Abstract

Si based tandem solar cells represent an alternative to traditional compound III-V multijunction cells as a promising way to achieve high efficiencies. A theoretical study on the energy yield of GaAs on Si (GaAs/Si) tandem solar cells is performed to assess their energy yield potential under realistic illumination conditions with varying spectrum. We find that the yield of a 4-terminal contact scheme with thick top cell is more than 15% higher than for a 2-terminal scheme. Furthermore, we quantify the main losses that occur for this type of solar cell under varying spectra. Apart from current mismatch, we find that a significant power loss can be attributed to low irradiance seen by the sub-cells. The study shows that despite non-optimal bandgap combination, GaAs/Si tandem solar cells have the potential to surpass 30% energy conversion efficiency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells

Ya-Ju Lee, Yung-Chi Yao, Meng-Tsan Tsai, An-Fan Liu, Min-De Yang, and Jiun-Tsuen Lai
Opt. Express 21(S6) A953-A963 (2013)

Theoretical performance of multi-junction solar cells combining III-V and Si materials

Ian Mathews, Donagh O'Mahony, Brian Corbett, and Alan P. Morrison
Opt. Express 20(S5) A754-A764 (2012)

Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells

Bennett W. Schneider, Niraj N. Lal, Simeon Baker-Finch, and Thomas P. White
Opt. Express 22(S6) A1422-A1430 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jingfeng, C. Dan, J. Rideout, S. Tavakoli, and R. Kleiman, “Silicon-based multi-junction solar cell with 19.7% efficiency at 1-sun using areal current matching for 2-terminal operation,” in Proc. of 37th IEEE Photovoltaic Specialists Conference (Seattle, 2011), pp. 1019–1024.
  2. K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
    [Crossref]
  3. F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
    [Crossref]
  4. H. Taguchi, T. Soga, and T. Jimbo, “Fabrication of GaAs/Si tandem solar cell by epitaxial lift-off technique,” Jpn. J. Appl. Phys. 42(12), 1419–1421 (2003).
    [Crossref]
  5. J. P. Connolly, D. Mencaraglia, C. Renard, and D. Bouchier, “Designing III–V multijunction solar cells on silicon,” Prog. Photovolt. Res. Appl. 22(7), 810–820 (2014).
    [Crossref]
  6. J. Yang, Z. Peng, D. Cheong, and R. N. Kleiman, “III-V on Silicon Multi-Junction Solar Cell with 25% 1-Sun Efficiency via Direct Metal Interconnect and Areal Current Matching,” in Proc. of 27th European Photovoltaic Solar Energy Conference and Exhibition (Frankfurt, 2012), pp. 160–163.
  7. T. J. Grassman, A. M. Carlin, J. Grandal, C. Ratcliff, L. Yang, M. J. Mills, and S. A. Ringel, “Spectrum-optimized Si-based III-V multijunction photovoltaics,” in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices (San Francisco, 2012), pp. 82560R–82560R.
  8. S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
    [Crossref]
  9. N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
    [Crossref]
  10. N. Shigekawa, L. Chai, M. Morimoto, J. Liang, R. Onitsuka, T. Agui, H. Juso, and T. Takamoto, “Hybrid triple-junction solar cells by surface activate bonding of III-V double-junction-cell heterostructures to ion-implantation-based Si cells,” in Proceedings of 40th IEEE Photovoltaic Specialist Conference (IEEE, 2014), pp. 0534–0537.
    [Crossref]
  11. P. Würfel, Physics of Solar Cells - From Principles to New Concepts (WILEY-VCH, 2005).
  12. J. M. Gee and G. F. Virshup, “A 31%-efficient GaAs/silicon mechanically stacked, multijunction concentrator solar cell,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 754–758.
    [Crossref]
  13. S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon, M. M. Al-Jassim, R. K. Ahrenkiel, and K. A. Emery, “Efficiency improvements in GaAs-on-Si solar cells,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 481–485.
    [Crossref]
  14. M. Yang, T. Soga, T. Egawa, T. Jimbo, and M. Umeno, “Three-terminal monolithic cascade GaAs/Si solar cells,” Sol. Energy Mater. Sol. Cells 35, 45–51 (1994).
    [Crossref]
  15. V. Vijayakumar and D. P. Birnie Iii, “Optical and electronic simulation of gallium arsenide/silicon tandem four terminal solar cells,” Sol. Energy 97, 85–92 (2013).
    [Crossref]
  16. D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energ. Environ. Sci. 5(3), 5874–5883 (2012).
    [Crossref]
  17. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  18. Y. Itoh, T. Nishioka, A. Yamamoto, and M. Yamaguchi, “GaAs heteroepitaxial growth on Si for solar cells,” Appl. Phys. Lett. 52(19), 1617–1618 (1988).
    [Crossref]
  19. M. Yamaguchi, C. Amano, and Y. Itoh, “Numerical analysis for high‐efficiency GaAs solar cells fabricated on Si substrates,” J. Appl. Phys. 66(2), 915–919 (1989).
    [Crossref]
  20. M. Umeno, T. Kato, T. Egawa, T. Soga, and T. Jimbo, “High efficiency AlGaAs/Si tandem solar cell over 20%,” Sol. Energy Mater. Sol. Cells 41–42, 395–403 (1996).
    [Crossref]
  21. S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys. 68(7), R31–R58 (1990).
    [Crossref]
  22. U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
    [Crossref]
  23. A. Ersen, I. Schnitzer, E. Yablonovitch, and T. Gmitter, “Direct bonding of GaAs films on silicon circuits by epitaxial liftoff,” Solid-State Electron. 36(12), 1731–1739 (1993).
    [Crossref]
  24. J. Arokiaraj, H. Okui, H. Taguchi, T. Soga, T. Jimbo, and M. Umeno, “High-quality thin film GaAs bonded to Si using SeS2 — A new approach for high-efficiency tandem solar cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 607–614 (2001).
    [Crossref]
  25. J. M. Gee, “A comparison of different module configurations for multi-band-gap solar cells,” Sol. Cells 24(1–2), 147–155 (1988).
    [Crossref]
  26. S. R. Kurtz, J. M. Olson, and P. Faine, “The difference between standard and average efficiencies of multijunction compared with single-junction concentrator cells,” Sol. Cells 30(1–4), 501–513 (1991).
    [Crossref]
  27. P. Faine, S. R. Kurtz, C. Riordan, and J. M. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31(3), 259–278 (1991).
    [Crossref]
  28. S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94(5), 869–877 (2010).
    [Crossref]
  29. N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovolt. Res. Appl. 21(8), 1598–1610 (2013).
    [Crossref]
  30. W. Xiaoting and A. Barnett, “The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells,” IEEE J. Photovolt. 2(4), 417–423 (2012).
    [Crossref]
  31. K. Araki and M. Yamaguchi, “Influences of spectrum change to 3-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 75(3–4), 707–714 (2003).
    [Crossref]
  32. E. F. Fernández, F. Almonacid, J. A. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
    [Crossref]
  33. G. S. Kinsey and K. M. Edmondson, “Spectral response and energy output of concentrator multijunction solar cells,” Prog. Photovolt. Res. Appl. 17(5), 279–288 (2009).
    [Crossref]
  34. D. A. Clugston and P. A. Basore, “PC1D version 5: 32-bit solar cell modeling on personal computers,” in Proc. of 26th IEEE Photovoltaic Specialists Conference (Anaheim, 1997), pp. 207–210.
    [Crossref]
  35. H. Haug, B. R. Olaisen, Ø. Nordseth, and E. S. Marstein, “A Graphical User Interface for Multivariable Analysis of Silicon Solar Cells Using Scripted PC1D Simulations,” Energy Procedia 38, 72–79 (2013).
    [Crossref]
  36. G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 93(9), 1488–1491 (2009).
    [Crossref]
  37. M. M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, “High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters,” Prog. Photovolt. Res. Appl. 14(2), 135–144 (2006).
    [Crossref]
  38. NREL, (2014). Solar Radiation Research Laboratory. Available: http://www.nrel.gov/solar_radiation/facilities.html

2014 (3)

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

J. P. Connolly, D. Mencaraglia, C. Renard, and D. Bouchier, “Designing III–V multijunction solar cells on silicon,” Prog. Photovolt. Res. Appl. 22(7), 810–820 (2014).
[Crossref]

E. F. Fernández, F. Almonacid, J. A. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

2013 (4)

H. Haug, B. R. Olaisen, Ø. Nordseth, and E. S. Marstein, “A Graphical User Interface for Multivariable Analysis of Silicon Solar Cells Using Scripted PC1D Simulations,” Energy Procedia 38, 72–79 (2013).
[Crossref]

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovolt. Res. Appl. 21(8), 1598–1610 (2013).
[Crossref]

V. Vijayakumar and D. P. Birnie Iii, “Optical and electronic simulation of gallium arsenide/silicon tandem four terminal solar cells,” Sol. Energy 97, 85–92 (2013).
[Crossref]

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

2012 (3)

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energ. Environ. Sci. 5(3), 5874–5883 (2012).
[Crossref]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

W. Xiaoting and A. Barnett, “The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells,” IEEE J. Photovolt. 2(4), 417–423 (2012).
[Crossref]

2010 (1)

S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94(5), 869–877 (2010).
[Crossref]

2009 (2)

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 93(9), 1488–1491 (2009).
[Crossref]

G. S. Kinsey and K. M. Edmondson, “Spectral response and energy output of concentrator multijunction solar cells,” Prog. Photovolt. Res. Appl. 17(5), 279–288 (2009).
[Crossref]

2006 (1)

M. M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, “High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters,” Prog. Photovolt. Res. Appl. 14(2), 135–144 (2006).
[Crossref]

2003 (2)

K. Araki and M. Yamaguchi, “Influences of spectrum change to 3-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 75(3–4), 707–714 (2003).
[Crossref]

H. Taguchi, T. Soga, and T. Jimbo, “Fabrication of GaAs/Si tandem solar cell by epitaxial lift-off technique,” Jpn. J. Appl. Phys. 42(12), 1419–1421 (2003).
[Crossref]

2001 (1)

J. Arokiaraj, H. Okui, H. Taguchi, T. Soga, T. Jimbo, and M. Umeno, “High-quality thin film GaAs bonded to Si using SeS2 — A new approach for high-efficiency tandem solar cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 607–614 (2001).
[Crossref]

1998 (1)

U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

1996 (1)

M. Umeno, T. Kato, T. Egawa, T. Soga, and T. Jimbo, “High efficiency AlGaAs/Si tandem solar cell over 20%,” Sol. Energy Mater. Sol. Cells 41–42, 395–403 (1996).
[Crossref]

1994 (1)

M. Yang, T. Soga, T. Egawa, T. Jimbo, and M. Umeno, “Three-terminal monolithic cascade GaAs/Si solar cells,” Sol. Energy Mater. Sol. Cells 35, 45–51 (1994).
[Crossref]

1993 (1)

A. Ersen, I. Schnitzer, E. Yablonovitch, and T. Gmitter, “Direct bonding of GaAs films on silicon circuits by epitaxial liftoff,” Solid-State Electron. 36(12), 1731–1739 (1993).
[Crossref]

1991 (2)

S. R. Kurtz, J. M. Olson, and P. Faine, “The difference between standard and average efficiencies of multijunction compared with single-junction concentrator cells,” Sol. Cells 30(1–4), 501–513 (1991).
[Crossref]

P. Faine, S. R. Kurtz, C. Riordan, and J. M. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31(3), 259–278 (1991).
[Crossref]

1990 (1)

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys. 68(7), R31–R58 (1990).
[Crossref]

1989 (1)

M. Yamaguchi, C. Amano, and Y. Itoh, “Numerical analysis for high‐efficiency GaAs solar cells fabricated on Si substrates,” J. Appl. Phys. 66(2), 915–919 (1989).
[Crossref]

1988 (2)

J. M. Gee, “A comparison of different module configurations for multi-band-gap solar cells,” Sol. Cells 24(1–2), 147–155 (1988).
[Crossref]

Y. Itoh, T. Nishioka, A. Yamamoto, and M. Yamaguchi, “GaAs heteroepitaxial growth on Si for solar cells,” Appl. Phys. Lett. 52(19), 1617–1618 (1988).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Adomi, K.

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys. 68(7), R31–R58 (1990).
[Crossref]

Ahrenkiel, R. K.

S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon, M. M. Al-Jassim, R. K. Ahrenkiel, and K. A. Emery, “Efficiency improvements in GaAs-on-Si solar cells,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 481–485.
[Crossref]

Al-Abbadi, N. M.

S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94(5), 869–877 (2010).
[Crossref]

Al-Jassim, M. M.

S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon, M. M. Al-Jassim, R. K. Ahrenkiel, and K. A. Emery, “Efficiency improvements in GaAs-on-Si solar cells,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 481–485.
[Crossref]

Almonacid, F.

E. F. Fernández, F. Almonacid, J. A. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

Amano, C.

M. Yamaguchi, C. Amano, and Y. Itoh, “Numerical analysis for high‐efficiency GaAs solar cells fabricated on Si substrates,” J. Appl. Phys. 66(2), 915–919 (1989).
[Crossref]

Araki, K.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovolt. Res. Appl. 21(8), 1598–1610 (2013).
[Crossref]

K. Araki and M. Yamaguchi, “Influences of spectrum change to 3-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 75(3–4), 707–714 (2003).
[Crossref]

Arokiaraj, J.

J. Arokiaraj, H. Okui, H. Taguchi, T. Soga, T. Jimbo, and M. Umeno, “High-quality thin film GaAs bonded to Si using SeS2 — A new approach for high-efficiency tandem solar cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 607–614 (2001).
[Crossref]

Bajgar, C.

S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon, M. M. Al-Jassim, R. K. Ahrenkiel, and K. A. Emery, “Efficiency improvements in GaAs-on-Si solar cells,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 481–485.
[Crossref]

Barnett, A.

W. Xiaoting and A. Barnett, “The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells,” IEEE J. Photovolt. 2(4), 417–423 (2012).
[Crossref]

Basore, P. A.

D. A. Clugston and P. A. Basore, “PC1D version 5: 32-bit solar cell modeling on personal computers,” in Proc. of 26th IEEE Photovoltaic Specialists Conference (Anaheim, 1997), pp. 207–210.
[Crossref]

Bauhuis, G. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 93(9), 1488–1491 (2009).
[Crossref]

Benick, J.

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

Bett, A. W.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94(5), 869–877 (2010).
[Crossref]

Birnie Iii, D. P.

V. Vijayakumar and D. P. Birnie Iii, “Optical and electronic simulation of gallium arsenide/silicon tandem four terminal solar cells,” Sol. Energy 97, 85–92 (2013).
[Crossref]

Bouchier, D.

J. P. Connolly, D. Mencaraglia, C. Renard, and D. Bouchier, “Designing III–V multijunction solar cells on silicon,” Prog. Photovolt. Res. Appl. 22(7), 810–820 (2014).
[Crossref]

Bremner, S. P.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Brindley, H. E.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovolt. Res. Appl. 21(8), 1598–1610 (2013).
[Crossref]

Buonassisi, T.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energ. Environ. Sci. 5(3), 5874–5883 (2012).
[Crossref]

Carlin, A. M.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Carlin, J. A.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Chan, N. L. A.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovolt. Res. Appl. 21(8), 1598–1610 (2013).
[Crossref]

Cheong, D.

J. Yang, Z. Peng, D. Cheong, and R. N. Kleiman, “III-V on Silicon Multi-Junction Solar Cell with 25% 1-Sun Efficiency via Direct Metal Interconnect and Areal Current Matching,” in Proc. of 27th European Photovoltaic Solar Energy Conference and Exhibition (Frankfurt, 2012), pp. 160–163.

Chmielewski, D.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Choi, C.

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys. 68(7), R31–R58 (1990).
[Crossref]

Choi, H. J.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energ. Environ. Sci. 5(3), 5874–5883 (2012).
[Crossref]

Clugston, D. A.

D. A. Clugston and P. A. Basore, “PC1D version 5: 32-bit solar cell modeling on personal computers,” in Proc. of 26th IEEE Photovoltaic Specialists Conference (Anaheim, 1997), pp. 207–210.
[Crossref]

Conibeer, G.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Connolly, J. P.

J. P. Connolly, D. Mencaraglia, C. Renard, and D. Bouchier, “Designing III–V multijunction solar cells on silicon,” Prog. Photovolt. Res. Appl. 22(7), 810–820 (2014).
[Crossref]

Dan, C.

Y. Jingfeng, C. Dan, J. Rideout, S. Tavakoli, and R. Kleiman, “Silicon-based multi-junction solar cell with 19.7% efficiency at 1-sun using areal current matching for 2-terminal operation,” in Proc. of 37th IEEE Photovoltaic Specialists Conference (Seattle, 2011), pp. 1019–1024.

Derendorf, K.

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

Dimroth, F.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94(5), 869–877 (2010).
[Crossref]

Dixon, T. M.

S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon, M. M. Al-Jassim, R. K. Ahrenkiel, and K. A. Emery, “Efficiency improvements in GaAs-on-Si solar cells,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 481–485.
[Crossref]

Ebong, A.

M. M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, “High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters,” Prog. Photovolt. Res. Appl. 14(2), 135–144 (2006).
[Crossref]

Edmondson, K. M.

G. S. Kinsey and K. M. Edmondson, “Spectral response and energy output of concentrator multijunction solar cells,” Prog. Photovolt. Res. Appl. 17(5), 279–288 (2009).
[Crossref]

Egawa, T.

M. Umeno, T. Kato, T. Egawa, T. Soga, and T. Jimbo, “High efficiency AlGaAs/Si tandem solar cell over 20%,” Sol. Energy Mater. Sol. Cells 41–42, 395–403 (1996).
[Crossref]

M. Yang, T. Soga, T. Egawa, T. Jimbo, and M. Umeno, “Three-terminal monolithic cascade GaAs/Si solar cells,” Sol. Energy Mater. Sol. Cells 35, 45–51 (1994).
[Crossref]

Ekins-Daukes, N. J.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovolt. Res. Appl. 21(8), 1598–1610 (2013).
[Crossref]

Emery, K. A.

S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon, M. M. Al-Jassim, R. K. Ahrenkiel, and K. A. Emery, “Efficiency improvements in GaAs-on-Si solar cells,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 481–485.
[Crossref]

Ersen, A.

A. Ersen, I. Schnitzer, E. Yablonovitch, and T. Gmitter, “Direct bonding of GaAs films on silicon circuits by epitaxial liftoff,” Solid-State Electron. 36(12), 1731–1739 (1993).
[Crossref]

Essig, S.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

Faine, P.

S. R. Kurtz, J. M. Olson, and P. Faine, “The difference between standard and average efficiencies of multijunction compared with single-junction concentrator cells,” Sol. Cells 30(1–4), 501–513 (1991).
[Crossref]

P. Faine, S. R. Kurtz, C. Riordan, and J. M. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31(3), 259–278 (1991).
[Crossref]

Fang, S. F.

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys. 68(7), R31–R58 (1990).
[Crossref]

Fernández, E. F.

E. F. Fernández, F. Almonacid, J. A. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

Galiana, B.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Gee, J. M.

J. M. Gee, “A comparison of different module configurations for multi-band-gap solar cells,” Sol. Cells 24(1–2), 147–155 (1988).
[Crossref]

J. M. Gee and G. F. Virshup, “A 31%-efficient GaAs/silicon mechanically stacked, multijunction concentrator solar cell,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 754–758.
[Crossref]

Gmitter, T.

A. Ersen, I. Schnitzer, E. Yablonovitch, and T. Gmitter, “Direct bonding of GaAs films on silicon circuits by epitaxial liftoff,” Solid-State Electron. 36(12), 1731–1739 (1993).
[Crossref]

Gösele, U.

U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

Grassman, T. J.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Green, M. A.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Hannappel, T.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

Hao, X.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Haug, H.

H. Haug, B. R. Olaisen, Ø. Nordseth, and E. S. Marstein, “A Graphical User Interface for Multivariable Analysis of Silicon Solar Cells Using Scripted PC1D Simulations,” Energy Procedia 38, 72–79 (2013).
[Crossref]

Haussler, D.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

Haven, V. E.

S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon, M. M. Al-Jassim, R. K. Ahrenkiel, and K. A. Emery, “Efficiency improvements in GaAs-on-Si solar cells,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 481–485.
[Crossref]

Haverkamp, E. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 93(9), 1488–1491 (2009).
[Crossref]

Hermle, M.

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

Hilali, M. M.

M. M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, “High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters,” Prog. Photovolt. Res. Appl. 14(2), 135–144 (2006).
[Crossref]

Ho-Baillie, A.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Hoheisel, R.

S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94(5), 869–877 (2010).
[Crossref]

Hornung, T.

S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94(5), 869–877 (2010).
[Crossref]

Huang, N.

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

Huijben, J. C. C. M.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 93(9), 1488–1491 (2009).
[Crossref]

Itoh, Y.

M. Yamaguchi, C. Amano, and Y. Itoh, “Numerical analysis for high‐efficiency GaAs solar cells fabricated on Si substrates,” J. Appl. Phys. 66(2), 915–919 (1989).
[Crossref]

Y. Itoh, T. Nishioka, A. Yamamoto, and M. Yamaguchi, “GaAs heteroepitaxial growth on Si for solar cells,” Appl. Phys. Lett. 52(19), 1617–1618 (1988).
[Crossref]

Iyer, S.

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys. 68(7), R31–R58 (1990).
[Crossref]

Jager, W.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

Jimbo, T.

H. Taguchi, T. Soga, and T. Jimbo, “Fabrication of GaAs/Si tandem solar cell by epitaxial lift-off technique,” Jpn. J. Appl. Phys. 42(12), 1419–1421 (2003).
[Crossref]

J. Arokiaraj, H. Okui, H. Taguchi, T. Soga, T. Jimbo, and M. Umeno, “High-quality thin film GaAs bonded to Si using SeS2 — A new approach for high-efficiency tandem solar cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 607–614 (2001).
[Crossref]

M. Umeno, T. Kato, T. Egawa, T. Soga, and T. Jimbo, “High efficiency AlGaAs/Si tandem solar cell over 20%,” Sol. Energy Mater. Sol. Cells 41–42, 395–403 (1996).
[Crossref]

M. Yang, T. Soga, T. Egawa, T. Jimbo, and M. Umeno, “Three-terminal monolithic cascade GaAs/Si solar cells,” Sol. Energy Mater. Sol. Cells 35, 45–51 (1994).
[Crossref]

Jingfeng, Y.

Y. Jingfeng, C. Dan, J. Rideout, S. Tavakoli, and R. Kleiman, “Silicon-based multi-junction solar cell with 19.7% efficiency at 1-sun using areal current matching for 2-terminal operation,” in Proc. of 37th IEEE Photovoltaic Specialists Conference (Seattle, 2011), pp. 1019–1024.

Kato, T.

M. Umeno, T. Kato, T. Egawa, T. Soga, and T. Jimbo, “High efficiency AlGaAs/Si tandem solar cell over 20%,” Sol. Energy Mater. Sol. Cells 41–42, 395–403 (1996).
[Crossref]

Kemmoku, Y.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovolt. Res. Appl. 21(8), 1598–1610 (2013).
[Crossref]

Kinsey, G. S.

G. S. Kinsey and K. M. Edmondson, “Spectral response and energy output of concentrator multijunction solar cells,” Prog. Photovolt. Res. Appl. 17(5), 279–288 (2009).
[Crossref]

Kleiman, R.

Y. Jingfeng, C. Dan, J. Rideout, S. Tavakoli, and R. Kleiman, “Silicon-based multi-junction solar cell with 19.7% efficiency at 1-sun using areal current matching for 2-terminal operation,” in Proc. of 37th IEEE Photovoltaic Specialists Conference (Seattle, 2011), pp. 1019–1024.

Kleiman, R. N.

J. Yang, Z. Peng, D. Cheong, and R. N. Kleiman, “III-V on Silicon Multi-Junction Solar Cell with 25% 1-Sun Efficiency via Direct Metal Interconnect and Areal Current Matching,” in Proc. of 27th European Photovoltaic Solar Energy Conference and Exhibition (Frankfurt, 2012), pp. 160–163.

Klinger, V.

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

Kurtz, S. R.

S. R. Kurtz, J. M. Olson, and P. Faine, “The difference between standard and average efficiencies of multijunction compared with single-junction concentrator cells,” Sol. Cells 30(1–4), 501–513 (1991).
[Crossref]

P. Faine, S. R. Kurtz, C. Riordan, and J. M. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31(3), 259–278 (1991).
[Crossref]

Lin, C.

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

Mansouri, A.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Marstein, E. S.

H. Haug, B. R. Olaisen, Ø. Nordseth, and E. S. Marstein, “A Graphical User Interface for Multivariable Analysis of Silicon Solar Cells Using Scripted PC1D Simulations,” Energy Procedia 38, 72–79 (2013).
[Crossref]

Mehrvarz, H.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Mencaraglia, D.

J. P. Connolly, D. Mencaraglia, C. Renard, and D. Bouchier, “Designing III–V multijunction solar cells on silicon,” Prog. Photovolt. Res. Appl. 22(7), 810–820 (2014).
[Crossref]

Mills, M. J.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Morkoç, H.

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys. 68(7), R31–R58 (1990).
[Crossref]

Mulder, P.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 93(9), 1488–1491 (2009).
[Crossref]

Nakayashiki, K.

M. M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, “High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters,” Prog. Photovolt. Res. Appl. 14(2), 135–144 (2006).
[Crossref]

Needleman, D. B.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energ. Environ. Sci. 5(3), 5874–5883 (2012).
[Crossref]

Nishioka, T.

Y. Itoh, T. Nishioka, A. Yamamoto, and M. Yamaguchi, “GaAs heteroepitaxial growth on Si for solar cells,” Appl. Phys. Lett. 52(19), 1617–1618 (1988).
[Crossref]

Nordseth, Ø.

H. Haug, B. R. Olaisen, Ø. Nordseth, and E. S. Marstein, “A Graphical User Interface for Multivariable Analysis of Silicon Solar Cells Using Scripted PC1D Simulations,” Energy Procedia 38, 72–79 (2013).
[Crossref]

Okui, H.

J. Arokiaraj, H. Okui, H. Taguchi, T. Soga, T. Jimbo, and M. Umeno, “High-quality thin film GaAs bonded to Si using SeS2 — A new approach for high-efficiency tandem solar cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 607–614 (2001).
[Crossref]

Olaisen, B. R.

H. Haug, B. R. Olaisen, Ø. Nordseth, and E. S. Marstein, “A Graphical User Interface for Multivariable Analysis of Silicon Solar Cells Using Scripted PC1D Simulations,” Energy Procedia 38, 72–79 (2013).
[Crossref]

Oliva, E.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

Olson, J. M.

S. R. Kurtz, J. M. Olson, and P. Faine, “The difference between standard and average efficiencies of multijunction compared with single-junction concentrator cells,” Sol. Cells 30(1–4), 501–513 (1991).
[Crossref]

P. Faine, S. R. Kurtz, C. Riordan, and J. M. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31(3), 259–278 (1991).
[Crossref]

Otsuka, N.

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys. 68(7), R31–R58 (1990).
[Crossref]

Peharz, G.

S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94(5), 869–877 (2010).
[Crossref]

Peng, Z.

J. Yang, Z. Peng, D. Cheong, and R. N. Kleiman, “III-V on Silicon Multi-Junction Solar Cell with 25% 1-Sun Efficiency via Direct Metal Interconnect and Areal Current Matching,” in Proc. of 27th European Photovoltaic Solar Energy Conference and Exhibition (Frankfurt, 2012), pp. 160–163.

Philipps, S. P.

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94(5), 869–877 (2010).
[Crossref]

Povinelli, M. L.

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

Powell, D. M.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energ. Environ. Sci. 5(3), 5874–5883 (2012).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Ratcliff, C.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Renard, C.

J. P. Connolly, D. Mencaraglia, C. Renard, and D. Bouchier, “Designing III–V multijunction solar cells on silicon,” Prog. Photovolt. Res. Appl. 22(7), 810–820 (2014).
[Crossref]

Rideout, J.

Y. Jingfeng, C. Dan, J. Rideout, S. Tavakoli, and R. Kleiman, “Silicon-based multi-junction solar cell with 19.7% efficiency at 1-sun using areal current matching for 2-terminal operation,” in Proc. of 37th IEEE Photovoltaic Specialists Conference (Seattle, 2011), pp. 1019–1024.

Ringel, S. A.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Riordan, C.

P. Faine, S. R. Kurtz, C. Riordan, and J. M. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31(3), 259–278 (1991).
[Crossref]

Roesener, T.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

Rohatgi, A.

M. M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, “High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters,” Prog. Photovolt. Res. Appl. 14(2), 135–144 (2006).
[Crossref]

Ruiz-Arias, J. A.

E. F. Fernández, F. Almonacid, J. A. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

Schachtner, M.

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

Schermer, J. J.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 93(9), 1488–1491 (2009).
[Crossref]

Schnitzer, I.

A. Ersen, I. Schnitzer, E. Yablonovitch, and T. Gmitter, “Direct bonding of GaAs films on silicon circuits by epitaxial liftoff,” Solid-State Electron. 36(12), 1731–1739 (1993).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Siefer, G.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

Simmons, C. B.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energ. Environ. Sci. 5(3), 5874–5883 (2012).
[Crossref]

Soga, T.

H. Taguchi, T. Soga, and T. Jimbo, “Fabrication of GaAs/Si tandem solar cell by epitaxial lift-off technique,” Jpn. J. Appl. Phys. 42(12), 1419–1421 (2003).
[Crossref]

J. Arokiaraj, H. Okui, H. Taguchi, T. Soga, T. Jimbo, and M. Umeno, “High-quality thin film GaAs bonded to Si using SeS2 — A new approach for high-efficiency tandem solar cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 607–614 (2001).
[Crossref]

M. Umeno, T. Kato, T. Egawa, T. Soga, and T. Jimbo, “High efficiency AlGaAs/Si tandem solar cell over 20%,” Sol. Energy Mater. Sol. Cells 41–42, 395–403 (1996).
[Crossref]

M. Yang, T. Soga, T. Egawa, T. Jimbo, and M. Umeno, “Three-terminal monolithic cascade GaAs/Si solar cells,” Sol. Energy Mater. Sol. Cells 35, 45–51 (1994).
[Crossref]

Soria-Moya, A.

E. F. Fernández, F. Almonacid, J. A. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

Taguchi, H.

H. Taguchi, T. Soga, and T. Jimbo, “Fabrication of GaAs/Si tandem solar cell by epitaxial lift-off technique,” Jpn. J. Appl. Phys. 42(12), 1419–1421 (2003).
[Crossref]

J. Arokiaraj, H. Okui, H. Taguchi, T. Soga, T. Jimbo, and M. Umeno, “High-quality thin film GaAs bonded to Si using SeS2 — A new approach for high-efficiency tandem solar cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 607–614 (2001).
[Crossref]

Tavakoli, S.

Y. Jingfeng, C. Dan, J. Rideout, S. Tavakoli, and R. Kleiman, “Silicon-based multi-junction solar cell with 19.7% efficiency at 1-sun using areal current matching for 2-terminal operation,” in Proc. of 37th IEEE Photovoltaic Specialists Conference (Seattle, 2011), pp. 1019–1024.

Tobin, S. P.

S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon, M. M. Al-Jassim, R. K. Ahrenkiel, and K. A. Emery, “Efficiency improvements in GaAs-on-Si solar cells,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 481–485.
[Crossref]

Tong, Q. Y.

U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

Umeno, M.

J. Arokiaraj, H. Okui, H. Taguchi, T. Soga, T. Jimbo, and M. Umeno, “High-quality thin film GaAs bonded to Si using SeS2 — A new approach for high-efficiency tandem solar cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 607–614 (2001).
[Crossref]

M. Umeno, T. Kato, T. Egawa, T. Soga, and T. Jimbo, “High efficiency AlGaAs/Si tandem solar cell over 20%,” Sol. Energy Mater. Sol. Cells 41–42, 395–403 (1996).
[Crossref]

M. Yang, T. Soga, T. Egawa, T. Jimbo, and M. Umeno, “Three-terminal monolithic cascade GaAs/Si solar cells,” Sol. Energy Mater. Sol. Cells 35, 45–51 (1994).
[Crossref]

Vernon, S. M.

S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon, M. M. Al-Jassim, R. K. Ahrenkiel, and K. A. Emery, “Efficiency improvements in GaAs-on-Si solar cells,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 481–485.
[Crossref]

Vijayakumar, V.

V. Vijayakumar and D. P. Birnie Iii, “Optical and electronic simulation of gallium arsenide/silicon tandem four terminal solar cells,” Sol. Energy 97, 85–92 (2013).
[Crossref]

Virshup, G. F.

J. M. Gee and G. F. Virshup, “A 31%-efficient GaAs/silicon mechanically stacked, multijunction concentrator solar cell,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 754–758.
[Crossref]

Volz, K.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

Wekkeli, A.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

Weuffen, C.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

Winkler, M. T.

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energ. Environ. Sci. 5(3), 5874–5883 (2012).
[Crossref]

Xiaoting, W.

W. Xiaoting and A. Barnett, “The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells,” IEEE J. Photovolt. 2(4), 417–423 (2012).
[Crossref]

Yablonovitch, E.

A. Ersen, I. Schnitzer, E. Yablonovitch, and T. Gmitter, “Direct bonding of GaAs films on silicon circuits by epitaxial liftoff,” Solid-State Electron. 36(12), 1731–1739 (1993).
[Crossref]

Yamaguchi, M.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovolt. Res. Appl. 21(8), 1598–1610 (2013).
[Crossref]

K. Araki and M. Yamaguchi, “Influences of spectrum change to 3-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 75(3–4), 707–714 (2003).
[Crossref]

M. Yamaguchi, C. Amano, and Y. Itoh, “Numerical analysis for high‐efficiency GaAs solar cells fabricated on Si substrates,” J. Appl. Phys. 66(2), 915–919 (1989).
[Crossref]

Y. Itoh, T. Nishioka, A. Yamamoto, and M. Yamaguchi, “GaAs heteroepitaxial growth on Si for solar cells,” Appl. Phys. Lett. 52(19), 1617–1618 (1988).
[Crossref]

Yamamoto, A.

Y. Itoh, T. Nishioka, A. Yamamoto, and M. Yamaguchi, “GaAs heteroepitaxial growth on Si for solar cells,” Appl. Phys. Lett. 52(19), 1617–1618 (1988).
[Crossref]

Yang, J.

J. Yang, Z. Peng, D. Cheong, and R. N. Kleiman, “III-V on Silicon Multi-Junction Solar Cell with 25% 1-Sun Efficiency via Direct Metal Interconnect and Areal Current Matching,” in Proc. of 27th European Photovoltaic Solar Energy Conference and Exhibition (Frankfurt, 2012), pp. 160–163.

Yang, L.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

Yang, M.

M. Yang, T. Soga, T. Egawa, T. Jimbo, and M. Umeno, “Three-terminal monolithic cascade GaAs/Si solar cells,” Sol. Energy Mater. Sol. Cells 35, 45–51 (1994).
[Crossref]

Young, T. B.

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovolt. Res. Appl. 21(8), 1598–1610 (2013).
[Crossref]

Zabel, H.

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys. 68(7), R31–R58 (1990).
[Crossref]

Annu. Rev. Mater. Sci. (1)

U. Gösele and Q. Y. Tong, “Semiconductor wafer bonding,” Annu. Rev. Mater. Sci. 28(1), 215–241 (1998).
[Crossref]

Appl. Phys. Lett. (1)

Y. Itoh, T. Nishioka, A. Yamamoto, and M. Yamaguchi, “GaAs heteroepitaxial growth on Si for solar cells,” Appl. Phys. Lett. 52(19), 1617–1618 (1988).
[Crossref]

Energ. Environ. Sci. (1)

D. M. Powell, M. T. Winkler, H. J. Choi, C. B. Simmons, D. B. Needleman, and T. Buonassisi, “Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs,” Energ. Environ. Sci. 5(3), 5874–5883 (2012).
[Crossref]

Energy Procedia (1)

H. Haug, B. R. Olaisen, Ø. Nordseth, and E. S. Marstein, “A Graphical User Interface for Multivariable Analysis of Silicon Solar Cells Using Scripted PC1D Simulations,” Energy Procedia 38, 72–79 (2013).
[Crossref]

IEEE J. Photovolt. (3)

W. Xiaoting and A. Barnett, “The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells,” IEEE J. Photovolt. 2(4), 417–423 (2012).
[Crossref]

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, “Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding,” IEEE J. Photovolt. 3(4), 1–6 (2013).
[Crossref]

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, “Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon,” IEEE J. Photovolt. 4(2), 620–625 (2014).
[Crossref]

J. Appl. Phys. (4)

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

M. Yamaguchi, C. Amano, and Y. Itoh, “Numerical analysis for high‐efficiency GaAs solar cells fabricated on Si substrates,” J. Appl. Phys. 66(2), 915–919 (1989).
[Crossref]

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, and N. Otsuka, “Gallium arsenide and other compound semiconductors on silicon,” J. Appl. Phys. 68(7), R31–R58 (1990).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Taguchi, T. Soga, and T. Jimbo, “Fabrication of GaAs/Si tandem solar cell by epitaxial lift-off technique,” Jpn. J. Appl. Phys. 42(12), 1419–1421 (2003).
[Crossref]

Prog. Photovolt. Res. Appl. (4)

J. P. Connolly, D. Mencaraglia, C. Renard, and D. Bouchier, “Designing III–V multijunction solar cells on silicon,” Prog. Photovolt. Res. Appl. 22(7), 810–820 (2014).
[Crossref]

G. S. Kinsey and K. M. Edmondson, “Spectral response and energy output of concentrator multijunction solar cells,” Prog. Photovolt. Res. Appl. 17(5), 279–288 (2009).
[Crossref]

M. M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, “High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters,” Prog. Photovolt. Res. Appl. 14(2), 135–144 (2006).
[Crossref]

N. L. A. Chan, T. B. Young, H. E. Brindley, N. J. Ekins-Daukes, K. Araki, Y. Kemmoku, and M. Yamaguchi, “Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan,” Prog. Photovolt. Res. Appl. 21(8), 1598–1610 (2013).
[Crossref]

Sol. Cells (3)

J. M. Gee, “A comparison of different module configurations for multi-band-gap solar cells,” Sol. Cells 24(1–2), 147–155 (1988).
[Crossref]

S. R. Kurtz, J. M. Olson, and P. Faine, “The difference between standard and average efficiencies of multijunction compared with single-junction concentrator cells,” Sol. Cells 30(1–4), 501–513 (1991).
[Crossref]

P. Faine, S. R. Kurtz, C. Riordan, and J. M. Olson, “The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells,” Sol. Cells 31(3), 259–278 (1991).
[Crossref]

Sol. Energy (1)

V. Vijayakumar and D. P. Birnie Iii, “Optical and electronic simulation of gallium arsenide/silicon tandem four terminal solar cells,” Sol. Energy 97, 85–92 (2013).
[Crossref]

Sol. Energy Mater. Sol. Cells (7)

M. Umeno, T. Kato, T. Egawa, T. Soga, and T. Jimbo, “High efficiency AlGaAs/Si tandem solar cell over 20%,” Sol. Energy Mater. Sol. Cells 41–42, 395–403 (1996).
[Crossref]

M. Yang, T. Soga, T. Egawa, T. Jimbo, and M. Umeno, “Three-terminal monolithic cascade GaAs/Si solar cells,” Sol. Energy Mater. Sol. Cells 35, 45–51 (1994).
[Crossref]

S. P. Philipps, G. Peharz, R. Hoheisel, T. Hornung, N. M. Al-Abbadi, F. Dimroth, and A. W. Bett, “Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions,” Sol. Energy Mater. Sol. Cells 94(5), 869–877 (2010).
[Crossref]

J. Arokiaraj, H. Okui, H. Taguchi, T. Soga, T. Jimbo, and M. Umeno, “High-quality thin film GaAs bonded to Si using SeS2 — A new approach for high-efficiency tandem solar cells,” Sol. Energy Mater. Sol. Cells 66(1–4), 607–614 (2001).
[Crossref]

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 93(9), 1488–1491 (2009).
[Crossref]

K. Araki and M. Yamaguchi, “Influences of spectrum change to 3-junction concentrator cells,” Sol. Energy Mater. Sol. Cells 75(3–4), 707–714 (2003).
[Crossref]

E. F. Fernández, F. Almonacid, J. A. Ruiz-Arias, and A. Soria-Moya, “Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions,” Sol. Energy Mater. Sol. Cells 127, 179–187 (2014).
[Crossref]

Solid-State Electron. (1)

A. Ersen, I. Schnitzer, E. Yablonovitch, and T. Gmitter, “Direct bonding of GaAs films on silicon circuits by epitaxial liftoff,” Solid-State Electron. 36(12), 1731–1739 (1993).
[Crossref]

Other (10)

D. A. Clugston and P. A. Basore, “PC1D version 5: 32-bit solar cell modeling on personal computers,” in Proc. of 26th IEEE Photovoltaic Specialists Conference (Anaheim, 1997), pp. 207–210.
[Crossref]

NREL, (2014). Solar Radiation Research Laboratory. Available: http://www.nrel.gov/solar_radiation/facilities.html

Y. Jingfeng, C. Dan, J. Rideout, S. Tavakoli, and R. Kleiman, “Silicon-based multi-junction solar cell with 19.7% efficiency at 1-sun using areal current matching for 2-terminal operation,” in Proc. of 37th IEEE Photovoltaic Specialists Conference (Seattle, 2011), pp. 1019–1024.

J. Yang, Z. Peng, D. Cheong, and R. N. Kleiman, “III-V on Silicon Multi-Junction Solar Cell with 25% 1-Sun Efficiency via Direct Metal Interconnect and Areal Current Matching,” in Proc. of 27th European Photovoltaic Solar Energy Conference and Exhibition (Frankfurt, 2012), pp. 160–163.

T. J. Grassman, A. M. Carlin, J. Grandal, C. Ratcliff, L. Yang, M. J. Mills, and S. A. Ringel, “Spectrum-optimized Si-based III-V multijunction photovoltaics,” in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices (San Francisco, 2012), pp. 82560R–82560R.

S. A. Ringel, J. A. Carlin, T. J. Grassman, B. Galiana, A. M. Carlin, C. Ratcliff, D. Chmielewski, L. Yang, M. J. Mills, A. Mansouri, S. P. Bremner, A. Ho-Baillie, X. Hao, H. Mehrvarz, G. Conibeer, and M. A. Green, “Ideal GaP/Si heterostructures grown by MOCVD: III-V/active-Si subcells, multijunctions, and MBE-to-MOCVD III-V/Si interface science,” in Proc. of 39th IEEE Photovoltaic Specialists Conference (Tampa, 2013), pp. 3383–3388.
[Crossref]

N. Shigekawa, L. Chai, M. Morimoto, J. Liang, R. Onitsuka, T. Agui, H. Juso, and T. Takamoto, “Hybrid triple-junction solar cells by surface activate bonding of III-V double-junction-cell heterostructures to ion-implantation-based Si cells,” in Proceedings of 40th IEEE Photovoltaic Specialist Conference (IEEE, 2014), pp. 0534–0537.
[Crossref]

P. Würfel, Physics of Solar Cells - From Principles to New Concepts (WILEY-VCH, 2005).

J. M. Gee and G. F. Virshup, “A 31%-efficient GaAs/silicon mechanically stacked, multijunction concentrator solar cell,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 754–758.
[Crossref]

S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon, M. M. Al-Jassim, R. K. Ahrenkiel, and K. A. Emery, “Efficiency improvements in GaAs-on-Si solar cells,” in Proc. of 20th IEEE Photovoltaic Specialists Conference (Las Vegas, 1988), pp. 481–485.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure of the simplified GaAs on Si tandem solar cell being investigated. 2T configuration makes use of a 200 nm GaAs top cell, and 4T configuration makes use of a 1 μm top cell. In 4T, a hypothetical insulation layer with zero thickness separates the two sub-cells.

Fig. 2
Fig. 2

Spectra with different spectral composition in (a) Singapore and in (b) Denver, characterized by different APE ranges (values in the figure indicate the left bound of an interval). These spectra are obtained from averaging real measured spectra.

Fig. 3
Fig. 3

Simulated tandem efficiency for (a) 2T and (b) 4T configurations under different spectral compositions and intensity levels. Efficiency can vary significantly under different illumination conditions. The variation is from 17 to 28% for 2T and 27-33% for 4T. APE value for AM1.5G spectrum is indicated by a dashed line.

Fig. 4
Fig. 4

The calculated average daily energy yield for 12 months in (a) Singapore and (b) Denver. On average, the yield of the 4T configuration is over 15% higher than that of the 2T configuration.

Fig. 5
Fig. 5

Loss breakdown of annual harvesting efficiency and yield for (a) 2T and (b) 4T configuration in Singapore. Significant loss comes from current mismatch loss due to variation in spectral composition and non-optimized top cell thickness.

Tables (2)

Tables Icon

Table 1 Device parameters of GaAs/Si tandem solar cell model used in PC1D simulation.

Tables Icon

Table 2 Summary of annual energy yield calculation for 2T and 4T in Singapore and Denver.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

APE= λ 1 λ 2 I(λ)dλ λ 1 λ 2 Φ(λ)dλ = λ 1 λ 2 I(λ)dλ λ 1 λ 2 I(λ) hc /λ dλ

Metrics