref]

Gaur, A. P. S.

S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, “Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2,” J. Phys. Chem. C 117(17), 9042–9047 (2013).
[Crossref]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Gilles, M. K.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Goli, P.

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

Gomis-Bresco, J.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Graczykowski, B.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Graham, S.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices using Micro-Raman Spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[Crossref] [PubMed]

Guinel, M. J. F.

S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, “Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2,” J. Phys. Chem. C 117(17), 9042–9047 (2013).
[Crossref]

Guo, J. Q.

J. Q. Guo, X. W. Wang, and T. Wang, “Thermal Characterization of Microscale Conductive and Nonconductive Wires using Transient Electrothermal Technique,” J. Appl. Phys. 101(6), 063537 (2007).
[Crossref]

Hellman, F.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Jiang, C.

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

Jiang, H.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Kang, J.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Katiyar, R. S.

S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, “Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2,” J. Phys. Chem. C 117(17), 9042–9047 (2013).
[Crossref]

Kearney, S. P.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices using Micro-Raman Spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[Crossref] [PubMed]

Kelly, S. T.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Klar, P.

P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, and C. Casiraghi, “Raman Scattering Efficiency of Graphene,” Phys. Rev. B 87(20), 205435 (2013).
[Crossref]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Leone, S. R.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Li, Q.

Q. Li, C. Liu, X. Wang, and S. Fan, “Measuring the Thermal Conductivity of Individual Carbon Nanotubes by the Raman Shift Method,” Nanotechnology 20(14), 145702 (2009).
[Crossref] [PubMed]

Lidorikis, E.

P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, and C. Casiraghi, “Raman Scattering Efficiency of Graphene,” Phys. Rev. B 87(20), 205435 (2013).
[Crossref]

Lin, H.

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of Thermal Transport in One-dimensional Solid Materials,” J. Vis. Exp. 83: e51144 (2014).
[PubMed]

G. Liu, S. Xu, T. T. Cao, H. Lin, X. Tang, Y. Q. Zhang, and X. Wang, “Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks,” Biopolymers 101(10), 1029–1037 (2014).
[Crossref] [PubMed]

H. Lin, S. Xu, X. Wang, and N. Mei, “Significantly Reduced Thermal Diffusivity of Free-standing Two-layer Graphene in Graphene Foam,” Nanotechnology 24(41), 415706 (2013).
[Crossref] [PubMed]

Liu, C.

Q. Li, C. Liu, X. Wang, and S. Fan, “Measuring the Thermal Conductivity of Individual Carbon Nanotubes by the Raman Shift Method,” Nanotechnology 20(14), 145702 (2009).
[Crossref] [PubMed]

Liu, G.

G. Liu, S. Xu, T. T. Cao, H. Lin, X. Tang, Y. Q. Zhang, and X. Wang, “Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks,” Biopolymers 101(10), 1029–1037 (2014).
[Crossref] [PubMed]

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of Thermal Transport in One-dimensional Solid Materials,” J. Vis. Exp. 83: e51144 (2014).
[PubMed]

Lundt, N.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Ma, W. J.

L. Song, W. J. Ma, Y. Ren, W. Y. Zhou, S. S. Xie, P. H. Tan, and L. F. Sun, “Temperature Dependence of Raman Spectra in Single-walled Carbon Nanotube Rings,” Appl. Phys. Lett. 92(12), 121905 (2008).
[Crossref]

Mei, N.

H. Lin, S. Xu, X. Wang, and N. Mei, “Significantly Reduced Thermal Diffusivity of Free-standing Two-layer Graphene in Graphene Foam,” Nanotechnology 24(41), 415706 (2013).
[Crossref] [PubMed]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Mishra, C.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Phinney, L. M.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices using Micro-Raman Spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[Crossref] [PubMed]

Pope, T. R.

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

Prunnila, M.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Remez, B.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Ren, Y.

L. Song, W. J. Ma, Y. Ren, W. Y. Zhou, S. S. Xie, P. H. Tan, and L. F. Sun, “Temperature Dependence of Raman Spectra in Single-walled Carbon Nanotube Rings,” Appl. Phys. Lett. 92(12), 121905 (2008).
[Crossref]

Renteria, J.

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

Reparaz, J. S.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Rödel, T.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Ruoff, R. S.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Sahoo, S.

S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, “Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2,” J. Phys. Chem. C 117(17), 9042–9047 (2013).
[Crossref]

Salguero, T. T.

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

Schwartzberg, A. M.

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Serrane, J. R.

T. E. Beechem and J. R. Serrane, “Raman Thermometry of Microdevices: Comparing Methods to Minimize Error,” Spectroscopy 26(11), 36–44 (2011).

Serrano, J. R.

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices using Micro-Raman Spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[Crossref] [PubMed]

Shchepetov, A.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Song, L.

L. Song, W. J. Ma, Y. Ren, W. Y. Zhou, S. S. Xie, P. H. Tan, and L. F. Sun, “Temperature Dependence of Raman Spectra in Single-walled Carbon Nanotube Rings,” Appl. Phys. Lett. 92(12), 121905 (2008).
[Crossref]

Sotomayor Torres, C. M.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Stickney, J. L.

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

Sun, L. F.

L. Song, W. J. Ma, Y. Ren, W. Y. Zhou, S. S. Xie, P. H. Tan, and L. F. Sun, “Temperature Dependence of Raman Spectra in Single-walled Carbon Nanotube Rings,” Appl. Phys. Lett. 92(12), 121905 (2008).
[Crossref]

Tan, P. H.

L. Song, W. J. Ma, Y. Ren, W. Y. Zhou, S. S. Xie, P. H. Tan, and L. F. Sun, “Temperature Dependence of Raman Spectra in Single-walled Carbon Nanotube Rings,” Appl. Phys. Lett. 92(12), 121905 (2008).
[Crossref]

Tang, X.

X. Tang, S. Xu, and X. Wang, “Corrugated Epitaxial Graphene/SiC Interfaces: Photon Excitation and Probing,” Nanoscale 6(15), 8822–8830 (2014).
[Crossref] [PubMed]

X. Tang, S. Xu, J. Zhang, and X. Wang, “Five Orders of Magnitude Reduction in Energy Coupling across Corrugated Graphene/Substrate Interfaces,” ACS Appl. Mater. Interfaces 6(4), 2809–2818 (2014).
[Crossref] [PubMed]

G. Liu, S. Xu, T. T. Cao, H. Lin, X. Tang, Y. Q. Zhang, and X. Wang, “Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks,” Biopolymers 101(10), 1029–1037 (2014).
[Crossref] [PubMed]

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of Thermal Transport in One-dimensional Solid Materials,” J. Vis. Exp. 83: e51144 (2014).
[PubMed]

X. Tang, S. Xu, and X. Wang, “Thermal Probing in Single Microparticle and Microfiber Induced Near-field Laser Focusing,” Opt. Express 21(12), 14303–14315 (2013).
[Crossref] [PubMed]

X. Tang, S. Xu, and X. Wang, “Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating,” PLoS ONE 8(3), e58030 (2013).
[Crossref] [PubMed]

X. Tang, Y. Yue, X. Chen, and X. Wang, “Sub-wavelength Temperature Probing in Near-field Laser Heating by Particles,” Opt. Express 20(13), 14152–14167 (2012).
[Crossref] [PubMed]

Tang, X. D.

Z. L. Xu, S. Xu, X. D. Tang, and X. W. Wang, “Energy Transport in Crystalline DNA Composites,” Aip Adv 4(1), 017131 (2014).
[Crossref]

S. Xu, X. D. Tang, Y. N. Yue, and X. W. Wang, “Sub-micron Imaging of Sub-surface Nanocrystalline Structure in Silicon,” J Raman Spectrosc 44(11), 1523–1528 (2013).
[Crossref]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Tsang, C. F.

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

Verzhbitskiy, I. A.

P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, and C. Casiraghi, “Raman Scattering Efficiency of Graphene,” Phys. Rev. B 87(20), 205435 (2013).
[Crossref]

Wagner, M. R.

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Wang, T.

J. Q. Guo, X. W. Wang, and T. Wang, “Thermal Characterization of Microscale Conductive and Nonconductive Wires using Transient Electrothermal Technique,” J. Appl. Phys. 101(6), 063537 (2007).
[Crossref]

Wang, X.

X. Tang, S. Xu, and X. Wang, “Corrugated Epitaxial Graphene/SiC Interfaces: Photon Excitation and Probing,” Nanoscale 6(15), 8822–8830 (2014).
[Crossref] [PubMed]

X. Tang, S. Xu, J. Zhang, and X. Wang, “Five Orders of Magnitude Reduction in Energy Coupling across Corrugated Graphene/Substrate Interfaces,” ACS Appl. Mater. Interfaces 6(4), 2809–2818 (2014).
[Crossref] [PubMed]

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of Thermal Transport in One-dimensional Solid Materials,” J. Vis. Exp. 83: e51144 (2014).
[PubMed]

G. Liu, S. Xu, T. T. Cao, H. Lin, X. Tang, Y. Q. Zhang, and X. Wang, “Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks,” Biopolymers 101(10), 1029–1037 (2014).
[Crossref] [PubMed]

X. Tang, S. Xu, and X. Wang, “Thermal Probing in Single Microparticle and Microfiber Induced Near-field Laser Focusing,” Opt. Express 21(12), 14303–14315 (2013).
[Crossref] [PubMed]

X. Tang, S. Xu, and X. Wang, “Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating,” PLoS ONE 8(3), e58030 (2013).
[Crossref] [PubMed]

H. Lin, S. Xu, X. Wang, and N. Mei, “Significantly Reduced Thermal Diffusivity of Free-standing Two-layer Graphene in Graphene Foam,” Nanotechnology 24(41), 415706 (2013).
[Crossref] [PubMed]

X. Tang, Y. Yue, X. Chen, and X. Wang, “Sub-wavelength Temperature Probing in Near-field Laser Heating by Particles,” Opt. Express 20(13), 14152–14167 (2012).
[Crossref] [PubMed]

Y. Yue, X. Chen, and X. Wang, “Noncontact Sub-10 nm Temperature Measurement in Near-Field Laser Heating,” ACS Nano 5(6), 4466–4475 (2011).
[Crossref] [PubMed]

Y. Yue, J. Zhang, and X. Wang, “Micro/Nanoscale Spatial Resolution Temperature Probing for the Interfacial Thermal Characterization of Epitaxial Graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
[Crossref] [PubMed]

Q. Li, C. Liu, X. Wang, and S. Fan, “Measuring the Thermal Conductivity of Individual Carbon Nanotubes by the Raman Shift Method,” Nanotechnology 20(14), 145702 (2009).
[Crossref] [PubMed]

Wang, X. W.

Z. L. Xu, S. Xu, X. D. Tang, and X. W. Wang, “Energy Transport in Crystalline DNA Composites,” Aip Adv 4(1), 017131 (2014).
[Crossref]

S. Xu, X. D. Tang, Y. N. Yue, and X. W. Wang, “Sub-micron Imaging of Sub-surface Nanocrystalline Structure in Silicon,” J Raman Spectrosc 44(11), 1523–1528 (2013).
[Crossref]

Y. N. Yue and X. W. Wang, “Review on Raman-based Thermal Characterization and Analysis,” Journal of Shanghai Second Polytechnic University 28(3), 183–191 (2011).

J. Q. Guo, X. W. Wang, and T. Wang, “Thermal Characterization of Microscale Conductive and Nonconductive Wires using Transient Electrothermal Technique,” J. Appl. Phys. 101(6), 063537 (2007).
[Crossref]

Wu, Q.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Xie, S. S.

L. Song, W. J. Ma, Y. Ren, W. Y. Zhou, S. S. Xie, P. H. Tan, and L. F. Sun, “Temperature Dependence of Raman Spectra in Single-walled Carbon Nanotube Rings,” Appl. Phys. Lett. 92(12), 121905 (2008).
[Crossref]

Xu, S.

G. Liu, S. Xu, T. T. Cao, H. Lin, X. Tang, Y. Q. Zhang, and X. Wang, “Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks,” Biopolymers 101(10), 1029–1037 (2014).
[Crossref] [PubMed]

X. Tang, S. Xu, J. Zhang, and X. Wang, “Five Orders of Magnitude Reduction in Energy Coupling across Corrugated Graphene/Substrate Interfaces,” ACS Appl. Mater. Interfaces 6(4), 2809–2818 (2014).
[Crossref] [PubMed]

X. Tang, S. Xu, and X. Wang, “Corrugated Epitaxial Graphene/SiC Interfaces: Photon Excitation and Probing,” Nanoscale 6(15), 8822–8830 (2014).
[Crossref] [PubMed]

Z. L. Xu, S. Xu, X. D. Tang, and X. W. Wang, “Energy Transport in Crystalline DNA Composites,” Aip Adv 4(1), 017131 (2014).
[Crossref]

X. Tang, S. Xu, and X. Wang, “Thermal Probing in Single Microparticle and Microfiber Induced Near-field Laser Focusing,” Opt. Express 21(12), 14303–14315 (2013).
[Crossref] [PubMed]

S. Xu, X. D. Tang, Y. N. Yue, and X. W. Wang, “Sub-micron Imaging of Sub-surface Nanocrystalline Structure in Silicon,” J Raman Spectrosc 44(11), 1523–1528 (2013).
[Crossref]

X. Tang, S. Xu, and X. Wang, “Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating,” PLoS ONE 8(3), e58030 (2013).
[Crossref] [PubMed]

H. Lin, S. Xu, X. Wang, and N. Mei, “Significantly Reduced Thermal Diffusivity of Free-standing Two-layer Graphene in Graphene Foam,” Nanotechnology 24(41), 415706 (2013).
[Crossref] [PubMed]

Xu, Z. L.

Z. L. Xu, S. Xu, X. D. Tang, and X. W. Wang, “Energy Transport in Crystalline DNA Composites,” Aip Adv 4(1), 017131 (2014).
[Crossref]

Yan, Z.

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

Yue, Y.

X. Tang, Y. Yue, X. Chen, and X. Wang, “Sub-wavelength Temperature Probing in Near-field Laser Heating by Particles,” Opt. Express 20(13), 14152–14167 (2012).
[Crossref] [PubMed]

Y. Yue, X. Chen, and X. Wang, “Noncontact Sub-10 nm Temperature Measurement in Near-Field Laser Heating,” ACS Nano 5(6), 4466–4475 (2011).
[Crossref] [PubMed]

Y. Yue, J. Zhang, and X. Wang, “Micro/Nanoscale Spatial Resolution Temperature Probing for the Interfacial Thermal Characterization of Epitaxial Graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
[Crossref] [PubMed]

Yue, Y. N.

S. Xu, X. D. Tang, Y. N. Yue, and X. W. Wang, “Sub-micron Imaging of Sub-surface Nanocrystalline Structure in Silicon,” J Raman Spectrosc 44(11), 1523–1528 (2013).
[Crossref]

Y. N. Yue and X. W. Wang, “Review on Raman-based Thermal Characterization and Analysis,” Journal of Shanghai Second Polytechnic University 28(3), 183–191 (2011).

Zhang, H.

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Zhang, J.

X. Tang, S. Xu, J. Zhang, and X. Wang, “Five Orders of Magnitude Reduction in Energy Coupling across Corrugated Graphene/Substrate Interfaces,” ACS Appl. Mater. Interfaces 6(4), 2809–2818 (2014).
[Crossref] [PubMed]

Y. Yue, J. Zhang, and X. Wang, “Micro/Nanoscale Spatial Resolution Temperature Probing for the Interfacial Thermal Characterization of Epitaxial Graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
[Crossref] [PubMed]

Zhang, Y. Q.

G. Liu, S. Xu, T. T. Cao, H. Lin, X. Tang, Y. Q. Zhang, and X. Wang, “Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks,” Biopolymers 101(10), 1029–1037 (2014).
[Crossref] [PubMed]

Zhou, W. Y.

L. Song, W. J. Ma, Y. Ren, W. Y. Zhou, S. S. Xie, P. H. Tan, and L. F. Sun, “Temperature Dependence of Raman Spectra in Single-walled Carbon Nanotube Rings,” Appl. Phys. Lett. 92(12), 121905 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

X. Tang, S. Xu, J. Zhang, and X. Wang, “Five Orders of Magnitude Reduction in Energy Coupling across Corrugated Graphene/Substrate Interfaces,” ACS Appl. Mater. Interfaces 6(4), 2809–2818 (2014).
[Crossref] [PubMed]

ACS Nano (1)

Y. Yue, X. Chen, and X. Wang, “Noncontact Sub-10 nm Temperature Measurement in Near-Field Laser Heating,” ACS Nano 5(6), 4466–4475 (2011).
[Crossref] [PubMed]

Aip Adv (1)

Z. L. Xu, S. Xu, X. D. Tang, and X. W. Wang, “Energy Transport in Crystalline DNA Composites,” Aip Adv 4(1), 017131 (2014).
[Crossref]

Apl Mater (1)

E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski, A. Shchepetov, H. Jiang, M. Prunnila, J. Ahopelto, F. Alzina, and C. M. Sotomayor Torres, “Reduction of the Thermal Conductivity in Free-standing Silicon Nano-membranes Investigated by Non-invasive Raman Thermometry,” Apl Mater 2(1), 012113 (2014).
[Crossref]

Appl. Phys. Lett. (1)

L. Song, W. J. Ma, Y. Ren, W. Y. Zhou, S. S. Xie, P. H. Tan, and L. F. Sun, “Temperature Dependence of Raman Spectra in Single-walled Carbon Nanotube Rings,” Appl. Phys. Lett. 92(12), 121905 (2008).
[Crossref]

Biopolymers (1)

G. Liu, S. Xu, T. T. Cao, H. Lin, X. Tang, Y. Q. Zhang, and X. Wang, “Thermally Induced Increase in Energy Transport Capacity of Silkworm Silks,” Biopolymers 101(10), 1029–1037 (2014).
[Crossref] [PubMed]

J Raman Spectrosc (1)

S. Xu, X. D. Tang, Y. N. Yue, and X. W. Wang, “Sub-micron Imaging of Sub-surface Nanocrystalline Structure in Silicon,” J Raman Spectrosc 44(11), 1523–1528 (2013).
[Crossref]

J. Appl. Phys. (2)

J. Q. Guo, X. W. Wang, and T. Wang, “Thermal Characterization of Microscale Conductive and Nonconductive Wires using Transient Electrothermal Technique,” J. Appl. Phys. 101(6), 063537 (2007).
[Crossref]

Z. Yan, C. Jiang, T. R. Pope, C. F. Tsang, J. L. Stickney, P. Goli, J. Renteria, T. T. Salguero, and A. A. Balandin, “Phonon and Thermal Properties of Exfoliated TaSe2 Thin Films,” J. Appl. Phys. 114(20), 204301 (2013).
[Crossref]

J. Phys. Chem. C (1)

S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, “Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2,” J. Phys. Chem. C 117(17), 9042–9047 (2013).
[Crossref]

J. Vis. Exp. (1)

G. Liu, H. Lin, X. Tang, K. Bergler, and X. Wang, “Characterization of Thermal Transport in One-dimensional Solid Materials,” J. Vis. Exp. 83: e51144 (2014).
[PubMed]

Journal of Shanghai Second Polytechnic University (1)

Y. N. Yue and X. W. Wang, “Review on Raman-based Thermal Characterization and Analysis,” Journal of Shanghai Second Polytechnic University 28(3), 183–191 (2011).

Nano Lett. (1)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Nanoscale (1)

X. Tang, S. Xu, and X. Wang, “Corrugated Epitaxial Graphene/SiC Interfaces: Photon Excitation and Probing,” Nanoscale 6(15), 8822–8830 (2014).
[Crossref] [PubMed]

Nanotechnology (2)

Q. Li, C. Liu, X. Wang, and S. Fan, “Measuring the Thermal Conductivity of Individual Carbon Nanotubes by the Raman Shift Method,” Nanotechnology 20(14), 145702 (2009).
[Crossref] [PubMed]

H. Lin, S. Xu, X. Wang, and N. Mei, “Significantly Reduced Thermal Diffusivity of Free-standing Two-layer Graphene in Graphene Foam,” Nanotechnology 24(41), 415706 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, “Thermal conductivity of isotopically modified graphene,” Nat. Mater. 11(3), 203–207 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, and C. Casiraghi, “Raman Scattering Efficiency of Graphene,” Phys. Rev. B 87(20), 205435 (2013).
[Crossref]

PLoS ONE (1)

X. Tang, S. Xu, and X. Wang, “Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating,” PLoS ONE 8(3), e58030 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, and J. R. Serrano, “Invited Article: Simultaneous Mapping of Temperature and Stress in Microdevices using Micro-Raman Spectroscopy,” Rev. Sci. Instrum. 78(6), 061301 (2007).
[Crossref] [PubMed]

N. Lundt, S. T. Kelly, T. Rödel, B. Remez, A. M. Schwartzberg, A. Ceballos, C. Baldasseroni, P. A. F. Anastasi, M. Cox, F. Hellman, S. R. Leone, and M. K. Gilles, “High Spatial Resolution Raman Thermometry Analysis of TiO2 Microparticles,” Rev. Sci. Instrum. 84(10), 104906 (2013).
[Crossref] [PubMed]

Small (1)

Y. Yue, J. Zhang, and X. Wang, “Micro/Nanoscale Spatial Resolution Temperature Probing for the Interfacial Thermal Characterization of Epitaxial Graphene on 4H-SiC,” Small 7(23), 3324–3333 (2011).
[Crossref] [PubMed]

Spectroscopy (1)

T. E. Beechem and J. R. Serrane, “Raman Thermometry of Microdevices: Comparing Methods to Minimize Error,” Spectroscopy 26(11), 36–44 (2011).

Other (2)

M. Cardona, Light Scattering in Solids II, Topics in Applied Physics (Springer, Berlin, 1982), Vol. 50.

D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition) ed. (Taylor and Francis, Boca Raton, FL, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Timing profiles of the laser pulse and the temperature evolution, and instant changes of Raman peak intensity (I), peak shift (ω) and linewidth (Γ). Along with the heating, the temperature in the sample increases, and then the Raman peak intensity decreases, the wavenumber softens and linewidth broadens. In TD Raman, the laser heating time is increased a little bit (Δt e) each time from Case 1 to Case 3. Therefore, the temperature of the heated region will experience more increase (before reaching the steady state) from Case 1 to Case 3. This extended temperature rise will give rise to a slight change in the Raman spectrum collected during the heating period. (b) The corresponding temporally accumulative Raman spectra of one cycle in three cases. Slight Raman peak softening due to the increased differential heating time is marked in the figure. The peak intensity increases largely because of the longer excitation period. The heating induced intensity decrease is less obvious in these spectra, but is visible via further peak analysis.

Fig. 2
Fig. 2

(a) The optical microscope view of the tipless Si cantilever. It is 450.35 μm long and 49 μm wide. The tip has a height of 22.95 μm. (b) Schematic of laser spot position on the cantilever tip end. The effective heating region is marked with x 1 and x 2 on the x coordinate in the physical model. l e ( = x 2 - x 1) is 19.9 μm indicating the effective length of the heating region on the cantilever. L is the total effective length (438.9 μm) used for the cantilever in the physical model.

Fig. 3
Fig. 3

The evolution of the Si Raman peak against the increase of excitation/heating duty in the experiment. (a) Spectra per cycle under different excitation time of t e: 0.24 ms, 0.4 ms, 0.68 ms, 1.16 ms, 1.72 ms, 4.2 ms, and 10 ms. As the excitation/heating time becomes longer, the Raman peak in one cycle increases and softens to the left. (b) Raman emission Eω ( to the left y axis) increase against t e, but the rate E ω / t e declines quickly at the beginning and then slows down to a constant. The normalized Raman emission E ω * ( to the right y axis) decreases to a steady state value as t e become longer. E ω * directly illustrates that the Raman emission per unit time decreases against the heating time. (c) Raman linewidth variation against the excitation time. Although an increasing trend is observed for the linewidth against increased excitation time, large noises are observed in linewidth data due to the less sensivity of linewidth to temperature variation. So this data is less applicable for thermal diffusivity determination. (d) A clear decline in the wavenumber against t e makes wavenumber ω a good property for detemining α of the cantilever.

Fig. 4
Fig. 4

(a) The evolution of the reconstructed Si Raman spectrum per cycle with the numerical method against the increase of Fourier number Fo e (t e): 0.028, 0.047, 0.079, 0.14, 0.20, 0.49, and 1.17. The Raman peak in one cycle increases and softens to the left against the increased Fo e. This echoes the one in Fig. 3(a). (b) The decreasing trends of the normalized Raman intensity E ω * and (c) the Raman shift ω against the Fourier number Fo e well agree with the trends in the experiment.

Fig. 5
Fig. 5

(a) Variation of normalized intensity against the excitation time. It decreases as t e is increasing to a steady state value. The red curve with α E ω * of 9.17 × 10−5 m2/s best fits the experimental data based on the intensity method. (b) Wavenumber shift to the steady state against the excitation time. The best fitted curve with αω of 8.14 × 10−5 m2/s is shown red. Error bars in both figures show the uncertainty in the measurement, and curves with 10% deviation in both thermal diffusivities are shown in blue and green. They show obvious difference from the best fitted results indicating the sensitivity of the normalized Raman intensity method and wavenumber shift method, respectively.

Fig. 6
Fig. 6

The experimental data fitting based on the peak area with the best fitted curve with α E * = 9.51 × 10−5 m2/s. The measurement uncertainty is shown using error bars. The sensitivity of the total Raman emission method to α is shown with α = 8.56 × 10−5 m2/s and α = 10.47 × 10−5 m2/s, respectively. A visible deviation is observed from the best fitted result when α changes with 10%.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ρ c p θ t = k 2 θ x 2 + g ˙ ,
G X 11 ( x , t | x ' , τ ) = 2 L m = 1 e m 2 π 2 α ( t τ ) / L 2 × sin ( m π x L ) sin ( m π x ' L ) ,
θ ( x , t ) = α k τ = 0 t x ' = x 1 x 2 G X 11 ( x , t | x ' , τ ) g ˙ d x ' d τ .
θ ¯ ( t ) = 2 g ˙ L 3 ( x 2 x 1 ) k m = 1 1 m 4 π 4 ( 1 e m 2 π 2 α L 2 t ) ( cos m π L x 1 cos m π L x 2 ) 2 .
θ ¯ s s = 2 g ˙ L 3 ( x 2 x 1 ) k m = 1 1 m 4 π 4 ( cos m π L x 1 cos m π L x 2 ) 2 .
θ ¯ * = θ ¯ / θ ¯ s s = m = 1 1 m 4 π 4 ( 1 e m 2 π 2 α L 2 t ) ( cos m π L x 1 cos m π L x 2 ) 2 m = 1 1 m 4 π 4 ( cos m π L x 1 cos m π L x 2 ) 2 .
I ( ω ) = A t exp [ 4 ln 2 ( ω ω t ) 2 Γ t 2 ] .
E ω ( ω , t e ) = A 0 0 t e ( 1 A θ ¯ * ) exp [ 4 ln 2 ( ω ω 0 + B θ ¯ * ) 2 ( Γ 0 + C θ ¯ * ) 2 ] d t .
E ω ( ω , F o e ) = A 0 0 F o e ( 1 A θ ¯ * ) exp [ 4 ln 2 ( ω ω 0 + B θ ¯ * ) 2 ( Γ 0 + C θ ¯ * ) 2 ] d F o ,
E ω * ( ω , F o e ) = A 0 F o e 0 F o e ( 1 A θ ¯ * ) exp [ 4 ln 2 ( ω ω 0 + B θ ¯ * ) 2 ( Γ 0 + C θ ¯ * ) ] d F o ,
E * = A 0 ' t e 0 t e ( 1 A θ ¯ * ) ( Γ 0 + C θ ¯ * ) d t ,

Metrics