Abstract

An optical true time delay (TTD) unit capable of adding independent time delays to multiple RF signals is proposed, which can be used for multi-beamforming in both transmit and receive modes. In the proposed unit, N RF signals with different center frequencies are modulated on an optical frequency comb (OFC). After transmission through a dispersive element, the RF-modulated OFC is split into N paths. In each path, a comb line is selected by a tunable optical filter. Thanks to the chromatic dispersion of the dispersive element, independently-controllable TTDs can be obtained in all paths. Then, a microwave photonic filter (MPF) is incorporated in each path, allowing a designated RF signal to undergo the TTD in that path. A proof-of-concept experiment is carried out. A two-path unit with a low-pass MPF in one path and a high-pass MPF in the other path is built. Controllable TTDs up to ~1.4 ns with a step of ~69 ps are demonstrated based on a 25-GHz-spacing OFC. In addition, a wideband multi-beam phased-array antenna system that can work in both transmit and receive modes is designed using the proposed TTD unit.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optically produced true-time delays for phased antenna arrays

Betty Lise Anderson, Stuart A. Collins, Elizabeth A. Beecher, Charles A. Klein, and Stephen B. Brown
Appl. Opt. 36(32) 8493-8503 (1997)

Continuous angle steering of an optically- controlled phased array antenna based on differential true time delay constituted by micro-optical components

Jian Wang, Peipei Hou, Haiwen Cai, Jianfeng Sun, Shunan Wang, Lijuan Wang, and Fei Yang
Opt. Express 23(7) 9432-9439 (2015)

Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers

Sanghoon Chin, Luc Thévenaz, Juan Sancho, Salvador Sales, José Capmany, Perrine Berger, Jérôme Bourderionnet, and Daniel Dolfi
Opt. Express 18(21) 22599-22613 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. Maak, I. Frigyes, L. Jakab, I. Habermayer, M. Gyukics, and P. Richter, “Realization of true-time delay lines based on acoustooptics,” J. Lightwave Technol. 20(4), 730–739 (2002).
    [Crossref]
  2. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
    [Crossref] [PubMed]
  3. A. Meijerink, C. G. Roeloffzen, R. Meijerink, L. Zhuang, D. A. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, and A. Hulzinga, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part I: Design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
    [Crossref]
  4. L. Zhuang, C. G. Roeloffzen, A. Meijerink, M. Burla, D. A. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part II: Experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
    [Crossref]
  5. H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
    [Crossref]
  6. J. Corral, J. Marti, J. Fuster, and R. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
    [Crossref]
  7. S. Pan, D. Zhu, and F. Zhang, “Microwave Photonics for Modern Radar Systems,” Transactions of Nanjing University of Aeronautics and Astronautics 31(3), 219–240 (2014).
  8. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  9. H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
    [Crossref]
  10. O. Raz, S. Barzilay, R. Rotman, and M. Tur, “Submicrosecond Scan-Angle Switching Photonic Beamformer With Flat RF Response in the C and X Bands,” J. Lightwave Technol. 26(15), 2774–2781 (2008).
    [Crossref]
  11. L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic Beamformer Receiver With Multiple Beam Capabilities,” IEEE Photon. Technol. Lett. 22(23), 1723–1725 (2010).
    [Crossref]
  12. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
    [Crossref] [PubMed]
  13. J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett. 19(9), 644–646 (2007).
    [Crossref]
  14. J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
    [Crossref]
  15. H. Zhang, S. Pan, M. Huang, and X. Chen, “Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading,” Opt. Lett. 37(5), 866–868 (2012).
    [Crossref] [PubMed]
  16. S. Pan and J. Yao, “IR-UWB-Over-Fiber Systems Compatible With WDM-PON Networks,” J. Lightwave Technol. 29(20), 3025–3034 (2011).
    [Crossref]
  17. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
    [Crossref]
  18. S. Liao, Y. Ding, C. Peucheret, T. Yang, J. Dong, and X. Zhang, “Integrated programmable photonic filter on the silicon-on-insulator platform,” Opt. Express 22(26), 31993–31998 (2014).
    [Crossref] [PubMed]
  19. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable Photonic Microwave Filters Monolithically Integrated in InP-InGaAsP,” J. Lightwave Technol. 29(11), 1611–1619 (2011).
    [Crossref]

2014 (3)

S. Pan, D. Zhu, and F. Zhang, “Microwave Photonics for Modern Radar Systems,” Transactions of Nanjing University of Aeronautics and Astronautics 31(3), 219–240 (2014).

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

S. Liao, Y. Ding, C. Peucheret, T. Yang, J. Dong, and X. Zhang, “Integrated programmable photonic filter on the silicon-on-insulator platform,” Opt. Express 22(26), 31993–31998 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (2)

2010 (5)

2008 (2)

2007 (1)

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett. 19(9), 644–646 (2007).
[Crossref]

2004 (1)

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

2002 (1)

1997 (1)

J. Corral, J. Marti, J. Fuster, and R. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

1995 (1)

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Barzilay, S.

Bentum, M. J.

Berger, P.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
[Crossref] [PubMed]

Bourderionnet, J.

Bull, J. D.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Burla, M.

Capmany, J.

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chang, Y.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Chen, M. Y.

Chen, R. T.

Chen, X.

Chin, S.

Coldren, L. A.

Corral, J.

J. Corral, J. Marti, J. Fuster, and R. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Ding, Y.

Dolfi, D.

Dong, J.

Espiau, F. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Fairburn, M.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Fetterman, H. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Forrest, S. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Frigyes, I.

Fuster, J.

J. Corral, J. Marti, J. Fuster, and R. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Ghanipour, P.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
[Crossref] [PubMed]

Guzzon, R. S.

Gyukics, M.

Habermayer, I.

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Haus, H. A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Heideman, R. G.

Hoekman, M.

Huang, M.

Hulzinga, A.

Jaeger, N. A.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Jakab, L.

Johansson, L. A.

Jorna, P.

Kato, H.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Kelly, J. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
[Crossref] [PubMed]

Laming, R.

J. Corral, J. Marti, J. Fuster, and R. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Leaird, D. E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Leinse, A.

Liao, S.

Maak, P.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Marpaung, D. A.

Marti, J.

J. Corral, J. Marti, J. Fuster, and R. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

Mather, A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Meijerink, A.

Meijerink, R.

Norberg, E. J.

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Osgood, R. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Pan, S.

Parker, J. S.

Peucheret, C.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
[Crossref] [PubMed]

Plant, D. V.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Raz, O.

Reid, A.

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Richter, P.

Roeloffzen, C. G.

Rotman, R.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic Beamformer Receiver With Multiple Beam Capabilities,” IEEE Photon. Technol. Lett. 22(23), 1723–1725 (2010).
[Crossref]

O. Raz, S. Barzilay, R. Rotman, and M. Tur, “Submicrosecond Scan-Angle Switching Photonic Beamformer With Flat RF Response in the C and X Bands,” J. Lightwave Technol. 26(15), 2774–2781 (2008).
[Crossref]

Sales, S.

Sancho, J.

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scott, D. C.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
[Crossref] [PubMed]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, and A. Bogoni, “Photonic generation and independent steering of multiple RF signals for software defined radars,” Opt. Express 21(19), 22905–22910 (2013).
[Crossref] [PubMed]

Simonis, G. J.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Steier, W. H.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Subbaraman, H.

Thévenaz, L.

Tur, M.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic Beamformer Receiver With Multiple Beam Capabilities,” IEEE Photon. Technol. Lett. 22(23), 1723–1725 (2010).
[Crossref]

O. Raz, S. Barzilay, R. Rotman, and M. Tur, “Submicrosecond Scan-Angle Switching Photonic Beamformer With Flat RF Response in the C and X Bands,” J. Lightwave Technol. 26(15), 2774–2781 (2008).
[Crossref]

van Etten, W.

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Verpoorte, J.

Wang, Q.

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett. 19(9), 644–646 (2007).
[Crossref]

Weiner, A. M.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Wu, M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

Yang, T.

Yao, J.

S. Pan and J. Yao, “IR-UWB-Over-Fiber Systems Compatible With WDM-PON Networks,” J. Lightwave Technol. 29(20), 3025–3034 (2011).
[Crossref]

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett. 19(9), 644–646 (2007).
[Crossref]

Yaron, L.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic Beamformer Receiver With Multiple Beam Capabilities,” IEEE Photon. Technol. Lett. 22(23), 1723–1725 (2010).
[Crossref]

Zach, S.

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic Beamformer Receiver With Multiple Beam Capabilities,” IEEE Photon. Technol. Lett. 22(23), 1723–1725 (2010).
[Crossref]

Zhang, F.

S. Pan, D. Zhu, and F. Zhang, “Microwave Photonics for Modern Radar Systems,” Transactions of Nanjing University of Aeronautics and Astronautics 31(3), 219–240 (2014).

Zhang, H.

Zhang, X.

Zhu, D.

S. Pan, D. Zhu, and F. Zhang, “Microwave Photonics for Modern Radar Systems,” Transactions of Nanjing University of Aeronautics and Astronautics 31(3), 219–240 (2014).

Zhuang, L.

IEEE Microw. Guided Wave Lett. (1)

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, R. M. Osgood, H. A. Haus, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microw. Guided Wave Lett. 5(11), 414–416 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. Corral, J. Marti, J. Fuster, and R. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett. 9(11), 1529–1531 (1997).
[Crossref]

L. Yaron, R. Rotman, S. Zach, and M. Tur, “Photonic Beamformer Receiver With Multiple Beam Capabilities,” IEEE Photon. Technol. Lett. 22(23), 1723–1725 (2010).
[Crossref]

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett. 19(9), 644–646 (2007).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

J. Lightwave Technol. (7)

H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
[Crossref]

O. Raz, S. Barzilay, R. Rotman, and M. Tur, “Submicrosecond Scan-Angle Switching Photonic Beamformer With Flat RF Response in the C and X Bands,” J. Lightwave Technol. 26(15), 2774–2781 (2008).
[Crossref]

P. Maak, I. Frigyes, L. Jakab, I. Habermayer, M. Gyukics, and P. Richter, “Realization of true-time delay lines based on acoustooptics,” J. Lightwave Technol. 20(4), 730–739 (2002).
[Crossref]

A. Meijerink, C. G. Roeloffzen, R. Meijerink, L. Zhuang, D. A. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, and A. Hulzinga, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part I: Design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
[Crossref]

L. Zhuang, C. G. Roeloffzen, A. Meijerink, M. Burla, D. A. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part II: Experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
[Crossref]

S. Pan and J. Yao, “IR-UWB-Over-Fiber Systems Compatible With WDM-PON Networks,” J. Lightwave Technol. 29(20), 3025–3034 (2011).
[Crossref]

E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable Photonic Microwave Filters Monolithically Integrated in InP-InGaAsP,” J. Lightwave Technol. 29(11), 1611–1619 (2011).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40-GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Transactions of Nanjing University of Aeronautics and Astronautics (1)

S. Pan, D. Zhu, and F. Zhang, “Microwave Photonics for Modern Radar Systems,” Transactions of Nanjing University of Aeronautics and Astronautics 31(3), 219–240 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The schematic diagram of the proposed optical TTD unit, and (b) the configuration of the two paths in the experimental setup.
Fig. 2
Fig. 2 Optical spectrum of the OFC (dashed line), the transmission response of the programmable optical filter (solid green line), and one of the filtered comb line (solid red line).
Fig. 3
Fig. 3 Magnitude responses of the TTD unit in (a,b) MPF1 path and (c,d) MPF2 path.
Fig. 4
Fig. 4 Phase responses of the TTD unit in (a) MPF1 (high-pass filter) path and (b) MPF2 (low-pass filter) path as well as (c) the calculated time delays of the system.
Fig. 5
Fig. 5 Schematic diagram of the multi-beam phased-array antenna system based on the proposed optical TTD unit.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S A ={ τ 1 , τ 2 , }×{ f 1 , f 2 ,, f N }
S B ={ τ p }×{ f 1 , f 2 ,, f N }
S C ={ ( τ p , f q ) }
| H MPF1 (ω) || sin( 1 2 z β 2 ω 2 2 α 1 ) || sin τ DGD1 ω 2 |
| H MPF2 (ω) || sin( 1 2 z β 2 ω 2 2 α 2 ) || cos τ DGD2 ω 2 |

Metrics