Abstract

We present a compact microfluidic flowmeter based on Fabry-Perot interferometer (FPI). The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co2+-doped optical fiber cavity, acting as a “hot-wire” sensor. Microfluidic channels made from commercial silica capillaries were integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power, microfluidic channel scale and temperature on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds, with a spatial resolution ~200 μm. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system. Furthermore, simulation modal was built up to analyze the heat distribution of the “hot-wire” cavity and optimize the FPI structure as well.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
“Hot-wire” microfluidic flowmeter based on a microfiber coupler

Shao-cheng Yan, Zeng-yong Liu, Cheng Li, Shi-jun Ge, Fei Xu, and Yan-qing Lu
Opt. Lett. 41(24) 5680-5683 (2016)

Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co2+-doped optical fiber

Zhengyong Liu, Ming-Leung Vincent Tse, A. Ping Zhang, and Hwa-Yaw Tam
Opt. Lett. 39(20) 5877-5880 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  2. A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B Chem. 1(1-6), 244–248 (1990).
    [Crossref]
  3. G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools for cell biological research,” Nano Today 5(1), 28–47 (2010).
    [Crossref] [PubMed]
  4. M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sens. Actuators A Phys. 73(1-2), 7–13 (1999).
    [Crossref]
  5. A. Glaninger, A. Jachimowicz, F. Kohl, R. Chabicovsky, and G. Urban, “Wide range semiconductor flow sensors,” Sens. Actuators A Phys. 85(1-3), 139–146 (2000).
    [Crossref]
  6. J. Chen, Z. Fan, J. Zou, J. Engel, and C. Liu, “Two-dimensional micromachined flow sensor array for fluid mechanics studies,” J. Aerosp. Eng. 16(2), 85–97 (2003).
    [Crossref]
  7. R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow-sensor,” Sens. Actuators A Phys. 77(3), 167–177 (1999).
    [Crossref]
  8. J. Collins and A. P. Lee, “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab Chip 4(1), 7–10 (2004).
    [Crossref] [PubMed]
  9. M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” J. Micromech. Microeng. 15(7), 132–138 (2005).
    [Crossref]
  10. G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
    [Crossref] [PubMed]
  11. A. Quist, A. Chand, S. Ramachandran, D. Cohen, and R. Lal, “Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels,” Lab Chip 6(11), 1450–1454 (2006).
    [Crossref] [PubMed]
  12. K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
    [Crossref] [PubMed]
  13. L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
    [Crossref]
  14. V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
    [Crossref] [PubMed]
  15. C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
    [Crossref]
  16. X. H. Wang, X. Y. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. M. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Technol. Lett. 25(24), 2458–2461 (2013).
    [Crossref]
  17. S. Gao, A. P. Zhang, H. Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19(11), 10124–10130 (2011).
    [Crossref] [PubMed]
  18. R. Chen, A. Yan, Q. Wang, and K. P. Chen, “Fiber-optic flow sensors for high-temperature environment operation up to 800°C,” Opt. Lett. 39(13), 3966–3969 (2014).
    [Crossref] [PubMed]
  19. Z. Liu, M. L. Tse, A. P. Zhang, and H. Y. Tam, “Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co²⁺-doped optical fiber,” Opt. Lett. 39(20), 5877–5880 (2014).
    [Crossref] [PubMed]
  20. Y. Li, B. Zhou, L. Zhang, and S. L. He, “Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair,” Opt. Commun. 344, 156–160 (2015).
    [Crossref]
  21. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  22. H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford U. Press, 1995).
  23. M. K. Davis and M. J. F. Digonnet, “Measurements of thermal effects in fibers doped with cobalt and vanadium,” J. Lightwave Technol. 18(2), 161–165 (2000).
    [Crossref]

2015 (1)

Y. Li, B. Zhou, L. Zhang, and S. L. He, “Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair,” Opt. Commun. 344, 156–160 (2015).
[Crossref]

2014 (2)

2013 (1)

X. H. Wang, X. Y. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. M. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

2011 (1)

2010 (1)

G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools for cell biological research,” Nano Today 5(1), 28–47 (2010).
[Crossref] [PubMed]

2007 (1)

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

2006 (4)

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

A. Quist, A. Chand, S. Ramachandran, D. Cohen, and R. Lal, “Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels,” Lab Chip 6(11), 1450–1454 (2006).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

2005 (2)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” J. Micromech. Microeng. 15(7), 132–138 (2005).
[Crossref]

2004 (3)

J. Collins and A. P. Lee, “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab Chip 4(1), 7–10 (2004).
[Crossref] [PubMed]

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
[Crossref] [PubMed]

L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
[Crossref]

2003 (1)

J. Chen, Z. Fan, J. Zou, J. Engel, and C. Liu, “Two-dimensional micromachined flow sensor array for fluid mechanics studies,” J. Aerosp. Eng. 16(2), 85–97 (2003).
[Crossref]

2000 (2)

A. Glaninger, A. Jachimowicz, F. Kohl, R. Chabicovsky, and G. Urban, “Wide range semiconductor flow sensors,” Sens. Actuators A Phys. 85(1-3), 139–146 (2000).
[Crossref]

M. K. Davis and M. J. F. Digonnet, “Measurements of thermal effects in fibers doped with cobalt and vanadium,” J. Lightwave Technol. 18(2), 161–165 (2000).
[Crossref]

1999 (2)

R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow-sensor,” Sens. Actuators A Phys. 77(3), 167–177 (1999).
[Crossref]

M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sens. Actuators A Phys. 73(1-2), 7–13 (1999).
[Crossref]

1990 (1)

A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B Chem. 1(1-6), 244–248 (1990).
[Crossref]

Altpeter, D.

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

Ashauer, M.

M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sens. Actuators A Phys. 73(1-2), 7–13 (1999).
[Crossref]

Baar, J. J.

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” J. Micromech. Microeng. 15(7), 132–138 (2005).
[Crossref]

Berenschot, J. W.

R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow-sensor,” Sens. Actuators A Phys. 77(3), 167–177 (1999).
[Crossref]

Boer, J. H.

M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” J. Micromech. Microeng. 15(7), 132–138 (2005).
[Crossref]

Boer, R. J. H.

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

Chabicovsky, R.

A. Glaninger, A. Jachimowicz, F. Kohl, R. Chabicovsky, and G. Urban, “Wide range semiconductor flow sensors,” Sens. Actuators A Phys. 85(1-3), 139–146 (2000).
[Crossref]

Chand, A.

A. Quist, A. Chand, S. Ramachandran, D. Cohen, and R. Lal, “Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels,” Lab Chip 6(11), 1450–1454 (2006).
[Crossref] [PubMed]

Chen, J.

J. Chen, Z. Fan, J. Zou, J. Engel, and C. Liu, “Two-dimensional micromachined flow sensor array for fluid mechanics studies,” J. Aerosp. Eng. 16(2), 85–97 (2003).
[Crossref]

Chen, K. P.

R. Chen, A. Yan, Q. Wang, and K. P. Chen, “Fiber-optic flow sensors for high-temperature environment operation up to 800°C,” Opt. Lett. 39(13), 3966–3969 (2014).
[Crossref] [PubMed]

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

Chen, R.

Chen, Z. M.

X. H. Wang, X. Y. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. M. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Cheng, J.

X. H. Wang, X. Y. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. M. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Cho, L. H.

Cho, S. K.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

Cohen, D.

A. Quist, A. Chand, S. Ramachandran, D. Cohen, and R. Lal, “Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels,” Lab Chip 6(11), 1450–1454 (2006).
[Crossref] [PubMed]

Collins, J.

J. Collins and A. P. Lee, “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab Chip 4(1), 7–10 (2004).
[Crossref] [PubMed]

Davis, M. K.

Digonnet, M. J. F.

Dijkstra, M.

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” J. Micromech. Microeng. 15(7), 132–138 (2005).
[Crossref]

Dong, X. Y.

X. H. Wang, X. Y. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. M. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Elwenspoek, M. C.

R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow-sensor,” Sens. Actuators A Phys. 77(3), 167–177 (1999).
[Crossref]

Engel, J.

J. Chen, Z. Fan, J. Zou, J. Engel, and C. Liu, “Two-dimensional micromachined flow sensor array for fluid mechanics studies,” J. Aerosp. Eng. 16(2), 85–97 (2003).
[Crossref]

Fan, Z.

J. Chen, Z. Fan, J. Zou, J. Engel, and C. Liu, “Two-dimensional micromachined flow sensor array for fluid mechanics studies,” J. Aerosp. Eng. 16(2), 85–97 (2003).
[Crossref]

Freitag, R.

L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
[Crossref]

Gao, S.

Glaninger, A.

A. Glaninger, A. Jachimowicz, F. Kohl, R. Chabicovsky, and G. Urban, “Wide range semiconductor flow sensors,” Sens. Actuators A Phys. 85(1-3), 139–146 (2000).
[Crossref]

Glosch, H.

M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sens. Actuators A Phys. 73(1-2), 7–13 (1999).
[Crossref]

Graber, N.

A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B Chem. 1(1-6), 244–248 (1990).
[Crossref]

He, S. L.

Y. Li, B. Zhou, L. Zhang, and S. L. He, “Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair,” Opt. Commun. 344, 156–160 (2015).
[Crossref]

Hedrich, F.

M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sens. Actuators A Phys. 73(1-2), 7–13 (1999).
[Crossref]

Hey, N.

M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sens. Actuators A Phys. 73(1-2), 7–13 (1999).
[Crossref]

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Jachimowicz, A.

A. Glaninger, A. Jachimowicz, F. Kohl, R. Chabicovsky, and G. Urban, “Wide range semiconductor flow sensors,” Sens. Actuators A Phys. 85(1-3), 139–146 (2000).
[Crossref]

Jewart, C.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

Klank, H.

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
[Crossref] [PubMed]

Kohl, F.

A. Glaninger, A. Jachimowicz, F. Kohl, R. Chabicovsky, and G. Urban, “Wide range semiconductor flow sensors,” Sens. Actuators A Phys. 85(1-3), 139–146 (2000).
[Crossref]

Krijnen, G. J. M.

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” J. Micromech. Microeng. 15(7), 132–138 (2005).
[Crossref]

R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow-sensor,” Sens. Actuators A Phys. 77(3), 167–177 (1999).
[Crossref]

Kuipers, W. J.

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

Kutter, J. P.

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
[Crossref] [PubMed]

Lal, R.

A. Quist, A. Chand, S. Ramachandran, D. Cohen, and R. Lal, “Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels,” Lab Chip 6(11), 1450–1454 (2006).
[Crossref] [PubMed]

Lammerink, T. S. J.

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” J. Micromech. Microeng. 15(7), 132–138 (2005).
[Crossref]

R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow-sensor,” Sens. Actuators A Phys. 77(3), 167–177 (1999).
[Crossref]

Lang, W.

M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sens. Actuators A Phys. 73(1-2), 7–13 (1999).
[Crossref]

Le Berre, M.

G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools for cell biological research,” Nano Today 5(1), 28–47 (2010).
[Crossref] [PubMed]

Lee, A. P.

J. Collins and A. P. Lee, “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab Chip 4(1), 7–10 (2004).
[Crossref] [PubMed]

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Li, Y.

Y. Li, B. Zhou, L. Zhang, and S. L. He, “Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair,” Opt. Commun. 344, 156–160 (2015).
[Crossref]

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lien, V.

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

Liu, C.

J. Chen, Z. Fan, J. Zou, J. Engel, and C. Liu, “Two-dimensional micromachined flow sensor array for fluid mechanics studies,” J. Aerosp. Eng. 16(2), 85–97 (2003).
[Crossref]

Liu, Z.

Lu, C.

Manz, A.

A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B Chem. 1(1-6), 244–248 (1990).
[Crossref]

McMillen, B.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

Mogensen, K. B.

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
[Crossref] [PubMed]

Ni, K.

X. H. Wang, X. Y. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. M. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Oosterbroek, R. E.

R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow-sensor,” Sens. Actuators A Phys. 77(3), 167–177 (1999).
[Crossref]

Piel, M.

G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools for cell biological research,” Nano Today 5(1), 28–47 (2010).
[Crossref] [PubMed]

Quist, A.

A. Quist, A. Chand, S. Ramachandran, D. Cohen, and R. Lal, “Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels,” Lab Chip 6(11), 1450–1454 (2006).
[Crossref] [PubMed]

Ramachandran, S.

A. Quist, A. Chand, S. Ramachandran, D. Cohen, and R. Lal, “Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels,” Lab Chip 6(11), 1450–1454 (2006).
[Crossref] [PubMed]

Reichert, J.

L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
[Crossref]

Sandmaier, H.

M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sens. Actuators A Phys. 73(1-2), 7–13 (1999).
[Crossref]

Shankar, S. S.

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

Szekely, L.

L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
[Crossref]

Tam, H. Y.

Tran, P. T.

G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools for cell biological research,” Nano Today 5(1), 28–47 (2010).
[Crossref] [PubMed]

Tse, M. L.

Urban, G.

A. Glaninger, A. Jachimowicz, F. Kohl, R. Chabicovsky, and G. Urban, “Wide range semiconductor flow sensors,” Sens. Actuators A Phys. 85(1-3), 139–146 (2000).
[Crossref]

van den Berg, A.

R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow-sensor,” Sens. Actuators A Phys. 77(3), 167–177 (1999).
[Crossref]

Velve-Casquillas, G.

G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools for cell biological research,” Nano Today 5(1), 28–47 (2010).
[Crossref] [PubMed]

Vollmer, F.

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

Wang, Q.

Wang, X. H.

X. H. Wang, X. Y. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. M. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Widmer, H. M.

A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B Chem. 1(1-6), 244–248 (1990).
[Crossref]

Wiegerink, R.

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

Wiegerink, R. J.

M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” J. Micromech. Microeng. 15(7), 132–138 (2005).
[Crossref]

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yan, A.

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Zhang, A. P.

Zhang, L.

Y. Li, B. Zhou, L. Zhang, and S. L. He, “Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair,” Opt. Commun. 344, 156–160 (2015).
[Crossref]

Zhou, B.

Y. Li, B. Zhou, L. Zhang, and S. L. He, “Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair,” Opt. Commun. 344, 156–160 (2015).
[Crossref]

Zhou, Y.

X. H. Wang, X. Y. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. M. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

Zou, J.

J. Chen, Z. Fan, J. Zou, J. Engel, and C. Liu, “Two-dimensional micromachined flow sensor array for fluid mechanics studies,” J. Aerosp. Eng. 16(2), 85–97 (2003).
[Crossref]

Appl. Phys. Lett. (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Electrophoresis (1)

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis 25(21-22), 3498–3512 (2004).
[Crossref] [PubMed]

IEEE Photon. Technol. Lett. (1)

X. H. Wang, X. Y. Dong, Y. Zhou, K. Ni, J. Cheng, and Z. M. Chen, “Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber,” IEEE Photon. Technol. Lett. 25(24), 2458–2461 (2013).
[Crossref]

J. Aerosp. Eng. (1)

J. Chen, Z. Fan, J. Zou, J. Engel, and C. Liu, “Two-dimensional micromachined flow sensor array for fluid mechanics studies,” J. Aerosp. Eng. 16(2), 85–97 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

M. Dijkstra, J. J. Baar, R. J. Wiegerink, T. S. J. Lammerink, J. H. Boer, and G. J. M. Krijnen, “Artificial sensory hairs based on the flow sensitive receptor hairs of crickets,” J. Micromech. Microeng. 15(7), 132–138 (2005).
[Crossref]

Lab Chip (3)

J. Collins and A. P. Lee, “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab Chip 4(1), 7–10 (2004).
[Crossref] [PubMed]

A. Quist, A. Chand, S. Ramachandran, D. Cohen, and R. Lal, “Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels,” Lab Chip 6(11), 1450–1454 (2006).
[Crossref] [PubMed]

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

Nano Today (1)

G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools for cell biological research,” Nano Today 5(1), 28–47 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

G. J. M. Krijnen, M. Dijkstra, J. J. Baar, S. S. Shankar, W. J. Kuipers, R. J. H. Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology 17(4), S84–S89 (2006).
[Crossref] [PubMed]

Nature (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Li, B. Zhou, L. Zhang, and S. L. He, “Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair,” Opt. Commun. 344, 156–160 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Sens. Actuators A Phys. (5)

L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
[Crossref]

M. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, and W. Lang, “Thermal flow sensor for liquids and gases based on combinations of two principles,” Sens. Actuators A Phys. 73(1-2), 7–13 (1999).
[Crossref]

A. Glaninger, A. Jachimowicz, F. Kohl, R. Chabicovsky, and G. Urban, “Wide range semiconductor flow sensors,” Sens. Actuators A Phys. 85(1-3), 139–146 (2000).
[Crossref]

R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, and A. van den Berg, “A micromachined pressure/flow-sensor,” Sens. Actuators A Phys. 77(3), 167–177 (1999).
[Crossref]

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

Sens. Actuators B Chem. (1)

A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B Chem. 1(1-6), 244–248 (1990).
[Crossref]

Other (1)

H. H. Bruun, Hot-Wire Anemometry: Principles and Signal Analysis (Oxford U. Press, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the proposed microfluidic flowmeter based on μFPI configuration.
Fig. 2
Fig. 2 Simulated temperature distribution in the fiber core of the sandwiched CDF with different lengths at pump power of 400 mW.
Fig. 3
Fig. 3 (a) Simulated temperature distribution in the fiber core of the μFPI cavity with different diameters of the sandwiched CDF at pump power of 400 mW. The gray area represents the sandwiched CDF section. (b) Temperature contour plots with CDF diameter of 60 μm along the fiber (up) and at the cross section (down) in the middle of the μFPI cavity.
Fig. 4
Fig. 4 Microscopy images of (a) the taper part of the etched μFPI and (b) the cross section of the integrated fiber and capillary. (c) Reflection spectra of the original FBG, fabricated μFPI and the final etched μFPI.
Fig. 5
Fig. 5 Scheme of the setup for testing the sensing performance of the integrated microfluidic chip. The inset is the photo of the microfluidic chip under test.
Fig. 6
Fig. 6 (a) Spectral response of the μFPI with diameter of 60 μm under different pump power. (b) Comparison of resonance dip shift as a function of pump power between FPI diameters of 125 μm and 60 μm.
Fig. 7
Fig. 7 (a) Wavelength shift of the μFPI resonance dip as a function of microfluidic flow rate at the pump power of 200.4 mW, 299.7 mW and 398 mW. Dotted lines are fitted by using Eq. (4). (b) Sensitivities as a function of flow rate at different pump power levels.
Fig. 8
Fig. 8 (a) Wavelength shift of μFPI resonance dip as a function of microfluidic flow rate with different inner diameters of capillaries, at pump power of 299.7 mW. The dashed lines are fitted by the deduced Eq. (4). (b) Sensitivities as a function of flow rate.
Fig. 9
Fig. 9 (a) Simulated peak temperature of the heated CDF section under different ambient temperatures, with fiber diameter of 60 μm and pump power of 313 mW. (b) Wavelength response of the μFPI to the flow rate under different ambient temperatures.
Fig. 10
Fig. 10 Time response under different flow rates, with a 313 mw pump and the inner diameter of capillary is 430 μm. The inset is the enlarged part of the response curve at flow rate of 0.22 μL/s.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ R = 2( n eff,CDF L CDF +2 n eff,SMF L FBG ) m
Q=(A+B υ n )ΔT
1 λ R d λ R dt =( 1 n eff d n eff dt + 1 L CDF d L CDF dt ) L CDF L =(α+β) L CDF L
λ R = λ R,0 + λ R,0 (α+β) L CDF L Q (A+B υ n )
P(l)= P 0 e αl
Q(l)=k| dP(l) dl |=kα P 0 e αl

Metrics