Abstract

Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Random phase-free kinoform for large objects

Tomoyoshi Shimobaba, Takashi Kakue, Yutaka Endo, Ryuji Hirayama, Daisuke Hiyama, Satoki Hasegawa, Yuki Nagahama, Marie Sano, Minoru Oikawa, Takashige Sugie, and Tomoyoshi Ito
Opt. Express 23(13) 17269-17274 (2015)

Speckle reduced lensless holographic projection from phase-only computer-generated hologram

Chenliang Chang, Yijun Qi, Jun Wu, Jun Xia, and Shouping Nie
Opt. Express 25(6) 6568-6580 (2017)

Holographic multi-projection using the random phase-free method

Yuki Nagahama, Tomoyoshi Shimobaba, Tetsuya Kawashima, Takashi Kakue, and Tomoyoshi Ito
Appl. Opt. 55(5) 1118-1123 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  2. H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. rep. 4, 6177 (2014).
    [Crossref] [PubMed]
  3. E. Buckley, “Holographic laser projection,” J. Disp. Tech. 7, 135–140 (2011).
    [Crossref]
  4. Y. Ogura, M. Aino, and J. Tanida, “Design and demonstration of fan-out elements generating an array of subd-iffraction spots,” Opt. Express 22, 25196–25207 (2014).
    [Crossref] [PubMed]
  5. B. Kress and P. Meyrueis, Digital Diffractive Optics (John Wiley&Sons Ltd, 2000).
  6. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1589–636 (2009).
    [Crossref]
  7. A. W. Lohmann and D. P. Paris, “Binary Fraunhofer Holograms, generated by computer,” Appl. Opt. 6, 1739–1748 (1967).
    [Crossref] [PubMed]
  8. M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
    [Crossref]
  9. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34, 3165–3171 (1995).
    [Crossref] [PubMed]
  10. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19, 7567–7579 (2011).
    [Crossref] [PubMed]
  11. M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21, 29205–29216 (2013).
    [Crossref]
  12. Y. Mori, T. Fukuoka, and T. Nomura, “Speckle reduction in holographic projection by random pixel separation with time multiplexing,” Appl. Opt. 53, 8182–8188 (2014).
    [Crossref]
  13. T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21, 25285–25290 (2013).
    [Crossref] [PubMed]
  14. I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
    [Crossref]
  15. R. Eschbach, “Comparison of error diffusion methods for computer-generated holograms,” Appl. Opt. 30, 3702–3710 (1991).
    [Crossref] [PubMed]
  16. P. W. M. Tsang and T. -C. Poon, “Novel method for converting digital Fresnel hologram to phase-only hologram based on bidirectional error diffusion,” Opt. Express 21, 23680–23686 (2013)
    [Crossref] [PubMed]
  17. P. W. M. Tsang, A. S. M. Jiao, and T.-C. Poon, “Fast conversion of digital Fresnel hologram to phase-only hologram based on localized error diffusion and redistribution,” Opt. Express 22, 5060–5066 (2014)
    [Crossref] [PubMed]
  18. P. W. M. Tsang, Y. -T. Chow, and T. -C. Poon, “Generation of phase-only Fresnel hologram based on down-sampling,” Opt. Express 22, 25208–25214 (2014).
    [Crossref] [PubMed]
  19. H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22, 28052–28057 (2014).
    [Crossref] [PubMed]
  20. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20, 11288–11315 (2012).
    [Crossref] [PubMed]
  21. T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15, 075302 (2013).
    [Crossref]
  22. T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
    [Crossref]

2015 (1)

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

2014 (6)

2013 (4)

2012 (2)

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20, 11288–11315 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (1)

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1589–636 (2009).
[Crossref]

2005 (1)

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

1995 (1)

1991 (1)

1967 (1)

Aino, M.

Alfalou, A.

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1589–636 (2009).
[Crossref]

Amako, J.

Araki, H.

Biedaa, M.

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

Brosseau, C.

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1589–636 (2009).
[Crossref]

Buckley, E.

E. Buckley, “Holographic laser projection,” J. Disp. Tech. 7, 135–140 (2011).
[Crossref]

Chow, Y. -T.

Ducina, I.

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

Endo, Y.

Eschbach, R.

Fukuoka, T.

Goodman, J. W.

Hirayama, R.

Ichihashi, Y.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. rep. 4, 6177 (2014).
[Crossref] [PubMed]

Ito, T.

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22, 28052–28057 (2014).
[Crossref] [PubMed]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21, 25285–25290 (2013).
[Crossref] [PubMed]

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15, 075302 (2013).
[Crossref]

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Jiao, A. S. M.

Kakarenkoa, K.

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

Kakue, T.

Kolodziejczyk, A.

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

Kolodziejczyka, A.

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

Kowalczyka, A.

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

Kress, B.

B. Kress and P. Meyrueis, Digital Diffractive Optics (John Wiley&Sons Ltd, 2000).

Lohmann, A. W.

Makowski, M.

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21, 29205–29216 (2013).
[Crossref]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21, 25285–25290 (2013).
[Crossref] [PubMed]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

Manni, J. G.

Masuda, N.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Meyrueis, P.

B. Kress and P. Meyrueis, Digital Diffractive Optics (John Wiley&Sons Ltd, 2000).

Mikula, G.

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

Miura, H.

Mori, Y.

Nakayama, H.

Nishitsuji, T.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Niwase, H.

Nomura, T.

Ogura, Y.

Oi, R.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. rep. 4, 6177 (2014).
[Crossref] [PubMed]

Oikawa, M.

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21, 25285–25290 (2013).
[Crossref] [PubMed]

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15, 075302 (2013).
[Crossref]

Okada, N.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15, 075302 (2013).
[Crossref]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21, 25285–25290 (2013).
[Crossref] [PubMed]

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Paris, D. P.

Poon, T. -C.

Poon, T.-C.

Sakurai, T.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Sasaki, H.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. rep. 4, 6177 (2014).
[Crossref] [PubMed]

Senoh, T.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. rep. 4, 6177 (2014).
[Crossref] [PubMed]

Shimobaba, T.

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22, 28052–28057 (2014).
[Crossref] [PubMed]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21, 25285–25290 (2013).
[Crossref] [PubMed]

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15, 075302 (2013).
[Crossref]

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Shimobabab, T.

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

Shiraki, A.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Sonehara, T.

Sugiyama, A.

Suszeka, J.

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

Sypek, M.

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

Takada, N.

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22, 28052–28057 (2014).
[Crossref] [PubMed]

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Takaki, Y.

Tanida, J.

Tsang, P. W. M.

Wakunami, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. rep. 4, 6177 (2014).
[Crossref] [PubMed]

Weng, J.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

Yamaguchi, Y.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15, 075302 (2013).
[Crossref]

Yamamoto, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. rep. 4, 6177 (2014).
[Crossref] [PubMed]

Yokouchi, M.

Adv. Opt. Photonics (1)

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photonics 1589–636 (2009).
[Crossref]

Appl. Opt. (4)

Comput. Phys. Commun. (1)

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, and T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183, 1124–1138 (2012).
[Crossref]

J. Disp. Tech. (1)

E. Buckley, “Holographic laser projection,” J. Disp. Tech. 7, 135–140 (2011).
[Crossref]

J. Opt. (1)

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15, 075302 (2013).
[Crossref]

Opt. Commun. (1)

I. Ducina, T. Shimobabab, M. Makowski, K. Kakarenkoa, A. Kowalczyka, J. Suszeka, M. Biedaa, A. Kolodziejczyka, and M. Sypek, “Holographic projection of images with step-less zoom and noise suppression by pixel separation,” Opt. Commun. 340, 131–135 (2015).
[Crossref]

Opt. Eng. (1)

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikula, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44, 125805 (2005).
[Crossref]

Opt. Express (9)

Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19, 7567–7579 (2011).
[Crossref] [PubMed]

J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20, 11288–11315 (2012).
[Crossref] [PubMed]

P. W. M. Tsang and T. -C. Poon, “Novel method for converting digital Fresnel hologram to phase-only hologram based on bidirectional error diffusion,” Opt. Express 21, 23680–23686 (2013)
[Crossref] [PubMed]

T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21, 25285–25290 (2013).
[Crossref] [PubMed]

M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21, 29205–29216 (2013).
[Crossref]

P. W. M. Tsang, A. S. M. Jiao, and T.-C. Poon, “Fast conversion of digital Fresnel hologram to phase-only hologram based on localized error diffusion and redistribution,” Opt. Express 22, 5060–5066 (2014)
[Crossref] [PubMed]

Y. Ogura, M. Aino, and J. Tanida, “Design and demonstration of fan-out elements generating an array of subd-iffraction spots,” Opt. Express 22, 25196–25207 (2014).
[Crossref] [PubMed]

P. W. M. Tsang, Y. -T. Chow, and T. -C. Poon, “Generation of phase-only Fresnel hologram based on down-sampling,” Opt. Express 22, 25208–25214 (2014).
[Crossref] [PubMed]

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22, 28052–28057 (2014).
[Crossref] [PubMed]

Sci. rep. (1)

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. rep. 4, 6177 (2014).
[Crossref] [PubMed]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

B. Kress and P. Meyrueis, Digital Diffractive Optics (John Wiley&Sons Ltd, 2000).

Supplementary Material (2)

» Media 1: MOV (2471 KB)     
» Media 2: MOV (2987 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Illustration of the intuitive reason for the random phase addition. (a) without random phase (b) with random phase.
Fig. 2
Fig. 2 Original image (a). Numerically reconstructed image from 4K resolution CGHs without the random phase (b). Numerical reconstructed image with the random phase (c). Numerical reconstructed image with the proposed method (d). The red box indicates the region of interest for measuring speckle contrast.
Fig. 3
Fig. 3 Random phase-free CGH using convergence light.
Fig. 4
Fig. 4 Optical system (a). Optical reconstructions by the random phase method and the proposed method (b). The magnification changes are 1.0, 1.8 and 2.4. Furthermore, we show some movies recorded using the proposed method ( Media 1) and random phase method ( Media 2) with the magnification of 2.4. The actual image size for M = 2.4 is about 40 mm × 22 mm.

Metrics