Abstract

Broadband solar cell antireflection coatings made of nano-cones are studied in square lattices of ZnS, TiO2 and Si3N4. In the best case, the spectrally integrated transmittance (accounting for both reflection and dielectric absorption losses) for direct solar radiation is 99 %, which represents a four-fold decrease in transmission losses in comparison to a standard antireflective coating bilayer. The dependence of the transmission as a function of nanostructure dimensions is studied, showing a wide maximum, thus leading to a high tolerance for manufacturing errors. This high transmittance is also robust against deviations from normal incidence. Our analysis suggests that the high transmittance is due not only to an effective gradual index effect, but is also due to light coupling to quasiguided modes in the photonic crystal leaking mostly towards the substrate.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices

Emmett E. Perl, William E. McMahon, John E. Bowers, and Daniel J. Friedman
Opt. Express 22(S5) A1243-A1256 (2014)

Single-material zinc sulfide bi-layer antireflection coatings for GaAs solar cells

Jung Woo Leem, Dong-Hwan Jun, Jonggon Heo, Won-Kyu Park, Jin-Hong Park, Woo Jin Cho, Do Eok Kim, and Jae Su Yu
Opt. Express 21(S5) A821-A828 (2013)

Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells

Y. Liu, S.H. Sun, J. Xu, L. Zhao, H.C. Sun, J. Li, W. W. Mu, L. Xu, and K. J. Chen
Opt. Express 19(S5) A1051-A1056 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
    [Crossref]
  2. J. M. Olson, D. J. Friedman, and S. Kurtz, “High-efficiency III–V multijunction solar cells high-efficiency III–V multijunction solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Academic, 2003)
  3. C. Algora and V. Díaz, “Modelling of GaAs solar cells under wide angle cones of homogeneous light,” Prog. Photovolt. Res. Appl. 7(5), 379–386 (1999).
    [Crossref]
  4. M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Antireflective coatings for multijunction solar cells under wide-angle ray bundles,” Opt. Express 20(7), 8136–8147 (2012).
    [Crossref] [PubMed]
  5. S.-Y. Lien, D.-S. Wuu, W.-C. Yeh, and J.-C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
    [Crossref]
  6. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
  7. P. Yeh, Optical Waves in Layered Media (Wiley, 2005), Chap. 8.
  8. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
    [Crossref]
  9. J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
    [Crossref]
  10. J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21(5), 1158–1162 (2013).
  11. J. W. Leem, J. Su Yu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).
    [Crossref]
  12. M.-M. Hung, H.-V. Han, C.-Y. Hong, K.-H. Hong, T.-T. Yang, P. Yu, Y.-R. Wu, H.-Y. Yeh, and H.-C. Huang, “Compound biomimetic structures for efficiency enhancement of Ga0.5In0.5P/GaAs/Ge triple-junction solar cells,” Opt. Express 22(102), A295–A300 (2014).
    [Crossref]
  13. E. E. Perl, W. E. McMahon, J. E. Bowers, and D. J. Friedman, “Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices,” Opt. Express 22(S5), A1243 (2014).
    [Crossref] [PubMed]
  14. E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties,” Nano Lett. 14(10), 5960–5964 (2014).
    [Crossref] [PubMed]
  15. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
    [Crossref]
  16. F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
    [Crossref]
  17. “Solar spectral irradiance: ASTM G-173, standard tables for reference solar spectral irradiances: direct normal and circumsolar,” http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  18. H. R. Philipp, “Silicon Nitride (Si3N4) (Noncrystalline),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985) Vol. I, pp. 771–774
    [Crossref]
  19. H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1−x)0.5In0.5P quaternary alloys,” Jpn. J. of Appl. Phys. 33(1R), 186 (1994).
    [Crossref]
  20. S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron sputtering,” Appl. Surf. Sci 212–213, 654–660 (2003).
    [Crossref]
  21. “Ioffe institute n,k database,” http://www.ioffe.ru/SVA/NSM/nk/index.html .
  22. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12, 333–339 (1995).
    [Crossref]
  23. Y. Zhang, C. Li, and M. Loncar, “Optimal broadband antireflective taper,” Opt. Lett. 38, 646–648 (2013).
    [Crossref] [PubMed]
  24. W. L. Price, “Global optimization by controlled random search,” J. Optim. Theor. Appl. 40(3), 333–348 (1983).
    [Crossref]
  25. S. G. Johnson, “The nlopt nonlinear-optimization package, nlopt abinitio,” http://abinitio.mit.edu/wiki/index.php/NLopt .
  26. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2), A224–A244 (2012).
    [Crossref] [PubMed]
  27. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Al, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
    [Crossref] [PubMed]
  28. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Nat. Acad. Sci. 107(41), 17491–17496 (2010).
    [Crossref] [PubMed]
  29. J. Buencuerpo, L. E. Munioz-Camuniez, M. L. Dotor, and P. A. Postigo, “Optical absorption enhancement in a hybrid system photonic crystal-thin substrate for photovoltaic applications,” Opt. Express 20(S4), A452–A464 (2012).
    [Crossref]
  30. J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285 (2013).
    [Crossref] [PubMed]
  31. A. Mellor, I. Tobías, A. Martí, M. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
    [Crossref]
  32. J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Photon management with nanostructures on concentrator solar cells,” Appl. Phys. Lett. 103(8), 083901 (2013).
    [Crossref]
  33. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
    [Crossref]
  34. S. Giordano, “Effective medium theory for dispersions of dielectric ellipsoids,” J. Electrostat. 58, 59–76 (2003).
    [Crossref]
  35. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [Crossref]
  36. R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
    [Crossref]

2014 (5)

J. W. Leem, J. Su Yu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).
[Crossref]

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref] [PubMed]

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

M.-M. Hung, H.-V. Han, C.-Y. Hong, K.-H. Hong, T.-T. Yang, P. Yu, Y.-R. Wu, H.-Y. Yeh, and H.-C. Huang, “Compound biomimetic structures for efficiency enhancement of Ga0.5In0.5P/GaAs/Ge triple-junction solar cells,” Opt. Express 22(102), A295–A300 (2014).
[Crossref]

E. E. Perl, W. E. McMahon, J. E. Bowers, and D. J. Friedman, “Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices,” Opt. Express 22(S5), A1243 (2014).
[Crossref] [PubMed]

2013 (4)

Y. Zhang, C. Li, and M. Loncar, “Optimal broadband antireflective taper,” Opt. Lett. 38, 646–648 (2013).
[Crossref] [PubMed]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285 (2013).
[Crossref] [PubMed]

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21(5), 1158–1162 (2013).

J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Photon management with nanostructures on concentrator solar cells,” Appl. Phys. Lett. 103(8), 083901 (2013).
[Crossref]

2012 (5)

2011 (1)

A. Mellor, I. Tobías, A. Martí, M. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

2010 (3)

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[Crossref]

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Nat. Acad. Sci. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

2007 (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

2006 (1)

S.-Y. Lien, D.-S. Wuu, W.-C. Yeh, and J.-C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[Crossref]

2003 (2)

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron sputtering,” Appl. Surf. Sci 212–213, 654–660 (2003).
[Crossref]

S. Giordano, “Effective medium theory for dispersions of dielectric ellipsoids,” J. Electrostat. 58, 59–76 (2003).
[Crossref]

2002 (2)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

1999 (1)

C. Algora and V. Díaz, “Modelling of GaAs solar cells under wide angle cones of homogeneous light,” Prog. Photovolt. Res. Appl. 7(5), 379–386 (1999).
[Crossref]

1998 (1)

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

1995 (1)

1994 (1)

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1−x)0.5In0.5P quaternary alloys,” Jpn. J. of Appl. Phys. 33(1R), 186 (1994).
[Crossref]

1983 (1)

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theor. Appl. 40(3), 333–348 (1983).
[Crossref]

1966 (1)

R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
[Crossref]

Abass, A.

Adachi, S.

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1−x)0.5In0.5P quaternary alloys,” Jpn. J. of Appl. Phys. 33(1R), 186 (1994).
[Crossref]

Aho, A.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21(5), 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Al, A.

Algora, C.

C. Algora and V. Díaz, “Modelling of GaAs solar cells under wide angle cones of homogeneous light,” Prog. Photovolt. Res. Appl. 7(5), 379–386 (1999).
[Crossref]

Andreani, L. C.

Antón, I.

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[Crossref]

Bett, A. W.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Beutel, P.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Bienstman, P.

Blanc, N.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[Crossref]

Bowers, J. E.

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref] [PubMed]

E. E. Perl, W. E. McMahon, J. E. Bowers, and D. J. Friedman, “Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices,” Opt. Express 22(S5), A1243 (2014).
[Crossref] [PubMed]

Bozzola, A.

Buencuerpo, J.

J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Photon management with nanostructures on concentrator solar cells,” Appl. Phys. Lett. 103(8), 083901 (2013).
[Crossref]

J. Buencuerpo, L. E. Munioz-Camuniez, M. L. Dotor, and P. A. Postigo, “Optical absorption enhancement in a hybrid system photonic crystal-thin substrate for photovoltaic applications,” Opt. Express 20(S4), A452–A464 (2012).
[Crossref]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

DenBaars, S. P.

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref] [PubMed]

Díaz, V.

C. Algora and V. Díaz, “Modelling of GaAs solar cells under wide angle cones of homogeneous light,” Prog. Photovolt. Res. Appl. 7(5), 379–386 (1999).
[Crossref]

Dimroth, F.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Dobrich, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Domínguez, C.

Dotor, M. L.

J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Photon management with nanostructures on concentrator solar cells,” Appl. Phys. Lett. 103(8), 083901 (2013).
[Crossref]

J. Buencuerpo, L. E. Munioz-Camuniez, M. L. Dotor, and P. A. Postigo, “Optical absorption enhancement in a hybrid system photonic crystal-thin substrate for photovoltaic applications,” Opt. Express 20(S4), A452–A464 (2012).
[Crossref]

Drazek, C.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Fan, S.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Nat. Acad. Sci. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Farrell, R. M.

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref] [PubMed]

Ferrazza, F.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

Fiedeler, U.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Friedman, D. J.

E. E. Perl, W. E. McMahon, J. E. Bowers, and D. J. Friedman, “Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices,” Opt. Express 22(S5), A1243 (2014).
[Crossref] [PubMed]

J. M. Olson, D. J. Friedman, and S. Kurtz, “High-efficiency III–V multijunction solar cells high-efficiency III–V multijunction solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Academic, 2003)

Fuchs, R.

R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
[Crossref]

Ghyselen, B.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Giordano, S.

S. Giordano, “Effective medium theory for dispersions of dielectric ellipsoids,” J. Electrostat. 58, 59–76 (2003).
[Crossref]

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Grann, E. B.

Grave, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Green, M. A.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

Guina, M.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21(5), 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Guiot, E.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Han, H.-V.

Hannappel, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Heo, J.

J. W. Leem, J. Su Yu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).
[Crossref]

Hong, C.-Y.

Hong, K.-H.

Huang, H.-C.

Hung, M.-M.

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Jin, P.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron sputtering,” Appl. Surf. Sci 212–213, 654–660 (2003).
[Crossref]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Jun, D.-H.

J. W. Leem, J. Su Yu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).
[Crossref]

Kaneko, K.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron sputtering,” Appl. Surf. Sci 212–213, 654–660 (2003).
[Crossref]

Karcher, C.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Kato, H.

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1−x)0.5In0.5P quaternary alloys,” Jpn. J. of Appl. Phys. 33(1R), 186 (1994).
[Crossref]

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Kliewer, K. L.

R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
[Crossref]

Kontio, J. M.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Krause, R.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Kurtz, S.

J. M. Olson, D. J. Friedman, and S. Kurtz, “High-efficiency III–V multijunction solar cells high-efficiency III–V multijunction solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Academic, 2003)

Le, K. Q.

Leem, J. W.

J. W. Leem, J. Su Yu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).
[Crossref]

Li, C.

Lien, S.-Y.

S.-Y. Lien, D.-S. Wuu, W.-C. Yeh, and J.-C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[Crossref]

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Liscidini, M.

Liu, J.-C.

S.-Y. Lien, D.-S. Wuu, W.-C. Yeh, and J.-C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Llorens, J. M.

J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Photon management with nanostructures on concentrator solar cells,” Appl. Phys. Lett. 103(8), 083901 (2013).
[Crossref]

Loncar, M.

Luque, A.

A. Mellor, I. Tobías, A. Martí, M. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

Maes, B.

Martí, A.

A. Mellor, I. Tobías, A. Martí, M. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

McMahon, W. E.

E. E. Perl, W. E. McMahon, J. E. Bowers, and D. J. Friedman, “Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices,” Opt. Express 22(S5), A1243 (2014).
[Crossref] [PubMed]

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref] [PubMed]

Mellor, A.

A. Mellor, I. Tobías, A. Martí, M. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

Mendes, M.

A. Mellor, I. Tobías, A. Martí, M. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

Miao, L.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron sputtering,” Appl. Surf. Sci 212–213, 654–660 (2003).
[Crossref]

Moharam, M. G.

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Munioz-Camuniez, L. E.

Nabatova-Gabain, N.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron sputtering,” Appl. Surf. Sci 212–213, 654–660 (2003).
[Crossref]

Nakanishi, H.

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1−x)0.5In0.5P quaternary alloys,” Jpn. J. of Appl. Phys. 33(1R), 186 (1994).
[Crossref]

Niemi, T.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21(5), 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Ohtsuka, K.

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1−x)0.5In0.5P quaternary alloys,” Jpn. J. of Appl. Phys. 33(1R), 186 (1994).
[Crossref]

Oliva, E.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Olson, J. M.

J. M. Olson, D. J. Friedman, and S. Kurtz, “High-efficiency III–V multijunction solar cells high-efficiency III–V multijunction solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Academic, 2003)

Pardee, W. J.

R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
[Crossref]

Park, W.-K.

J. W. Leem, J. Su Yu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).
[Crossref]

Perl, E. E.

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref] [PubMed]

E. E. Perl, W. E. McMahon, J. E. Bowers, and D. J. Friedman, “Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices,” Opt. Express 22(S5), A1243 (2014).
[Crossref] [PubMed]

Philipp, H. R.

H. R. Philipp, “Silicon Nitride (Si3N4) (Noncrystalline),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985) Vol. I, pp. 771–774
[Crossref]

Piccin, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Polman, A.

Polojärvi, V.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21(5), 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Pommet, D. A.

Postigo, P. A.

Price, W. L.

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theor. Appl. 40(3), 333–348 (1983).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Nat. Acad. Sci. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Ripalda, J. M.

J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Photon management with nanostructures on concentrator solar cells,” Appl. Phys. Lett. 103(8), 083901 (2013).
[Crossref]

Sala, G.

Salmi, J.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21(5), 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Salvetat, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Schachtner, M.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Schramm, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Schwarzburg, K.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Siefer, G.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Signamarcheix, T.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Speck, J. S.

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref] [PubMed]

Su Yu, J.

J. W. Leem, J. Su Yu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).
[Crossref]

Tanemura, S.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron sputtering,” Appl. Surf. Sci 212–213, 654–660 (2003).
[Crossref]

Tauzin, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Terai, A.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron sputtering,” Appl. Surf. Sci 212–213, 654–660 (2003).
[Crossref]

Tibbits, T. N. D.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Tikhodeev, S. G.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Tobías, I.

A. Mellor, I. Tobías, A. Martí, M. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

Tommila, J.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21(5), 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Tukiainen, A.

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21(5), 1158–1162 (2013).

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Turtiainen, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

van de Groep, J.

Victoria, M.

Viheriälä, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Wang, A.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

Wekkeli, A.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Wu, Y.-R.

Wuu, D.-S.

S.-Y. Lien, D.-S. Wuu, W.-C. Yeh, and J.-C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[Crossref]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Yang, T.-T.

Yeh, H.-Y.

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 2005), Chap. 8.

Yeh, W.-C.

S.-Y. Lien, D.-S. Wuu, W.-C. Yeh, and J.-C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[Crossref]

Yu, P.

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Nat. Acad. Sci. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Zhang, Y.

Zhao, J.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

Appl. Phys. Lett. (2)

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

J. Buencuerpo, J. M. Llorens, M. L. Dotor, and J. M. Ripalda, “Photon management with nanostructures on concentrator solar cells,” Appl. Phys. Lett. 103(8), 083901 (2013).
[Crossref]

Appl. Surf. Sci (1)

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron sputtering,” Appl. Surf. Sci 212–213, 654–660 (2003).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

J. Electrostat. (1)

S. Giordano, “Effective medium theory for dispersions of dielectric ellipsoids,” J. Electrostat. 58, 59–76 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Optim. Theor. Appl. (1)

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theor. Appl. 40(3), 333–348 (1983).
[Crossref]

Jpn. J. of Appl. Phys. (1)

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, “Optical properties of (AlxGa1−x)0.5In0.5P quaternary alloys,” Jpn. J. of Appl. Phys. 33(1R), 186 (1994).
[Crossref]

Nano Lett. (1)

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).

Opt. Express (7)

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Al, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[Crossref] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2), A224–A244 (2012).
[Crossref] [PubMed]

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Antireflective coatings for multijunction solar cells under wide-angle ray bundles,” Opt. Express 20(7), 8136–8147 (2012).
[Crossref] [PubMed]

J. Buencuerpo, L. E. Munioz-Camuniez, M. L. Dotor, and P. A. Postigo, “Optical absorption enhancement in a hybrid system photonic crystal-thin substrate for photovoltaic applications,” Opt. Express 20(S4), A452–A464 (2012).
[Crossref]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285 (2013).
[Crossref] [PubMed]

M.-M. Hung, H.-V. Han, C.-Y. Hong, K.-H. Hong, T.-T. Yang, P. Yu, Y.-R. Wu, H.-Y. Yeh, and H.-C. Huang, “Compound biomimetic structures for efficiency enhancement of Ga0.5In0.5P/GaAs/Ge triple-junction solar cells,” Opt. Express 22(102), A295–A300 (2014).
[Crossref]

E. E. Perl, W. E. McMahon, J. E. Bowers, and D. J. Friedman, “Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices,” Opt. Express 22(S5), A1243 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
[Crossref]

Phys. Rev. B (2)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Proc. Nat. Acad. Sci. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Nat. Acad. Sci. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (5)

A. Mellor, I. Tobías, A. Martí, M. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

C. Algora and V. Díaz, “Modelling of GaAs solar cells under wide angle cones of homogeneous light,” Prog. Photovolt. Res. Appl. 7(5), 379–386 (1999).
[Crossref]

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[Crossref]

J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21(5), 1158–1162 (2013).

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

J. W. Leem, J. Su Yu, D.-H. Jun, J. Heo, and W.-K. Park, “Efficiency improvement of III–V GaAs solar cells using biomimetic TiO2 subwavelength structures with wide-angle and broadband antireflection properties,” Sol. Energy Mater. Sol. Cells 127, 43–49 (2014).
[Crossref]

S.-Y. Lien, D.-S. Wuu, W.-C. Yeh, and J.-C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energy Mater. Sol. Cells 90(16), 2710–2719 (2006).
[Crossref]

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010).
[Crossref]

Other (6)

P. Yeh, Optical Waves in Layered Media (Wiley, 2005), Chap. 8.

“Solar spectral irradiance: ASTM G-173, standard tables for reference solar spectral irradiances: direct normal and circumsolar,” http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .

H. R. Philipp, “Silicon Nitride (Si3N4) (Noncrystalline),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985) Vol. I, pp. 771–774
[Crossref]

“Ioffe institute n,k database,” http://www.ioffe.ru/SVA/NSM/nk/index.html .

J. M. Olson, D. J. Friedman, and S. Kurtz, “High-efficiency III–V multijunction solar cells high-efficiency III–V multijunction solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Academic, 2003)

S. G. Johnson, “The nlopt nonlinear-optimization package, nlopt abinitio,” http://abinitio.mit.edu/wiki/index.php/NLopt .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of the simulation cell, the high index PC (a) and the low index PC (b). The solar cell is simulated as an infinite substrate made of GaInP (brown) with a window layer made of AlInP (green) 15 nm thick, in both cases. The high index PC is made of ZnS or TiO2, (grey), and the low index is made of Si3N4 (blue), with a high index matching layer made of the same materials as the high index PC.

Fig. 2
Fig. 2

(a) Reflectance for a TiO2 PC (blue) and a ZnS PC (red) compared with the reference MgF2-ZnS bilayer (shadowed gray) (b) Reflectance for the Si3N4/TiO2 PC (blue) and Si3N4/ZnS PC (red) compared with the reference MgF2/ZnS bilayer (shadowed gray).

Fig. 3
Fig. 3

Unit cell cross sections along the z-y plane of the normalized magnetic field energy density for normal incidence with S polarization (H2). (a) to (d) are the TiO2 ARC and (e) to (h) are the Si3N4/TiO2 ARC. In black contour lines the nanostructure. (c) The transmittance for the Si3N4/TiO2 (blue) and TiO2 (green) ARC. The dashed lines in (i) correspond to the energies of the H2 plots (a–h).

Fig. 4
Fig. 4

Transmittance as a function of the incident angle of the reference bilayer (a) and the Si3N4/TiO2 PC (b). Integrated transmittance of the reference bilayer (red) and the Si3N4/TiO2 PC (blue) (c).

Fig. 5
Fig. 5

Transmittance, T, for the optimum Si3N4/TiO2 nanostructure with modified size parameters from the optimum. (a) T for a fixed h, d, d0 from the optimum varying a and the relation with the radius (R/a). (b) T for a fixed a and R, radius and d varying h, and d0. (c) T for a fixed a, R, and d modifying h, and d.

Fig. 6
Fig. 6

Relative diffraction efficiency for each set of diffraction orders (a) in the forward direction, dashed in gray the energy where the first diffraction orders appear in air. Effective optical path for the TiO2 PC (b) the mean of each diffraction order intensity and angle (red) and the excited diffraction orders inside the semiconductor in solid (cyan).

Fig. 7
Fig. 7

(a) Transmittance for the non-dispersive structures a GIM, green line dashed, and a PC made of cones, blue line. Energy density normalized for the GIM and for the PC made of cones (b) and (c) respectively. To compare both structures, the energy density of the PC is integrated in the xy direction.

Fig. 8
Fig. 8

Logarithm of the determinant of the scattering matrix normalized, being ER and EI the real part and the imaginary part of the energy respectively. Calculated for the GIM (a) and of the PC made of cones (b).

Tables (2)

Tables Icon

Table 1 Optimal dimensions of the PC ARCs.

Tables Icon

Table 2 The calculated losses, and transmittance for the reference and for each nanostructure. LW is not included in the transmittance of the ARCs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L x = λ 0 λ 1 x ( λ ) I AMG ( λ ) d λ λ 0 λ 1 I AMG ( λ ) d λ ,
l e = ( D D 0 ) D 0 ,
θ i = arcsin ( λ 0 ( g x 2 + g y 2 ) a ε s ) ,
< l e > = i = 0 N d i / cos ( θ i ) ,

Metrics