Abstract

Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications

Constantin Simovski, Stanislav Maslovski, Igor Nefedov, and Sergei Tretyakov
Opt. Express 21(12) 14988-15013 (2013)

Hyperbolic metamaterials: beyond the effective medium theory

Tengfei Li and Jacob B. Khurgin
Optica 3(12) 1388-1396 (2016)

Energy streamlines in near-field radiative heat transfer between hyperbolic metamaterials

T. J. Bright, X. L. Liu, and Z. M. Zhang
Opt. Express 22(S4) A1112-A1127 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
    [Crossref]
  2. J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
    [Crossref]
  3. S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4829–4837 (2010).
    [Crossref] [PubMed]
  4. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
    [Crossref] [PubMed]
  5. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref] [PubMed]
  6. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett..  6, 549 (2011).
    [Crossref] [PubMed]
  7. N. Mattiucci, G. D’Aguanno, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: A metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
    [Crossref]
  8. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
    [Crossref]
  9. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
    [Crossref] [PubMed]
  10. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nature Photon. 3, 658–661 (2009).
    [Crossref]
  11. E. G. Cravalho, C. L. Tien, and R. P. Caren, “Effect of small spacings on radiative transfer between two dielectrics,” Journal of Heat Transfer 89, 351–358 (1967).
    [Crossref]
  12. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
    [Crossref]
  13. A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005).
    [Crossref] [PubMed]
  14. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
    [Crossref] [PubMed]
  15. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514–517 (2009).
    [Crossref]
  16. R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
    [Crossref] [PubMed]
  17. Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun..  4, 1730 (2013).
    [Crossref] [PubMed]
  18. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
    [Crossref] [PubMed]
  19. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [Crossref] [PubMed]
  20. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).
    [Crossref]
  21. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [Crossref] [PubMed]
  22. S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109, 104301 (2012).
    [Crossref] [PubMed]
  23. Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21, 15014–15019 (2013).
    [Crossref] [PubMed]
  24. B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the wiener chaos expansion method,” Phys. Rev. B 87, 115403 (2013).
    [Crossref]
  25. Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 073903 (2014).
    [Crossref]
  26. E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Darker than black: radiation-absorbing metamaterial,” arXiv:1109.5469 [cond-mat, physics:physics] (2011).
  27. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
    [Crossref] [PubMed]
  28. D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep.4 (2014).
    [Crossref]
  29. I. Nefedov and L. Melnikov, “Super-planckian far-zone thermal emission from asymmetric hyperbolic metamaterials,” arXiv:1402.3507 [physics] (2014).
  30. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular bragg lasers: theory, applications, and modal properties,” IEEE Journal of Selected Topics in Quantum Electronics 11, 476–484 (2005).
    [Crossref]
  31. W. C. Chew, Waves and Fields in Inhomogenous Media (John Wiley & Sons, 1999).
    [Crossref]
  32. V. V. Nikolaev, G. S. Sokolovskii, and M. A. Kaliteevskii, “Bragg reflectors for cylindrical waves,” Semiconductors 33, 147–152 (1999).
    [Crossref]
  33. H. C. v. d. Hulst, Light Scattering by Small Particles (Dover Publications, 1981).
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
    [Crossref]
  35. M. F. Modest, Radiative Heat Transfer (Academic, 2003).
  36. B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field,” Phys. Rev. B 73, 235432 (2006).
    [Crossref]
  37. Y. Ni, L. Gao, and C.-W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5, 251–258 (2010).
    [Crossref]
  38. S. Ingvarsson, L. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
    [Crossref] [PubMed]
  39. A. J. Schmidt, J. D. Alper, M. Chiesa, G. Chen, S. K. Das, and K. Hamad-Schifferli, “Probing the gold nanorodligand-solvent interface by plasmonic absorption and thermal decay,” J. Phys. Chem. C 112, 13320–13323 (2008).
    [Crossref]
  40. Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13, 1023–1028 (2013).
    [Crossref] [PubMed]
  41. J. Huang, W. Wang, C. J. Murphy, and D. G. Cahill, “Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation,” Proc. Natl. Acad. Sci. USA 111, 906–911 (2014).
    [Crossref] [PubMed]
  42. J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
    [Crossref] [PubMed]
  43. J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
    [Crossref] [PubMed]
  44. R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75, 053801 (2007).
    [Crossref]
  45. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
    [Crossref] [PubMed]
  46. S. A. Mann and E. C. Garnett, “Extreme light absorption in thin semiconductor films wrapped around metal nanowires,” Nano Lett. 13, 3173–3178 (2013).
    [Crossref] [PubMed]
  47. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
    [Crossref]
  48. Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
    [Crossref]
  49. S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
    [Crossref] [PubMed]
  50. J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
    [Crossref] [PubMed]

2014 (6)

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

J. Huang, W. Wang, C. J. Murphy, and D. G. Cahill, “Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation,” Proc. Natl. Acad. Sci. USA 111, 906–911 (2014).
[Crossref] [PubMed]

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
[Crossref] [PubMed]

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

2013 (7)

S. A. Mann and E. C. Garnett, “Extreme light absorption in thin semiconductor films wrapped around metal nanowires,” Nano Lett. 13, 3173–3178 (2013).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21, 15014–15019 (2013).
[Crossref] [PubMed]

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the wiener chaos expansion method,” Phys. Rev. B 87, 115403 (2013).
[Crossref]

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13, 1023–1028 (2013).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun..  4, 1730 (2013).
[Crossref] [PubMed]

2012 (4)

N. Mattiucci, G. D’Aguanno, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: A metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref] [PubMed]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109, 104301 (2012).
[Crossref] [PubMed]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
[Crossref]

2011 (3)

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett..  6, 549 (2011).
[Crossref] [PubMed]

2010 (3)

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4829–4837 (2010).
[Crossref] [PubMed]

Y. Ni, L. Gao, and C.-W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5, 251–258 (2010).
[Crossref]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
[Crossref] [PubMed]

2009 (4)

J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
[Crossref] [PubMed]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514–517 (2009).
[Crossref]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nature Photon. 3, 658–661 (2009).
[Crossref]

2008 (1)

A. J. Schmidt, J. D. Alper, M. Chiesa, G. Chen, S. K. Das, and K. Hamad-Schifferli, “Probing the gold nanorodligand-solvent interface by plasmonic absorption and thermal decay,” J. Phys. Chem. C 112, 13320–13323 (2008).
[Crossref]

2007 (4)

S. Ingvarsson, L. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15, 11249–11254 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[Crossref]

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75, 053801 (2007).
[Crossref]

2006 (3)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[Crossref]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field,” Phys. Rev. B 73, 235432 (2006).
[Crossref]

2005 (2)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular bragg lasers: theory, applications, and modal properties,” IEEE Journal of Selected Topics in Quantum Electronics 11, 476–484 (2005).
[Crossref]

A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005).
[Crossref] [PubMed]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref] [PubMed]

2002 (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

1999 (1)

V. V. Nikolaev, G. S. Sokolovskii, and M. A. Kaliteevskii, “Bragg reflectors for cylindrical waves,” Semiconductors 33, 147–152 (1999).
[Crossref]

1971 (1)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

1967 (1)

E. G. Cravalho, C. L. Tien, and R. P. Caren, “Effect of small spacings on radiative transfer between two dielectrics,” Journal of Heat Transfer 89, 351–358 (1967).
[Crossref]

Alekseyev, L. V.

Alemi, A. A.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

Alper, J. D.

A. J. Schmidt, J. D. Alper, M. Chiesa, G. Chen, S. K. Das, and K. Hamad-Schifferli, “Probing the gold nanorodligand-solvent interface by plasmonic absorption and thermal decay,” J. Phys. Chem. C 112, 13320–13323 (2008).
[Crossref]

Alù, A.

N. Mattiucci, G. D’Aguanno, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: A metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[Crossref]

Argyropoulos, C.

N. Mattiucci, G. D’Aguanno, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: A metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[Crossref]

Au, Y.-Y.

Barnakov, Y. A.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Darker than black: radiation-absorbing metamaterial,” arXiv:1109.5469 [cond-mat, physics:physics] (2011).

Basov, D. N.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Ben-Abdallah, P.

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109, 104301 (2012).
[Crossref] [PubMed]

Bermel, P.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett..  6, 549 (2011).
[Crossref] [PubMed]

Bezares, F. J.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

Biehs, S.-A.

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109, 104301 (2012).
[Crossref] [PubMed]

A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005).
[Crossref] [PubMed]

Bloemer, M. J.

N. Mattiucci, G. D’Aguanno, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: A metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

Brongersma, M. L.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nature Photon. 3, 658–661 (2009).
[Crossref]

Cahill, D. G.

J. Huang, W. Wang, C. J. Murphy, and D. G. Cahill, “Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation,” Proc. Natl. Acad. Sci. USA 111, 906–911 (2014).
[Crossref] [PubMed]

Caldwell, J. D.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Caren, R. P.

E. G. Cravalho, C. L. Tien, and R. P. Caren, “Effect of small spacings on radiative transfer between two dielectrics,” Journal of Heat Transfer 89, 351–358 (1967).
[Crossref]

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Celanovic, I.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett..  6, 549 (2011).
[Crossref] [PubMed]

Chan, C. T.

Chan, W. R.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref] [PubMed]

Chen, G.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

A. J. Schmidt, J. D. Alper, M. Chiesa, G. Chen, S. K. Das, and K. Hamad-Schifferli, “Probing the gold nanorodligand-solvent interface by plasmonic absorption and thermal decay,” J. Phys. Chem. C 112, 13320–13323 (2008).
[Crossref]

Chen, H.

Chen, Y.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Chevrier, J.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514–517 (2009).
[Crossref]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogenous Media (John Wiley & Sons, 1999).
[Crossref]

Chiesa, M.

A. J. Schmidt, J. D. Alper, M. Chiesa, G. Chen, S. K. Das, and K. Hamad-Schifferli, “Probing the gold nanorodligand-solvent interface by plasmonic absorption and thermal decay,” J. Phys. Chem. C 112, 13320–13323 (2008).
[Crossref]

Comin, F.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514–517 (2009).
[Crossref]

Constant, K.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[Crossref]

Coppens, Z. J.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13, 1023–1028 (2013).
[Crossref] [PubMed]

Cortes, C. L.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

Cravalho, E. G.

E. G. Cravalho, C. L. Tien, and R. P. Caren, “Effect of small spacings on radiative transfer between two dielectrics,” Journal of Heat Transfer 89, 351–358 (1967).
[Crossref]

D’Aguanno, G.

N. Mattiucci, G. D’Aguanno, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: A metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[Crossref]

Dai, S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Das, S. K.

A. J. Schmidt, J. D. Alper, M. Chiesa, G. Chen, S. K. Das, and K. Hamad-Schifferli, “Probing the gold nanorodligand-solvent interface by plasmonic absorption and thermal decay,” J. Phys. Chem. C 112, 13320–13323 (2008).
[Crossref]

DeRose, G. A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular bragg lasers: theory, applications, and modal properties,” IEEE Journal of Selected Topics in Quantum Electronics 11, 476–484 (2005).
[Crossref]

Dewalt, C. J.

Dominguez, G.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Ellis, C. T.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[Crossref]

Fan, S.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun..  4, 1730 (2013).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
[Crossref] [PubMed]

Fei, Z.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Fogler, M. M.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Foreman, J. V.

N. Mattiucci, G. D’Aguanno, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: A metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[Crossref]

Francescato, Y.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Gan, Q.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep.4 (2014).
[Crossref]

Gannett, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Gao, L.

Y. Ni, L. Gao, and C.-W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5, 251–258 (2010).
[Crossref]

Garnett, E. C.

S. A. Mann and E. C. Garnett, “Extreme light absorption in thin semiconductor films wrapped around metal nanowires,” Nano Lett. 13, 3173–3178 (2013).
[Crossref] [PubMed]

Ghebrebrhan, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett..  6, 549 (2011).
[Crossref] [PubMed]

Giannini, V.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Giles, A. J.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Glembocki, O. J.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

Green, W. M. J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular bragg lasers: theory, applications, and modal properties,” IEEE Journal of Selected Topics in Quantum Electronics 11, 476–484 (2005).
[Crossref]

Greffet, J.-J.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514–517 (2009).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21, 15014–15019 (2013).
[Crossref] [PubMed]

Hamad-Schifferli, K.

A. J. Schmidt, J. D. Alper, M. Chiesa, G. Chen, S. K. Das, and K. Hamad-Schifferli, “Probing the gold nanorodligand-solvent interface by plasmonic absorption and thermal decay,” J. Phys. Chem. C 112, 13320–13323 (2008).
[Crossref]

Hamam, R. E.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75, 053801 (2007).
[Crossref]

Hamann, H. F.

Han, S. E.

Harradon, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett..  6, 549 (2011).
[Crossref] [PubMed]

Herzog, J. B.

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
[Crossref] [PubMed]

Ho, K.-M.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[Crossref]

Holthaus, M.

A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005).
[Crossref] [PubMed]

Hong, M.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Hu, H.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep.4 (2014).
[Crossref]

Huang, J.

J. Huang, W. Wang, C. J. Murphy, and D. G. Cahill, “Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation,” Proc. Natl. Acad. Sci. USA 111, 906–911 (2014).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

Hulst, H. C. v. d.

H. C. v. d. Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

Ingvarsson, S.

Jacob, Z.

Jarillo-Herrero, P.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Ji, D.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep.4 (2014).
[Crossref]

Joannopoulos, J. D.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett..  6, 549 (2011).
[Crossref] [PubMed]

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75, 053801 (2007).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Jourdan, G.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514–517 (2009).
[Crossref]

Kaliteevskii, M. A.

V. V. Nikolaev, G. S. Sokolovskii, and M. A. Kaliteevskii, “Bragg reflectors for cylindrical waves,” Semiconductors 33, 147–152 (1999).
[Crossref]

Karalis, A.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75, 053801 (2007).
[Crossref]

Kasica, R.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

Keilmann, F.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Kidwai, O.

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
[Crossref]

Kim, Y.-S.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[Crossref]

Kittel, A.

A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005).
[Crossref] [PubMed]

Klein, L.

Knight, M. W.

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
[Crossref] [PubMed]

Kretinin, A. V.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Lacey, J. A.

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Lee, J.-H.

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[Crossref]

Li, H.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Darker than black: radiation-absorbing metamaterial,” arXiv:1109.5469 [cond-mat, physics:physics] (2011).

Li, W.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13, 1023–1028 (2013).
[Crossref] [PubMed]

Liew, K.

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

Liu, B.

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the wiener chaos expansion method,” Phys. Rev. B 87, 115403 (2013).
[Crossref]

Liu, K.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep.4 (2014).
[Crossref]

Liu, M. K.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field,” Phys. Rev. B 73, 235432 (2006).
[Crossref]

Lundock, R.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

Ma, Q.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Ma, T. W. W.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

Maier, S. A.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Mann, S. A.

S. A. Mann and E. C. Garnett, “Extreme light absorption in thin semiconductor films wrapped around metal nanowires,” Nano Lett. 13, 3173–3178 (2013).
[Crossref] [PubMed]

Mattiucci, N.

N. Mattiucci, G. D’Aguanno, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: A metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[Crossref]

McLeod, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Melnikov, L.

I. Nefedov and L. Melnikov, “Super-planckian far-zone thermal emission from asymmetric hyperbolic metamaterials,” arXiv:1402.3507 [physics] (2014).

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (Academic, 2003).

Molesky, S.

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21, A96–A110 (2013).
[Crossref] [PubMed]

Mueller, G.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Müller-Hirsch, W.

A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005).
[Crossref] [PubMed]

Murphy, C. J.

J. Huang, W. Wang, C. J. Murphy, and D. G. Cahill, “Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation,” Proc. Natl. Acad. Sci. USA 111, 906–911 (2014).
[Crossref] [PubMed]

Narayanaswamy, A.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

Narimanov, E.

Narimanov, E. E.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Darker than black: radiation-absorbing metamaterial,” arXiv:1109.5469 [cond-mat, physics:physics] (2011).

Natelson, D.

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
[Crossref] [PubMed]

Nefedov, I.

I. Nefedov and L. Melnikov, “Super-planckian far-zone thermal emission from asymmetric hyperbolic metamaterials,” arXiv:1402.3507 [physics] (2014).

Neto, A. H. C.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Ng, J.

Ni, Y.

Y. Ni, L. Gao, and C.-W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5, 251–258 (2010).
[Crossref]

Nikolaev, V. V.

V. V. Nikolaev, G. S. Sokolovskii, and M. A. Kaliteevskii, “Bragg reflectors for cylindrical waves,” Semiconductors 33, 147–152 (1999).
[Crossref]

Noginov, M. A.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Darker than black: radiation-absorbing metamaterial,” arXiv:1109.5469 [cond-mat, physics:physics] (2011).

Norris, D. J.

Novoselov, K. S.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Ottens, R. S.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Parisi, J.

A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005).
[Crossref] [PubMed]

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

Qiu, C.-W.

Y. Ni, L. Gao, and C.-W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5, 251–258 (2010).
[Crossref]

Quetschke, V.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

Reddig, D.

A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005).
[Crossref] [PubMed]

Regan, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Reitze, D. H.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

Rodin, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Rousseau, E.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514–517 (2009).
[Crossref]

Ruan, Z.

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
[Crossref] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[Crossref]

Scheuer, J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular bragg lasers: theory, applications, and modal properties,” IEEE Journal of Selected Topics in Quantum Electronics 11, 476–484 (2005).
[Crossref]

Schmidt, A. J.

A. J. Schmidt, J. D. Alper, M. Chiesa, G. Chen, S. K. Das, and K. Hamad-Schifferli, “Probing the gold nanorodligand-solvent interface by plasmonic absorption and thermal decay,” J. Phys. Chem. C 112, 13320–13323 (2008).
[Crossref]

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nature Photon. 3, 658–661 (2009).
[Crossref]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref] [PubMed]

Sergeant, N. P.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun..  4, 1730 (2013).
[Crossref] [PubMed]

Shen, S.

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the wiener chaos expansion method,” Phys. Rev. B 87, 115403 (2013).
[Crossref]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

Shi, J.

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

Sipe, J. E.

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
[Crossref]

Siria, A.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514–517 (2009).
[Crossref]

Skauli, T.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun..  4, 1730 (2013).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref] [PubMed]

Sokolovskii, G. S.

V. V. Nikolaev, G. S. Sokolovskii, and M. A. Kaliteevskii, “Bragg reflectors for cylindrical waves,” Semiconductors 33, 147–152 (1999).
[Crossref]

Soljacic, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett..  6, 549 (2011).
[Crossref] [PubMed]

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75, 053801 (2007).
[Crossref]

Song, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep.4 (2014).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Taniguchi, T.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Tanner, D. B.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

Taubner, T.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nature Photon. 3, 658–661 (2009).
[Crossref]

Ternovsky, V.

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field,” Phys. Rev. B 73, 235432 (2006).
[Crossref]

Thiemens, M.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Tien, C. L.

E. G. Cravalho, C. L. Tien, and R. P. Caren, “Effect of small spacings on radiative transfer between two dielectrics,” Journal of Heat Transfer 89, 351–358 (1967).
[Crossref]

Tischler, J. G.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Tschikin, M.

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109, 104301 (2012).
[Crossref] [PubMed]

Tumkur, T. U.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Darker than black: radiation-absorbing metamaterial,” arXiv:1109.5469 [cond-mat, physics:physics] (2011).

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Valentine, J. G.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13, 1023–1028 (2013).
[Crossref] [PubMed]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

Volz, S.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514–517 (2009).
[Crossref]

Wagner, M.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Walker, D. G.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13, 1023–1028 (2013).
[Crossref] [PubMed]

Wang, H.

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[Crossref]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun..  4, 1730 (2013).
[Crossref] [PubMed]

Wang, L.

Wang, W.

J. Huang, W. Wang, C. J. Murphy, and D. G. Cahill, “Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation,” Proc. Natl. Acad. Sci. USA 111, 906–911 (2014).
[Crossref] [PubMed]

Watanabe, K.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Whiting, B. F.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

Wise, S.

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

Woods, C. R.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Yariv, A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular bragg lasers: theory, applications, and modal properties,” IEEE Journal of Selected Topics in Quantum Electronics 11, 476–484 (2005).
[Crossref]

Yeng, Y. X.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett..  6, 549 (2011).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun..  4, 1730 (2013).
[Crossref] [PubMed]

Zeng, X.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep.4 (2014).
[Crossref]

Zettl, A.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Zhang, G.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun..  4, 1730 (2013).
[Crossref] [PubMed]

Zhang, N.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep.4 (2014).
[Crossref]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Zhukovsky, S. V.

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
[Crossref]

ACS Photonics (1)

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Ma, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photonics 1, 718–724 (2014).
[Crossref]

Adv. Mater. (1)

J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, “Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission,” Adv. Mater. 19, 791–794 (2007).
[Crossref]

Appl. Phys. Lett. (2)

N. Mattiucci, G. D’Aguanno, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: A metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[Crossref]

Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, “Thermal excitation of plasmons for near-field thermophotovoltaics,” Appl. Phys. Lett. 105, 073903 (2014).
[Crossref]

IEEE Journal of Selected Topics in Quantum Electronics (1)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “InGaAsP annular bragg lasers: theory, applications, and modal properties,” IEEE Journal of Selected Topics in Quantum Electronics 11, 476–484 (2005).
[Crossref]

J. Phys. Chem. C (1)

A. J. Schmidt, J. D. Alper, M. Chiesa, G. Chen, S. K. Das, and K. Hamad-Schifferli, “Probing the gold nanorodligand-solvent interface by plasmonic absorption and thermal decay,” J. Phys. Chem. C 112, 13320–13323 (2008).
[Crossref]

Journal of Heat Transfer (1)

E. G. Cravalho, C. L. Tien, and R. P. Caren, “Effect of small spacings on radiative transfer between two dielectrics,” Journal of Heat Transfer 89, 351–358 (1967).
[Crossref]

Nano Lett. (4)

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13, 1023–1028 (2013).
[Crossref] [PubMed]

S. A. Mann and E. C. Garnett, “Extreme light absorption in thin semiconductor films wrapped around metal nanowires,” Nano Lett. 13, 3173–3178 (2013).
[Crossref] [PubMed]

J. B. Herzog, M. W. Knight, and D. Natelson, “Thermoplasmonics: Quantifying plasmonic heating in single nanowires,” Nano Lett. 14, 499–503 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett..  6, 549 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun..  4, 1730 (2013).
[Crossref] [PubMed]

Nature (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Nature Photon. (2)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nature Photon. 3, 658–661 (2009).
[Crossref]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514–517 (2009).
[Crossref]

Opt. Commun. (1)

B. Liu, J. Shi, K. Liew, and S. Shen, “Near-field radiative heat transfer for Si based metamaterials,” Opt. Commun. 314, 57–65 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (2)

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75, 053801 (2007).
[Crossref]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic meta-materials: Strengths and limitations,” Phys. Rev. A 85, 053842 (2012).
[Crossref]

Phys. Rev. B (4)

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the wiener chaos expansion method,” Phys. Rev. B 87, 115403 (2013).
[Crossref]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field,” Phys. Rev. B 73, 235432 (2006).
[Crossref]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

Phys. Rev. Lett. (6)

A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005).
[Crossref] [PubMed]

R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
[Crossref] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109, 104301 (2012).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010).
[Crossref] [PubMed]

Plasmonics (1)

Y. Ni, L. Gao, and C.-W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics 5, 251–258 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[Crossref] [PubMed]

J. Huang, W. Wang, C. J. Murphy, and D. G. Cahill, “Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation,” Proc. Natl. Acad. Sci. USA 111, 906–911 (2014).
[Crossref] [PubMed]

Science (2)

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride,” Science 343, 1125–1129 (2014).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Semiconductors (1)

V. V. Nikolaev, G. S. Sokolovskii, and M. A. Kaliteevskii, “Bragg reflectors for cylindrical waves,” Semiconductors 33, 147–152 (1999).
[Crossref]

Other (8)

H. C. v. d. Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

M. F. Modest, Radiative Heat Transfer (Academic, 2003).

W. C. Chew, Waves and Fields in Inhomogenous Media (John Wiley & Sons, 1999).
[Crossref]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep.4 (2014).
[Crossref]

I. Nefedov and L. Melnikov, “Super-planckian far-zone thermal emission from asymmetric hyperbolic metamaterials,” arXiv:1402.3507 [physics] (2014).

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Darker than black: radiation-absorbing metamaterial,” arXiv:1109.5469 [cond-mat, physics:physics] (2011).

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun.5 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Absorption efficiency, or equivalently emissivity, versus size of lens b for core size of a = 0.1λ with different lenses surrounding a plasmonic core. Core-Vacuum (black dotted line) indicates Qabs of only a core of size a. Qabs for the core-HMM lens calculated using EMT, TMM-md and TMM-dm are shown as the dark blue solid, green dashed and the red dotted-dashed line, respectively. There are many resonant peaks that enhance the emissivity over that of the bare core when the HMM lens is present. Inset: Schematic of the geometry. The core and the lens have radius a and b, respectively. (b) Partial contribution to total absorption efficiency for each angular mode m in (a). The dashed black line is the single-channel limit defined in the text. The mode m = 4 achieves the single channel limit, unlike m = 3.

Fig. 2
Fig. 2

(a) Partial emissivity versus wavelength assuming that all optical properties follow a Drude model. Only a few angular modes contribute to radiative transfer at specific wavelengths. Inset: relative permittivities (ερθ) of the HMM lens for the range of wavelengths considered. The red dashed line at 10μm indicates the permittivities used in Fig. 1. (b) Product of partial emissivity Qabs,m, as in (a), versus wavelength for two size parameters k0b = 2.6 and k0b = 1.8 for the modes m = 3,4,5. There is very little overlap of all modes as two systems do not share an angular mode resonance. (c) Real and imaginary part of am defined in Eq. (1) for m = 4 in Fig. 1. This angular mode satisfies the condition for single-channel limit at the chosen size parameter of k0b = 1.8.

Fig. 3
Fig. 3

Field magnitude |Hz| plotted versus x and y coordinates normalized by wavelength, of mode |m| for the EMT-md case in Fig. 1(a). (a) |m| = 3, k0b ≈ 1.1. (b) |m| = 4, k0b ≈ 1 9. (c) |m| = 3, k0b ≈ 1.62 and (d) |m| =4, and k0b ≈ 1.62. The dashed white circles represent the approximate inner and outer boundaries of the lens. (a) and (b) are at size parameters of resonances in Fig. 1(a) and we observe a dominant confined single mode with high field magnitude. However, (c) and (d) correspond to an off-resonant size parameter in which both modes are not confined and have lower field magnitudes than (a) and (b).

Fig. 4
Fig. 4

(a) Log plot of the imaginary part of the Fresnel reflection coefficient Im(Rp), indicating the magnitude of absorption of the incident evanescent field, using pTMM for different values of k/k0 and number of metal-dielectric bi-layers N. The HMM lowers the parallel momentum required for the resonance with slow variation versus number of bi-layers. (b) log[Im(Rp)] for the planar case in (a) compared to the peak positions of the TMM-md case (symbols) in Fig. 1(b) for different equivalent values of m and size parameter k0b. The agreement between the planar and cylindrical calculations indicates that the composite plasmonic resonances are of the same nature. (c) Partial emissivity Qabs,m for m = 4 mode at a size parameter of k0b ≈ 1.8 for EMT-HMM case in Fig. 1(a) for different values of ερ and εθ. The region of interest for selective heating is ερ > 5,εθ < 0 for which the emissivity of the resonant mode is largest.

Fig. 5
Fig. 5

Partial emissivity Qabs,m versus wavelength for m = 3,4,5 with loss (solid lines) and without loss (dashed lines) in the HMM lens (where a = 1 μm and k0b = 1.8 for the mode m = 4 in Fig. 1). The presence of loss in the lens decreases the resonant absorption peak, m = 4, while the difference in emissivity between off-resonant modes such as m = 3 and the resonant m = 4 mode decrease. The colors indicating mode number m are the same for Qabs,m with and without loss.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H z ( r ) { m = ( i ) m ( J m ( k 0 ρ ) a m H m ( 1 ) ( k 0 ρ ) ) exp ( i m ϕ ) : m = ( i ) m ( c m ( j ) J m ( k j ρ ) + d m ( j ) H m ( 1 ) ( k j ρ ) ) exp ( i m ϕ ) : m = ( i ) m b m J m ( k j ρ ) exp ( i m ϕ ) : ρ > b a < ρ < b ρ < a
Q a b s = m = Q a b s , m = 2 k 0 a m = Re ( a m ) | a m | 2

Metrics