Abstract

We demonstrate experimentally controlled storage and retrieval of the optical phase information in a higher-order interference scheme based on Raman process in 87Rb atomic vapor cells. An interference pattern is observed in intensity correlation measurement between the write Stokes field and the delayed read Stokes field as the phase of the Raman write field is scanned. This result implies that the phase information of the Raman write field can be written into the atomic spin wave via Raman process in a high gain regime and subsequently read out via a spin-wave enhanced Raman process, thus achieving optical storage of phase information. This technique should find applications in optical phase image storage, holography and information processing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hamiltonian design in readout from room-temperature Raman atomic memory

Michał Dąbrowski, Radosław Chrapkiewicz, and Wojciech Wasilewski
Opt. Express 22(21) 26076-26091 (2014)

Optical phase information writing and storage in populations of metastable quantum states

G. P. Djotyan, N. Sandor, J. S. Bakos, and Zs. Sörlei
J. Opt. Soc. Am. B 26(10) 1959-1966 (2009)

Phase correlation between four-wave mixing and optical fields in double Λ-type atomic system

Taek Jeong and Han Seb Moon
Opt. Express 24(25) 28774-28783 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
    [Crossref]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [Crossref] [PubMed]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
    [Crossref] [PubMed]
  4. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
    [Crossref]
  5. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature (London) 121, 501–502 (1928).
    [Crossref]
  6. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
    [Crossref] [PubMed]
  7. R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-Optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
    [Crossref] [PubMed]
  8. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
    [Crossref]
  9. M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature (London) 438, 837–841 (2005).
    [Crossref]
  10. C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92, 213601 (2004).
    [Crossref] [PubMed]
  11. J. L. Le Gouët and P. Berman, “Raman scheme for adjustable-bandwidth quantum memory,” Phys. Rev. A 80, 012320 (2009).
    [Crossref]
  12. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
    [Crossref]
  13. G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
    [Crossref] [PubMed]
  14. A. Uchida, S. Yoshimori, M. Shinozuka, T. Ogawa, and F. Kannari, “Chaotic on-off keying for secure communications,” Opt. Lett. 26, 932–934 (2001).
    [Crossref]
  15. C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
    [Crossref]
  16. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
    [Crossref] [PubMed]
  17. M. Hosseini, B. M. sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commum. 2, 174 (2011).
    [Crossref]
  18. S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Spatial interference of macroscopic light fields from independent Raman sources,” Phys. Rev. A 43, 4083–4086 (1991).
    [Crossref] [PubMed]
  19. L. Q. Chen, C. L. Bian, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Observation of temporal beating in first- and second-order intensity measurement between independent Raman Stokes fields in atomic vapor,” Phys. Rev. A 82, 033832 (2010).
    [Crossref]
  20. C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett. 97, 34005 (2012).
    [Crossref]
  21. L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett. 95, 041115 (2009).
    [Crossref]
  22. C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A 82, 013817 (2010).
    [Crossref]
  23. W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
    [Crossref]
  24. W. C. Su and C. C. Sun, “Review of random phase encoding in volume holographic storage,” Materials 5, 1635–1653 (2012).
    [Crossref]
  25. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–104 (1979).
    [Crossref]
  26. P. J. Bustard, D. Moffatt, R. Lausten, G. Wu, I. A. Walmsley, and B. J. Sussman, “Quantum random bit generation using stimulated Raman scattering,” Opt. Express 19, 25173–25180 (2011).
    [Crossref]
  27. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
    [Crossref] [PubMed]

2013 (1)

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

2012 (2)

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett. 97, 34005 (2012).
[Crossref]

W. C. Su and C. C. Sun, “Review of random phase encoding in volume holographic storage,” Materials 5, 1635–1653 (2012).
[Crossref]

2011 (2)

P. J. Bustard, D. Moffatt, R. Lausten, G. Wu, I. A. Walmsley, and B. J. Sussman, “Quantum random bit generation using stimulated Raman scattering,” Opt. Express 19, 25173–25180 (2011).
[Crossref]

M. Hosseini, B. M. sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commum. 2, 174 (2011).
[Crossref]

2010 (4)

C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
[Crossref]

L. Q. Chen, C. L. Bian, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Observation of temporal beating in first- and second-order intensity measurement between independent Raman Stokes fields in atomic vapor,” Phys. Rev. A 82, 033832 (2010).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A 82, 013817 (2010).
[Crossref]

2009 (2)

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett. 95, 041115 (2009).
[Crossref]

J. L. Le Gouët and P. Berman, “Raman scheme for adjustable-bandwidth quantum memory,” Phys. Rev. A 80, 012320 (2009).
[Crossref]

2008 (2)

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

2007 (1)

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-Optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[Crossref] [PubMed]

2005 (3)

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature (London) 438, 837–841 (2005).
[Crossref]

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref] [PubMed]

2004 (1)

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92, 213601 (2004).
[Crossref] [PubMed]

2003 (3)

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

2001 (1)

1998 (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

1991 (1)

S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Spatial interference of macroscopic light fields from independent Raman sources,” Phys. Rev. A 43, 4083–4086 (1991).
[Crossref] [PubMed]

1979 (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–104 (1979).
[Crossref]

1928 (1)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature (London) 121, 501–502 (1928).
[Crossref]

Ali-Khan, I.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-Optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[Crossref] [PubMed]

An, K.

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

Andersen, U. L.

C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
[Crossref]

Andre, A.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature (London) 438, 837–841 (2005).
[Crossref]

Bergmann, K.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Berman, P.

J. L. Le Gouët and P. Berman, “Raman scheme for adjustable-bandwidth quantum memory,” Phys. Rev. A 80, 012320 (2009).
[Crossref]

Bian, C. L.

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett. 97, 34005 (2012).
[Crossref]

L. Q. Chen, C. L. Bian, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Observation of temporal beating in first- and second-order intensity measurement between independent Raman Stokes fields in atomic vapor,” Phys. Rev. A 82, 033832 (2010).
[Crossref]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Boyer, V.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

Broadbent, C. J.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-Optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[Crossref] [PubMed]

Buchler, B. C.

M. Hosseini, B. M. sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commum. 2, 174 (2011).
[Crossref]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref] [PubMed]

Bustard, P. J.

Camacho, R. M.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-Optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[Crossref] [PubMed]

Campbell, G.

M. Hosseini, B. M. sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commum. 2, 174 (2011).
[Crossref]

Chen, L. Q.

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett. 97, 34005 (2012).
[Crossref]

L. Q. Chen, C. L. Bian, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Observation of temporal beating in first- and second-order intensity measurement between independent Raman Stokes fields in atomic vapor,” Phys. Rev. A 82, 033832 (2010).
[Crossref]

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A 82, 013817 (2010).
[Crossref]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett. 95, 041115 (2009).
[Crossref]

Choi, W.

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

Chou, C. W.

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92, 213601 (2004).
[Crossref] [PubMed]

Dasari, R. R.

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

Dong, R.

C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
[Crossref]

Eisaman, M. D.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature (London) 438, 837–841 (2005).
[Crossref]

Fang-Yen, C.

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

Feld, M. S.

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

Fleischhauer, M.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature (London) 438, 837–841 (2005).
[Crossref]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref] [PubMed]

Gabriel, C.

C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
[Crossref]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Hétet, G.

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref] [PubMed]

Hosseini, M.

M. Hosseini, B. M. sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commum. 2, 174 (2011).
[Crossref]

Howell, J. C.

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-Optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[Crossref] [PubMed]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

Jaksch, D.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Jing, J.

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A 82, 013817 (2010).
[Crossref]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett. 95, 041115 (2009).
[Crossref]

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–104 (1979).
[Crossref]

Kannari, F.

Kimble, H. J.

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92, 213601 (2004).
[Crossref] [PubMed]

Krishnan, K. S.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature (London) 121, 501–502 (1928).
[Crossref]

Kuo, S. J.

S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Spatial interference of macroscopic light fields from independent Raman sources,” Phys. Rev. A 43, 4083–4086 (1991).
[Crossref] [PubMed]

Kuzmich, A.

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92, 213601 (2004).
[Crossref] [PubMed]

Lam, P. K.

M. Hosseini, B. M. sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commum. 2, 174 (2011).
[Crossref]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref] [PubMed]

Langford, N. K.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–104 (1979).
[Crossref]

Lausten, R.

Le Gouët, J. L.

J. L. Le Gouët and P. Berman, “Raman scheme for adjustable-bandwidth quantum memory,” Phys. Rev. A 80, 012320 (2009).
[Crossref]

Lee, J. H.

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

Lee, K. C.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Lee, M.

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

Lee, Y. R.

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Lett, P. D.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

Leuchs, G.

C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
[Crossref]

Longdell, J. J.

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref] [PubMed]

Lorenz, V. O.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Lukin, M. D.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature (London) 438, 837–841 (2005).
[Crossref]

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref] [PubMed]

Marino, A. M.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

Marquardt, C.

C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
[Crossref]

Massou, F.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature (London) 438, 837–841 (2005).
[Crossref]

Mauerer, W.

C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
[Crossref]

Moffatt, D.

Nunn, J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Ogawa, T.

Ou, Z. Y.

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett. 97, 34005 (2012).
[Crossref]

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A 82, 013817 (2010).
[Crossref]

L. Q. Chen, C. L. Bian, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Observation of temporal beating in first- and second-order intensity measurement between independent Raman Stokes fields in atomic vapor,” Phys. Rev. A 82, 033832 (2010).
[Crossref]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett. 95, 041115 (2009).
[Crossref]

Park, C.

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–104 (1979).
[Crossref]

Polyakov, S. V.

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92, 213601 (2004).
[Crossref] [PubMed]

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

Raman, C. V.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature (London) 121, 501–502 (1928).
[Crossref]

Raymer, M. G.

S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Spatial interference of macroscopic light fields from independent Raman sources,” Phys. Rev. A 43, 4083–4086 (1991).
[Crossref] [PubMed]

Reim, K. F.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Sellars, M. J.

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref] [PubMed]

Shinozuka, M.

Shore, B. W.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Smithey, D. T.

S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Spatial interference of macroscopic light fields from independent Raman sources,” Phys. Rev. A 43, 4083–4086 (1991).
[Crossref] [PubMed]

sparkes, B. M.

M. Hosseini, B. M. sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commum. 2, 174 (2011).
[Crossref]

Su, W. C.

W. C. Su and C. C. Sun, “Review of random phase encoding in volume holographic storage,” Materials 5, 1635–1653 (2012).
[Crossref]

Sun, C. C.

W. C. Su and C. C. Sun, “Review of random phase encoding in volume holographic storage,” Materials 5, 1635–1653 (2012).
[Crossref]

Sussman, B. J.

P. J. Bustard, D. Moffatt, R. Lausten, G. Wu, I. A. Walmsley, and B. J. Sussman, “Quantum random bit generation using stimulated Raman scattering,” Opt. Express 19, 25173–25180 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Sych, D.

C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
[Crossref]

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

Uchida, A.

Walmsley, I. A.

P. J. Bustard, D. Moffatt, R. Lausten, G. Wu, I. A. Walmsley, and B. J. Sussman, “Quantum random bit generation using stimulated Raman scattering,” Opt. Express 19, 25173–25180 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Wittmann, C.

C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
[Crossref]

Wu, G.

Yoshimori, S.

Yuan, C. H.

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A 82, 013817 (2010).
[Crossref]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett. 95, 041115 (2009).
[Crossref]

Zhang, G. W.

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett. 97, 34005 (2012).
[Crossref]

L. Q. Chen, C. L. Bian, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Observation of temporal beating in first- and second-order intensity measurement between independent Raman Stokes fields in atomic vapor,” Phys. Rev. A 82, 033832 (2010).
[Crossref]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett. 95, 041115 (2009).
[Crossref]

Zhang, W. P.

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett. 97, 34005 (2012).
[Crossref]

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A 82, 013817 (2010).
[Crossref]

L. Q. Chen, C. L. Bian, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Observation of temporal beating in first- and second-order intensity measurement between independent Raman Stokes fields in atomic vapor,” Phys. Rev. A 82, 033832 (2010).
[Crossref]

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett. 95, 041115 (2009).
[Crossref]

Zibrov, A. S.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature (London) 438, 837–841 (2005).
[Crossref]

Appl. Phys. Lett. (1)

L. Q. Chen, G. W. Zhang, C. H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang, “Enhanced Raman scattering by spatially distributed atomic coherence,” Appl. Phys. Lett. 95, 041115 (2009).
[Crossref]

Europhys. Lett. (1)

C. L. Bian, L. Q. Chen, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Retrieval of phase memory in two independent atomic ensembles by Raman process,” Europhys. Lett. 97, 34005 (2012).
[Crossref]

Materials (1)

W. C. Su and C. C. Sun, “Review of random phase encoding in volume holographic storage,” Materials 5, 1635–1653 (2012).
[Crossref]

Nat. Commum. (1)

M. Hosseini, B. M. sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commum. 2, 174 (2011).
[Crossref]

Nat. Photonics (2)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics 4, 711–715 (2010).
[Crossref]

Nature (London) (2)

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature (London) 438, 837–841 (2005).
[Crossref]

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature (London) 121, 501–502 (1928).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (4)

J. L. Le Gouët and P. Berman, “Raman scheme for adjustable-bandwidth quantum memory,” Phys. Rev. A 80, 012320 (2009).
[Crossref]

S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Spatial interference of macroscopic light fields from independent Raman sources,” Phys. Rev. A 43, 4083–4086 (1991).
[Crossref] [PubMed]

L. Q. Chen, C. L. Bian, G. W. Zhang, Z. Y. Ou, and W. P. Zhang, “Observation of temporal beating in first- and second-order intensity measurement between independent Raman Stokes fields in atomic vapor,” Phys. Rev. A 82, 033832 (2010).
[Crossref]

C. H. Yuan, L. Q. Chen, J. Jing, Z. Y. Ou, and W. P. Zhang, “Coherently enhanced Raman scattering in atomic vapor,” Phys. Rev. A 82, 013817 (2010).
[Crossref]

Phys. Rev. Lett. (6)

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref] [PubMed]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref] [PubMed]

C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, “Single-photon generation from stored excitation in an atomic ensemble,” Phys. Rev. Lett. 92, 213601 (2004).
[Crossref] [PubMed]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref] [PubMed]

R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-Optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

Prog. Quantum Electron. (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6, 55–104 (1979).
[Crossref]

Rev. Mod. Phys. (2)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998).
[Crossref]

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

Rev. Sci. Instrum. (1)

W. Choi, M. Lee, Y. R. Lee, C. Park, J. H. Lee, K. An, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Calibration of second-order correlation functions for nonstationary sources with a multistart, multistop time-to-digital converter,” Rev. Sci. Instrum. 76, 083109 (2005).
[Crossref]

Science (2)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321, 544–547 (2008).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematics for the phase memory: (a) write process and (d) read process. Energy Levels for (b) write and (c) read Raman processes. OP: the optical pumping laser; W and R: the write and read Raman lasers, respectively; SW and SR: the generated Stokes signals. a1: the atomic spin wave generated in the Raman scattering by the W fields.
Fig. 2
Fig. 2 (a) Experimental setup. AOM: acousto-optic modulator; PZT: piezoelectric transducer; SMF: single mode fiber; PBS: Polarization beam splitter; BS: beam splitter. AT: attenuator. (b) the time sequence, the duration of the OP field is 80μs.
Fig. 3
Fig. 3 Temporal behavior of SW and SR fields. τ is 0.1 μs. The red line and blue line are the SW and SR fields generated in one write-read pulse period. The black dashed curve and green dashed curve are the averaged intensities over 100 pulses of the SW and SR fields.
Fig. 4
Fig. 4 A sample of g(2) as a function of storage phase θm at τ = 0.1μs. θm is the modulated phase on W1, tuned by PZT. The square is the experimental data and the red line is a fit curve to sine-function.
Fig. 5
Fig. 5 Interference visibility as a function of delay time between the write and read pulses.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I S W ( t ) = A ( t ) [ 1 + v W cos ( Δ Ω W t + Δ φ S W ) ] ,
I S R ( t ) = B ( t ) [ 1 + v R cos ( Δ Ω R t + Δ φ S R ) ] ,
G ( 2 ) = I S W I S R T 1 T T d t I S W ( t ) I S R ( t ) = 1 T T d t A ( t ) B ( t ) [ 1 + v W cos ( Δ Ω W t + Δ φ S W ) ] × [ 1 + v R cos ( Δ Ω R t + Δ φ S R ) ] .
G ( 2 ) A ( t ) B ( t ) T T d t T [ 1 + v W cos ( Δ Ω W t + Δ φ S W ) ] × [ 1 + v R cos ( Δ Ω R t + Δ φ S R ) ] .
G ( 2 ) A ( t ) B ( t ) T [ 1 + 1 2 v W v R γ cos ( Δ φ S W Δ φ S R ) ] ,
g ( 2 ) G ( 2 ) / I S W T I S R T
g ( 2 ) = g 0 ( 2 ) [ 1 + 1 2 v W v R γ cos ( Δ φ W Δ φ R + θ m ) ] ,
V = 1 2 v W v R γ .
g ( 2 ) = g 0 ( 2 ) [ 1 + V e ζ τ cos ( Δ φ W Δ φ R + θ m ) ] ,

Metrics