Abstract

MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between −0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Beam shaping with tip-tilt varifocal mirror for indoor optical wireless communication

Corey Pollock, Jessica Morrison, Matthias Imboden, Thomas D.C. Little, and D.J. Bishop
Opt. Express 25(17) 20274-20285 (2017)

Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging

Matthew Strathman, Yunbo Liu, Xingde Li, and Lih Y. Lin
Opt. Express 21(20) 23934-23941 (2013)

Extreme angle, tip-tilt MEMS micromirror enabling full hemispheric, quasi-static optical coverage

C. Pollock, J. Javor, A. Stange, L. K. Barrett, and D. J. Bishop
Opt. Express 27(11) 15318-15326 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Dickensheets, “Requirements of MEMS membrane mirrors for focus adjustment and aberration correction in endoscopic confocal and optical coherence tomography imaging instruments,” J. Micro/Nanolithography. MEMS. MOEMS 7(2), 021008 (2008).
    [Crossref]
  2. W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
    [Crossref]
  3. V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, R. Ryf, D. T. Neilson, S. Member, J. Kim, C. R. Giles, and D. Bishop, “Beam-Steering Micromirrors for Large Optical Cross-Connects,” J. Lightwave Technol. 21(3), 634–642 (2003).
    [Crossref]
  4. B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
    [Crossref]
  5. T. Sasaki and K. Hane, “Initial deflection of silicon-on-insulator thin membrane micro-mirror and fabrication of varifocal mirror,” Sens. Actuators A Phys. 172(2), 516–522 (2011).
    [Crossref]
  6. R. Hokari and K. Hane, “Micro-mirror laser scanner combined with a varifocal mirror,” Microsyst. Technol. 18(4), 475–480 (2012).
    [Crossref]
  7. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
    [Crossref]
  8. M. Strathman, Y. Liu, X. Li, and L. Y. Lin, “Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging,” Opt. Express 21(20), 23934–23941 (2013).
    [Crossref] [PubMed]
  9. T. Sandner, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 021006 (2008).
    [Crossref]
  10. S. Schweizer, S. Calmes, M. Laudon, and P. Renaud, “Thermally actuated optical microscanner with large angle and low consumption,” Sens. Actuators A Phys. 76(1-3), 470–477 (1999).
    [Crossref]
  11. J. Singh, C. C. Hoe, T. H. S. Jason, C. Nanguang, C. S. Premachandran, C. J. R. Sheppard, and M. Olivo, “Optical coherent tomography (OCT) bio-imaging using 3D scanning micromirror,” Proc. SPIE 6432, C4320 (2007).
    [Crossref]
  12. A. Jain, H. Qu, S. Todd, and H. Xie, “A thermal bimorph micromirror with large bi-directional and vertical actuation,” Sens. Actuators A Phys. 122(1), 9–15 (2005).
    [Crossref]
  13. K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
    [Crossref]
  14. S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G (2008).
    [Crossref]
  15. W. Liu and J. J. Talghader, “Current-controlled curvature of coated micromirrors,” Opt. Lett. 28(11), 932–934 (2003).
    [Crossref] [PubMed]
  16. J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).
  17. P. Brandl, S. Member, S. Schidl, A. Polzer, W. Gaberl, H. Zimmermann, and S. Member, “Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
    [Crossref]
  18. D. Koester, A. Cowen, and R. Mahadevan, “PolyMUMPs design handbook,” http://www.memscap.com/products/mumps/polymumps/reference-material .
  19. W.-H. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
    [Crossref]
  20. S. T. Todd, S. Member, H. Xie, and S. Member, “An Electrothermomechanical Lumped Element Model of an Electrothermal Bimorph Actuator,” J. Microelectromech. Syst. 17(1), 213–225 (2008).
    [Crossref]
  21. J. Zou, M. Balberg, C. Byrne, C. Liu, and D. J. Brady, “Optical properties of surface micromachined mirrors with etch holes,” J. Microelectromech. Syst. 8(4), 506–513 (1999).
    [Crossref]
  22. L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145-146, 371–379 (2008).
    [Crossref]
  23. J. Sun, S. Guo, L. Wu, L. Liu, S.-W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
    [Crossref] [PubMed]
  24. K. Gall, M. L. Dunn, Y. Zhang, and B. Corff, “Thermal cycling response of layered gold/polysilicon MEMS structures,” Mech. Mater. 36(1-2), 45–55 (2004).
    [Crossref]
  25. E. Merced, S. Member, X. Tan, S. Member, N. Sepúlveda, and S. Member, “Closed-Loop Tracking of Large Displacements in Electro-Thermally Actuated VO2-Based MEMS,” J. Microelectromech. Syst. 23, 1073–1083 (2014).
    [Crossref]

2014 (3)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

E. Merced, S. Member, X. Tan, S. Member, N. Sepúlveda, and S. Member, “Closed-Loop Tracking of Large Displacements in Electro-Thermally Actuated VO2-Based MEMS,” J. Microelectromech. Syst. 23, 1073–1083 (2014).
[Crossref]

2013 (2)

M. Strathman, Y. Liu, X. Li, and L. Y. Lin, “Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging,” Opt. Express 21(20), 23934–23941 (2013).
[Crossref] [PubMed]

P. Brandl, S. Member, S. Schidl, A. Polzer, W. Gaberl, H. Zimmermann, and S. Member, “Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

2012 (1)

R. Hokari and K. Hane, “Micro-mirror laser scanner combined with a varifocal mirror,” Microsyst. Technol. 18(4), 475–480 (2012).
[Crossref]

2011 (1)

T. Sasaki and K. Hane, “Initial deflection of silicon-on-insulator thin membrane micro-mirror and fabrication of varifocal mirror,” Sens. Actuators A Phys. 172(2), 516–522 (2011).
[Crossref]

2010 (1)

2009 (1)

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

2008 (5)

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

T. Sandner, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 021006 (2008).
[Crossref]

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145-146, 371–379 (2008).
[Crossref]

D. L. Dickensheets, “Requirements of MEMS membrane mirrors for focus adjustment and aberration correction in endoscopic confocal and optical coherence tomography imaging instruments,” J. Micro/Nanolithography. MEMS. MOEMS 7(2), 021008 (2008).
[Crossref]

S. T. Todd, S. Member, H. Xie, and S. Member, “An Electrothermomechanical Lumped Element Model of an Electrothermal Bimorph Actuator,” J. Microelectromech. Syst. 17(1), 213–225 (2008).
[Crossref]

2007 (1)

J. Singh, C. C. Hoe, T. H. S. Jason, C. Nanguang, C. S. Premachandran, C. J. R. Sheppard, and M. Olivo, “Optical coherent tomography (OCT) bio-imaging using 3D scanning micromirror,” Proc. SPIE 6432, C4320 (2007).
[Crossref]

2005 (1)

A. Jain, H. Qu, S. Todd, and H. Xie, “A thermal bimorph micromirror with large bi-directional and vertical actuation,” Sens. Actuators A Phys. 122(1), 9–15 (2005).
[Crossref]

2004 (2)

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

K. Gall, M. L. Dunn, Y. Zhang, and B. Corff, “Thermal cycling response of layered gold/polysilicon MEMS structures,” Mech. Mater. 36(1-2), 45–55 (2004).
[Crossref]

2003 (2)

2002 (1)

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

1999 (2)

J. Zou, M. Balberg, C. Byrne, C. Liu, and D. J. Brady, “Optical properties of surface micromachined mirrors with etch holes,” J. Microelectromech. Syst. 8(4), 506–513 (1999).
[Crossref]

S. Schweizer, S. Calmes, M. Laudon, and P. Renaud, “Thermally actuated optical microscanner with large angle and low consumption,” Sens. Actuators A Phys. 76(1-3), 470–477 (1999).
[Crossref]

1993 (1)

W.-H. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
[Crossref]

Aksyuk, V. A.

Alex Vitkin, I.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Anderson, M. H.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

Arney, S.

Balberg, M.

J. Zou, M. Balberg, C. Byrne, C. Liu, and D. J. Brady, “Optical properties of surface micromachined mirrors with etch holes,” J. Microelectromech. Syst. 8(4), 506–513 (1999).
[Crossref]

Bishop, D.

Bolle, C.

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Brady, D. J.

J. Zou, M. Balberg, C. Byrne, C. Liu, and D. J. Brady, “Optical properties of surface micromachined mirrors with etch holes,” J. Microelectromech. Syst. 8(4), 506–513 (1999).
[Crossref]

Brandl, P.

P. Brandl, S. Member, S. Schidl, A. Polzer, W. Gaberl, H. Zimmermann, and S. Member, “Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

Byrne, C.

J. Zou, M. Balberg, C. Byrne, C. Liu, and D. J. Brady, “Optical properties of surface micromachined mirrors with etch holes,” J. Microelectromech. Syst. 8(4), 506–513 (1999).
[Crossref]

Calmes, S.

S. Schweizer, S. Calmes, M. Laudon, and P. Renaud, “Thermally actuated optical microscanner with large angle and low consumption,” Sens. Actuators A Phys. 76(1-3), 470–477 (1999).
[Crossref]

Carr, D.

Chan, H. B.

Choe, S.-W.

Chu, W.-H.

W.-H. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
[Crossref]

Clerc, P. A.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

Coltrin, M. E.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

Corff, B.

K. Gall, M. L. Dunn, Y. Zhang, and B. Corff, “Thermal cycling response of layered gold/polysilicon MEMS structures,” Mech. Mater. 36(1-2), 45–55 (2004).
[Crossref]

Crawford, M. H.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

Dändliker, R.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

David Dickensheets, L.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Davis, S. R.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

De Rooij, N.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

Dellmann, L.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

Dickensheets, D. L.

D. L. Dickensheets, “Requirements of MEMS membrane mirrors for focus adjustment and aberration correction in endoscopic confocal and optical coherence tomography imaging instruments,” J. Micro/Nanolithography. MEMS. MOEMS 7(2), 021008 (2008).
[Crossref]

Dunn, M. L.

K. Gall, M. L. Dunn, Y. Zhang, and B. Corff, “Thermal cycling response of layered gold/polysilicon MEMS structures,” Mech. Mater. 36(1-2), 45–55 (2004).
[Crossref]

Farca, G.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

Fischer, A. J.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

Frahm, R.

Gaberl, W.

P. Brandl, S. Member, S. Schidl, A. Polzer, W. Gaberl, H. Zimmermann, and S. Member, “Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

Gall, K.

K. Gall, M. L. Dunn, Y. Zhang, and B. Corff, “Thermal cycling response of layered gold/polysilicon MEMS structures,” Mech. Mater. 36(1-2), 45–55 (2004).
[Crossref]

Gasparyan, A.

Giles, C. R.

Greywall, D.

Guldimann, B.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

Guo, S.

Hane, K.

R. Hokari and K. Hane, “Micro-mirror laser scanner combined with a varifocal mirror,” Microsyst. Technol. 18(4), 475–480 (2012).
[Crossref]

T. Sasaki and K. Hane, “Initial deflection of silicon-on-insulator thin membrane micro-mirror and fabrication of varifocal mirror,” Sens. Actuators A Phys. 172(2), 516–522 (2011).
[Crossref]

Haueis, M.

Herzig, H. P.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

Hoe, C. C.

J. Singh, C. C. Hoe, T. H. S. Jason, C. Nanguang, C. S. Premachandran, C. J. R. Sheppard, and M. Olivo, “Optical coherent tomography (OCT) bio-imaging using 3D scanning micromirror,” Proc. SPIE 6432, C4320 (2007).
[Crossref]

Hokari, R.

R. Hokari and K. Hane, “Micro-mirror laser scanner combined with a varifocal mirror,” Microsyst. Technol. 18(4), 475–480 (2012).
[Crossref]

Jain, A.

A. Jain, H. Qu, S. Todd, and H. Xie, “A thermal bimorph micromirror with large bi-directional and vertical actuation,” Sens. Actuators A Phys. 122(1), 9–15 (2005).
[Crossref]

Jason, T. H. S.

J. Singh, C. C. Hoe, T. H. S. Jason, C. Nanguang, C. S. Premachandran, C. J. R. Sheppard, and M. Olivo, “Optical coherent tomography (OCT) bio-imaging using 3D scanning micromirror,” Proc. SPIE 6432, C4320 (2007).
[Crossref]

Jia, K.

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

Karlicek, R. F.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

Kim, J.

Koleske, D. D.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

Laudon, M.

S. Schweizer, S. Calmes, M. Laudon, and P. Renaud, “Thermally actuated optical microscanner with large angle and low consumption,” Sens. Actuators A Phys. 76(1-3), 470–477 (1999).
[Crossref]

Li, X.

Lifton, V.

Lin, L. Y.

Liu, C.

J. Zou, M. Balberg, C. Byrne, C. Liu, and D. J. Brady, “Optical properties of surface micromachined mirrors with etch holes,” J. Microelectromech. Syst. 8(4), 506–513 (1999).
[Crossref]

Liu, L.

Liu, W.

Liu, Y.

Maggie Gordon, L.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Manzardo, O.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

Martin, A. W.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

Marxer, C. R.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

Mehregany, M.

W.-H. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
[Crossref]

Member, S.

E. Merced, S. Member, X. Tan, S. Member, N. Sepúlveda, and S. Member, “Closed-Loop Tracking of Large Displacements in Electro-Thermally Actuated VO2-Based MEMS,” J. Microelectromech. Syst. 23, 1073–1083 (2014).
[Crossref]

E. Merced, S. Member, X. Tan, S. Member, N. Sepúlveda, and S. Member, “Closed-Loop Tracking of Large Displacements in Electro-Thermally Actuated VO2-Based MEMS,” J. Microelectromech. Syst. 23, 1073–1083 (2014).
[Crossref]

E. Merced, S. Member, X. Tan, S. Member, N. Sepúlveda, and S. Member, “Closed-Loop Tracking of Large Displacements in Electro-Thermally Actuated VO2-Based MEMS,” J. Microelectromech. Syst. 23, 1073–1083 (2014).
[Crossref]

P. Brandl, S. Member, S. Schidl, A. Polzer, W. Gaberl, H. Zimmermann, and S. Member, “Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

P. Brandl, S. Member, S. Schidl, A. Polzer, W. Gaberl, H. Zimmermann, and S. Member, “Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

S. T. Todd, S. Member, H. Xie, and S. Member, “An Electrothermomechanical Lumped Element Model of an Electrothermal Bimorph Actuator,” J. Microelectromech. Syst. 17(1), 213–225 (2008).
[Crossref]

S. T. Todd, S. Member, H. Xie, and S. Member, “An Electrothermomechanical Lumped Element Model of an Electrothermal Bimorph Actuator,” J. Microelectromech. Syst. 17(1), 213–225 (2008).
[Crossref]

V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, R. Ryf, D. T. Neilson, S. Member, J. Kim, C. R. Giles, and D. Bishop, “Beam-Steering Micromirrors for Large Optical Cross-Connects,” J. Lightwave Technol. 21(3), 634–642 (2003).
[Crossref]

Merced, E.

E. Merced, S. Member, X. Tan, S. Member, N. Sepúlveda, and S. Member, “Closed-Loop Tracking of Large Displacements in Electro-Thermally Actuated VO2-Based MEMS,” J. Microelectromech. Syst. 23, 1073–1083 (2014).
[Crossref]

Mullen, R. L.

W.-H. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
[Crossref]

Nanguang, C.

J. Singh, C. C. Hoe, T. H. S. Jason, C. Nanguang, C. S. Premachandran, C. J. R. Sheppard, and M. Olivo, “Optical coherent tomography (OCT) bio-imaging using 3D scanning micromirror,” Proc. SPIE 6432, C4320 (2007).
[Crossref]

Neilson, D. T.

Noell, W.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

Olivo, M.

J. Singh, C. C. Hoe, T. H. S. Jason, C. Nanguang, C. S. Premachandran, C. J. R. Sheppard, and M. Olivo, “Optical coherent tomography (OCT) bio-imaging using 3D scanning micromirror,” Proc. SPIE 6432, C4320 (2007).
[Crossref]

Paczkowski, M.

Pal, S.

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

Pardo, F.

Phillip Himmer, A.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Polzer, A.

P. Brandl, S. Member, S. Schidl, A. Polzer, W. Gaberl, H. Zimmermann, and S. Member, “Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

Premachandran, C. S.

J. Singh, C. C. Hoe, T. H. S. Jason, C. Nanguang, C. S. Premachandran, C. J. R. Sheppard, and M. Olivo, “Optical coherent tomography (OCT) bio-imaging using 3D scanning micromirror,” Proc. SPIE 6432, C4320 (2007).
[Crossref]

Qi, B.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Qu, H.

A. Jain, H. Qu, S. Todd, and H. Xie, “A thermal bimorph micromirror with large bi-directional and vertical actuation,” Sens. Actuators A Phys. 122(1), 9–15 (2005).
[Crossref]

Renaud, P.

S. Schweizer, S. Calmes, M. Laudon, and P. Renaud, “Thermally actuated optical microscanner with large angle and low consumption,” Sens. Actuators A Phys. 76(1-3), 470–477 (1999).
[Crossref]

Rommel, S. D.

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

Ryf, R.

Sandner, T.

T. Sandner, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 021006 (2008).
[Crossref]

Sasaki, T.

T. Sasaki and K. Hane, “Initial deflection of silicon-on-insulator thin membrane micro-mirror and fabrication of varifocal mirror,” Sens. Actuators A Phys. 172(2), 516–522 (2011).
[Crossref]

Schidl, S.

P. Brandl, S. Member, S. Schidl, A. Polzer, W. Gaberl, H. Zimmermann, and S. Member, “Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

Schweizer, S.

S. Schweizer, S. Calmes, M. Laudon, and P. Renaud, “Thermally actuated optical microscanner with large angle and low consumption,” Sens. Actuators A Phys. 76(1-3), 470–477 (1999).
[Crossref]

Sepúlveda, N.

E. Merced, S. Member, X. Tan, S. Member, N. Sepúlveda, and S. Member, “Closed-Loop Tracking of Large Displacements in Electro-Thermally Actuated VO2-Based MEMS,” J. Microelectromech. Syst. 23, 1073–1083 (2014).
[Crossref]

Shea, H.

Sheppard, C. J. R.

J. Singh, C. C. Hoe, T. H. S. Jason, C. Nanguang, C. S. Premachandran, C. J. R. Sheppard, and M. Olivo, “Optical coherent tomography (OCT) bio-imaging using 3D scanning micromirror,” Proc. SPIE 6432, C4320 (2007).
[Crossref]

Simon, M. E.

Singh, J.

J. Singh, C. C. Hoe, T. H. S. Jason, C. Nanguang, C. S. Premachandran, C. J. R. Sheppard, and M. Olivo, “Optical coherent tomography (OCT) bio-imaging using 3D scanning micromirror,” Proc. SPIE 6432, C4320 (2007).
[Crossref]

Sorg, B. S.

Strathman, M.

Subramania, G. S.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

Sun, J.

Talghader, J. J.

Tan, X.

E. Merced, S. Member, X. Tan, S. Member, N. Sepúlveda, and S. Member, “Closed-Loop Tracking of Large Displacements in Electro-Thermally Actuated VO2-Based MEMS,” J. Microelectromech. Syst. 23, 1073–1083 (2014).
[Crossref]

Todd, S.

A. Jain, H. Qu, S. Todd, and H. Xie, “A thermal bimorph micromirror with large bi-directional and vertical actuation,” Sens. Actuators A Phys. 122(1), 9–15 (2005).
[Crossref]

Todd, S. T.

S. T. Todd, S. Member, H. Xie, and S. Member, “An Electrothermomechanical Lumped Element Model of an Electrothermal Bimorph Actuator,” J. Microelectromech. Syst. 17(1), 213–225 (2008).
[Crossref]

Tsao, J. Y.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

Victor Yang, X. D.

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Wang, G. T.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

Weible, K. J.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

Wierer, J. J.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

Wu, L.

J. Sun, S. Guo, L. Wu, L. Liu, S.-W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145-146, 371–379 (2008).
[Crossref]

Xie, H.

J. Sun, S. Guo, L. Wu, L. Liu, S.-W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref] [PubMed]

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145-146, 371–379 (2008).
[Crossref]

S. T. Todd, S. Member, H. Xie, and S. Member, “An Electrothermomechanical Lumped Element Model of an Electrothermal Bimorph Actuator,” J. Microelectromech. Syst. 17(1), 213–225 (2008).
[Crossref]

A. Jain, H. Qu, S. Todd, and H. Xie, “A thermal bimorph micromirror with large bi-directional and vertical actuation,” Sens. Actuators A Phys. 122(1), 9–15 (2005).
[Crossref]

Zhang, Y.

K. Gall, M. L. Dunn, Y. Zhang, and B. Corff, “Thermal cycling response of layered gold/polysilicon MEMS structures,” Mech. Mater. 36(1-2), 45–55 (2004).
[Crossref]

Zimmermann, H.

P. Brandl, S. Member, S. Schidl, A. Polzer, W. Gaberl, H. Zimmermann, and S. Member, “Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

Zou, J.

J. Zou, M. Balberg, C. Byrne, C. Liu, and D. J. Brady, “Optical properties of surface micromachined mirrors with etch holes,” J. Microelectromech. Syst. 8(4), 506–513 (1999).
[Crossref]

Adv. Opt. Mater. (1)

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward Smart and Ultra-efficient Solid-State Lighting,” Adv. Opt. Mater. 2(9)809–836 (2014).

IEEE J. Sel. Top. Quantum Electron. (1)

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Brandl, S. Member, S. Schidl, A. Polzer, W. Gaberl, H. Zimmermann, and S. Member, “Focus and MEMS-Based Beam Steering,” IEEE Photon. Technol. Lett. 25(15), 1428–1431 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Micro/Nanolithography. MEMS MOEMS (1)

T. Sandner, “Translatory MEMS actuators for optical path length modulation in miniaturized Fourier-transform infrared spectrometers,” J. Micro/Nanolithography. MEMS MOEMS 7(2), 021006 (2008).
[Crossref]

J. Micro/Nanolithography. MEMS. MOEMS (1)

D. L. Dickensheets, “Requirements of MEMS membrane mirrors for focus adjustment and aberration correction in endoscopic confocal and optical coherence tomography imaging instruments,” J. Micro/Nanolithography. MEMS. MOEMS 7(2), 021008 (2008).
[Crossref]

J. Microelectromech. Syst. (4)

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

S. T. Todd, S. Member, H. Xie, and S. Member, “An Electrothermomechanical Lumped Element Model of an Electrothermal Bimorph Actuator,” J. Microelectromech. Syst. 17(1), 213–225 (2008).
[Crossref]

J. Zou, M. Balberg, C. Byrne, C. Liu, and D. J. Brady, “Optical properties of surface micromachined mirrors with etch holes,” J. Microelectromech. Syst. 8(4), 506–513 (1999).
[Crossref]

E. Merced, S. Member, X. Tan, S. Member, N. Sepúlveda, and S. Member, “Closed-Loop Tracking of Large Displacements in Electro-Thermally Actuated VO2-Based MEMS,” J. Microelectromech. Syst. 23, 1073–1083 (2014).
[Crossref]

J. Micromech. Microeng. (1)

W.-H. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
[Crossref]

Light Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Mech. Mater. (1)

K. Gall, M. L. Dunn, Y. Zhang, and B. Corff, “Thermal cycling response of layered gold/polysilicon MEMS structures,” Mech. Mater. 36(1-2), 45–55 (2004).
[Crossref]

Microsyst. Technol. (1)

R. Hokari and K. Hane, “Micro-mirror laser scanner combined with a varifocal mirror,” Microsyst. Technol. 18(4), 475–480 (2012).
[Crossref]

Opt. Commun. (1)

B. Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, and I. Alex Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (2)

S. R. Davis, G. Farca, S. D. Rommel, A. W. Martin, and M. H. Anderson, “Analog, non-mechanical beam-steerer with 80 degree field of regard,” Proc. SPIE 6971, 69710G (2008).
[Crossref]

J. Singh, C. C. Hoe, T. H. S. Jason, C. Nanguang, C. S. Premachandran, C. J. R. Sheppard, and M. Olivo, “Optical coherent tomography (OCT) bio-imaging using 3D scanning micromirror,” Proc. SPIE 6432, C4320 (2007).
[Crossref]

Sens. Actuators A Phys. (4)

A. Jain, H. Qu, S. Todd, and H. Xie, “A thermal bimorph micromirror with large bi-directional and vertical actuation,” Sens. Actuators A Phys. 122(1), 9–15 (2005).
[Crossref]

S. Schweizer, S. Calmes, M. Laudon, and P. Renaud, “Thermally actuated optical microscanner with large angle and low consumption,” Sens. Actuators A Phys. 76(1-3), 470–477 (1999).
[Crossref]

T. Sasaki and K. Hane, “Initial deflection of silicon-on-insulator thin membrane micro-mirror and fabrication of varifocal mirror,” Sens. Actuators A Phys. 172(2), 516–522 (2011).
[Crossref]

L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators A Phys. 145-146, 371–379 (2008).
[Crossref]

Other (1)

D. Koester, A. Cowen, and R. Mahadevan, “PolyMUMPs design handbook,” http://www.memscap.com/products/mumps/polymumps/reference-material .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) SEM image of micromirror device. (b) Illustration of bimorph layers before and after oxide etch and reduced curvature due to heating.
Fig. 2
Fig. 2 (a) SEM image of the mirror depicting the eight bimorph wedges and (b) an illustration of the wedge shape as Joule heating in the serpentine springs heats the platform and mirror.
Fig. 3
Fig. 3 SEM image with an actuation overlay. Eight electrical leads are used to control both deflection and variable focus. Leakage current through the springs due to I ± θ/φ results in negligible power consumption and is not shown here.
Fig. 4
Fig. 4 Optical profiler measurements of (a) the average radial profile from the center of the mirror, (b) a surface plot for three actuation powers.
Fig. 5
Fig. 5 Curvature (top) and Zernike aberrations (bottom) versus power based on a spherical fit to the optical profile of the gold layer. The curvature is fit to κ = (0.042 mm−1/mW) · Pf mW −1.038 mm−1 with the exception of the last point where the wedges come into contact with the platform.
Fig. 6
Fig. 6 Beam deflection angle is plotted against actuation power when P0 = 15 mW and when P0 = 30 mW (left). At the right is a diagram illustrating the powers of the bimorph legs during actuation. The labels for the power provided to each leg are given as subscripts ± θ and ± φ as shown in Fig. 3.
Fig. 7
Fig. 7 Shown is the height above the substrate of the center of the micromirror as all four bimorph legs are actuated at the same power together. The red trace is a linear fit with a slope of −2.68 µm/mW.
Fig. 8
Fig. 8 Resistance measurements and exponential decay fits to R(t) = R0 + R1·exp(-(t-t0)/τth) for a current pulse through (a) a bimorph leg and (b) the serpentine springs. The thermal time constants for the bimorph leg and mirror respectively were 2.0 ms and 14.9 ms for a step up in current and 2.5 ms and 11.7 ms for a step down in current.
Fig. 9
Fig. 9 (a) and (b) show the power dissipated in the bimorph leg based on the voltage ramp time, (c) and (d) are the normalized deflection angles due to the voltage ramps measured using a PSD for each of the ramp times (inset graphs provide the actual voltage over time). The normalizations (c) and (d) are each offset to reduce overlap.
Fig. 10
Fig. 10 FFT of the response when heating (Up) and cooling (Down) for varying voltage ramp times. The reduction in response of the first two resonant modes is clear when the voltage ramp is provided over 5 ms when compared to a step voltage.

Tables (1)

Tables Icon

Table 1 Time Response of Micromirror Deflection

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ 1 r = 1 r 0 + 6t( α Au α Si )ΔT 4 t Au 2 +4 t Si 2 +6 t Au t Si +( E Au t Au 3 E Si t Si )+( E Si t Si 3 E Au t Au )

Metrics